
Temporal Slicing in the Evaluation of XML Queries

Dengfeng Gao Richard T. Snodgrass

Department of Computer Science, University of Arizona, Tucson, AZ 85721�
dgao, rts � @cs.arizona.edu

Abstract

As with relational data, XML data changes over
time with the creation, modification, and deletion
of XML documents. Expressing queries on time-
varying (relational or XML) data is more diffi-
cult than writing queries on nontemporal data. In
this paper, we present a temporal XML query lan-
guage, � XQuery, in which we add valid time sup-
port to XQuery by minimally extending the syn-
tax and semantics of XQuery. We adopt a stra-
tum approach which maps a � XQuery query to
a conventional XQuery. The paper focuses on
how to perform this mapping, in particular, on
mapping sequenced queries, which are by far the
most challenging. The critical issue of support-
ing sequenced queries (in any query language)
is time-slicing the input data while retaining pe-
riod timestamping. Timestamps are distributed
throughout an XML document, rather than uni-
formly in tuples, complicating the temporal slic-
ing while also providing opportunities for op-
timization. We propose four optimizations of
our initial maximally-fragmented time-slicing ap-
proach: selected node slicing, copy-based per-
expression slicing, in-place per-expression slic-
ing, and idiomatic slicing, each of which reduces
the number of constant periods over which the
query is evaluated. While performance tradeoffs
clearly depend on the underlying XQuery engine,
we argue that there are queries that favor each of
the five approaches.

1 Introduction
XML is now the emerging standard for data representa-
tion and exchange on the web. Querying XML data has
garnered increasing attention from database researchers.

Permission to copy without fee all or part of this material is granted pro-
vided that the copies are not made or distributed for direct commercial
advantage, the VLDB copyright notice and the title of the publication and
its date appear, and notice is given that copying is by permission of the
Very Large Data Base Endowment. To copy otherwise, or to republish,
requires a fee and/or special permission from the Endowment.

Proceedings of the 29th VLDB Conference,
Berlin, Germany, 2003

XQuery [25] is the XML query language proposed by the
World Wide Web Consortium. Although the XQuery work-
ing draft is still under development, several dozen demos
and prototypes of XQuery processors can be found on the
web. The major DBMS vendors, including Oracle [19],
IBM [13], and Microsoft [17], have all released early im-
plementations of XQuery.

Almost every database application involves the manage-
ment of temporal data. Similarly, XML data changes over
time with the creation, modification, and deletion of the
XML documents. These changes involve two temporal di-
mensions, valid time and transaction time [20]. While there
has been some work addressing the transaction time dimen-
sion of XML data [6, 7, 16], less attention has been fo-
cused on the valid time dimension of XML data. Express-
ing queries on temporal data is harder than writing queries
on nontemporal data.

In this paper, we present a temporal XML query lan-
guage, � XQuery, in which we add temporal support to
XQuery by extending its syntax and semantics. Our goal
is to move the complexity of handling time from the
user/application code into the � XQuery processor. More-
over, we do not want to design a brand new query language.
Instead, we made minimal changes to XQuery. Although
we discuss valid time in this paper, the approach also ap-
plies to transaction time queries.

� XQuery utilizes the data model of XQuery. The few
reserved words added to XQuery indicate three different
kinds of valid time queries. Representational queries have
the same semantics with XQuery, ensuring that � XQuery is
upward compatible with XQuery. New syntax for current
and sequenced queries makes these queries easier to write.
We carefully made � XQuery compatible with XQuery to
ensure the smooth migration from nontemporal application
to temporal application; this compatibility also simplifies
the semantics and its implementation.

To implement � XQuery, we adopt the stratum approach,
in which a stratum accepts � XQuery expressions and maps
each to a semantically equivalent XQuery expression. This
XQuery expression is passed to an XQuery engine. Once
the XQuery engine obtains the result, the stratum possibly
performs some additional processing and returns the result
to the user. The advantage of this approach is that we can
exploit the existing techniques in an XQuery engine such as
the query optimization and query evaluation. The stratum

approach does not depend on a particular XQuery engine.
The paper focuses on how to perform this mapping, in

particular, on mapping sequenced queries, which are by
far the most challenging. The central issue of support-
ing sequenced queries (in any query language) is time-
slicing the input data while retaining period timestamping.
Timestamps are distributed throughout an XML document,
rather than uniformly in tuples, complicating the temporal
slicing while also providing opportunities for optimization.
Any implementation of temporal support in a query lan-
guage must come to terms with temporal slicing. This is
the first paper to do so for XML.

The rest of the paper is organized as follows. We first
present an example that illustrates the benefit of temporal
support within the XQuery language. Temporal XML data
is briefly introduced in Section 3. Section 4 describes the
syntax and semantics of � XQuery informally. The follow-
ing section provides a formal semantics of the language ex-
pressed as a source-to-source mapping in the style of deno-
tational semantics. We then discuss the details of a stratum
to implement � XQuery on top of a system supporting con-
ventional XQuery.

The formal semantics utilizes maximally-fragmented
time-slicing. Section 7 considers four optimizations: se-
lected node time-slicing, copy-based per-expression time-
slicing, in-place per-expression time-slicing, and idiomatic
time-slicing. The related work is discussed in Section 8.
Section 9 concludes the paper and lists interesting issues
that are worthy of further study.

2 An Example

An XML document is static data; there is no explicit
semantics of time. But often XML documents con-
tain time-varying data. Consider customer relationship
management, or CRM. Companies are realizing that it
is much more expensive to acquire new customers than
to keep existing ones. To ensure that customers re-
main loyal, the company needs to develop a relation-
ship with that customer over time, and to tailor its inter-
actions with each customer [2, 10]. An important task
is to collect and analyze historical information on cus-
tomer interactions. As Ahlert emphasizes, “It is neces-
sary for an organization to develop a common strategy
for the management and use of all customer informa-
tion” [1], termed enterprise customer management. This
requires communicating information on past interactions
(whether by phone, email, or web) to those who interact di-
rectly with the customer (the “front desk”) and those who
analyze these interactions (the “back desk”) for product de-
velopment, direct marketing campaigns, incentive program
design, and refining the web interface. Given the disparate
software applications and databases used by the different
departments in the company, using XML to pass this im-
portant information around is an obvious choice.

Figure 1 illustrates a small (and quite simplified) por-
tion of such a document. This document would contain
information on each customer, including the identity of the

<CRMdata>
<customer supportLevel = "platinum">

<contactInfo> ... </contactInfo>
<directedPromotion> ... </directedPromotion>
<supportIncident>

<product>...</product>
<description>...</description>
<action>
<who> ... <who>
<what> ... <what>
<handoff> ... <handoff>

</action>
<resolution> ...</resolution>

</supportIncident>
...

</customer>
...
</CRMdata>

Figure 1: A CRM XML document

customer (name or email address or internal customer num-
ber), contact information (address, phone number, etc.), the
support level of the customer (e.g., silver, gold, and plat-
inum, for increasingly valuable customers), information on
promotions directed at that customer, and information on
support incidents, where the customer contacted the com-
pany with a complaint that was resolved (or is still open).

While almost all of this information varies over time,
for only some elements is the history useful and should be
recorded in the XML document. Certainly the history of
the support level is important, to see for example how cus-
tomers go up or down in their support level. A support inci-
dent is explicitly temporal: it is opened by customer action
and closed by an action of a staff member that resolves the
incident, and so is associated with the period during which
it is open. A support incident may involve one or several
actions, each of which is invoked either by the original cus-
tomer contact or by a hand-off from a previous action, and
is terminated when a hand-off is made to another staff or
when the incident is resolved; hence, actions are also asso-
ciated with valid periods.

We need a way to represent this time information. In
next section, we will describe a means of adding time to an
XML schema to realize a representational schema, which
is itself a correct XSchema [24], though we’ll argue that the
details are peripheral to the focus of this paper. Instead, we
just show a sliver of the time-varying CRM XML document
in Figure 2. In this particular temporal XML document, a
time-varying attribute is represented as a timeVarying-
Attribute element, and that a time-varying element is
represented with one or more versions, each containing one
or more timestamp sub-elements. The valid-time period
is represented with the beginning and ending instants, in
a closed-open representation. Hence, the “gold” attribute
value is valid for the day September 19 through the day
March 19; March 19 is not included. (Apparently, a support
level applies for six months.) Also, the valid period of an
ancestor element (e.g., supportIncident) must con-
tain the period(s) of descendant elements (e.g., action).

<CRMdata>
<customer>
<timeVaryingAttribute name="supportLevel"

value="gold" vtBegin="2001-9-19"
vtEnd="2002-3-19"/>

<timeVaryingAttribute name="supportLevel"
value="platinum" vtBegin="2002-3-19"
vtEnd="2003-9-19"/>

...
<supportIncident>

<timestamp vtBegin="2002-4-11"
vtEnd="2002-4-29"/>

...
<action>

<timestamp vtBegin="2002-4-11"
vtEnd="2002-4-21"/>

<who> ... </who> ...
</action>
<action> <timestamp .../>...</action>

</supportIncident>
</customer>

</CRMdata>

Figure 2: A temporal XML document for CRM

Note, though, that there is no such requirement between
siblings, such as different supportLevels or between
time-varying elements and attributes of an element.

Consider now an XQuery query on the static instance
in Figure 1, “What is the average number of open support
incidents per gold customer?” This is easily expressed in
XQuery as

avg(for $c in document("CRM.xml")//
customer[@supportLevel="gold"]

return count($c/supportIncident))

Now, if the analyst wants the history of the average number
of open support incidents per gold customer (which hope-
fully is trending down), the query becomes much more
complex, because both elements and attributes are time-
varying. (The reader is invited to try to express this in
XQuery, an exercise which will clearly show why a tem-
poral extension is needed.)

An XML query language that supports temporal queries
is needed to fill the gap between XQuery and temporal ap-
plications. As we will see, this temporal query (the history
of the average) is straightforward to express in � XQuery.

3 Temporal XML Data
The conventional schema defines the structure of the non-
temporal data, which are simply XML instance documents.
A time-varying XML document can be conceptualized as
a series of conventional documents, all described by the
same schema, each with an associated valid and/or trans-
action time. Hence we may have a version on Monday,
the same version on Tuesday, a slightly modified version
on Wednesday, and a further modified version on Thursday
that is also valid on Friday. This sequence of conventional
documents in concert comprise a single time-varying XML
document.

The data designer specifies with a separate represen-
tational schema where in the time-varying document the
timestamps should be placed, which is independent from
which components in the document can change over time.
For example, the user may want to add timestamps to a
parent node if all sub-elements of that parent node are time-
varying. An alternative design is to add timestamps to all
the sub-elements. This is a desirable flexibility provided
to the user. However, note that timestamps can occur at
any level of the XML document hierarchy. � XQuery has to
contend with this variability.

We emphasize that the representational schema is a con-
ventional XML schema. The non-temporal schema for our
CRM example would describe e.g., customer and sup-
portIncident elements; the representational schema
would add (for the document in Figure 2) the timestamp
and timeVaryingAttribute elements. The rest of
this paper is largely independent of these representational
details.

Constraints must be applied to the temporal XML doc-
uments to ensure the validity of the temporal XML doc-
uments. One important constraint is that the valid time
boundaries of parent elements must encompass those of
its child. Violating this constraint means at some time, a
child element exists without a parent node, which never
appears in a valid document. Another constraint is that an
element without timestamps inherits the valid periods of its
parent. These constraints are exploited in the optimizations
that will be discussed in Section 7.

4 The Language
There are three kinds of temporal queries supported in

� XQuery: current queries, sequenced queries, and repre-
sentational queries. We will introduce these queries and
show an example of each kind of query. The next section
provides the formal semantics for these queries, via a map-
ping to XQuery.

4.1 Current Queries

An XML document without temporal data records the cur-
rent state of some aspect of the real world. After the tem-
poral dimension is added, the history is preserved in the
document. Conceptually, a temporal XML document de-
notes a sequence of conventional XML documents, each of
which records a snapshot of the temporal XML document
at a particular time. A current query simply asks for the
information about the current state. An example is, “what
is the average number of (currently) open support incidents
per (current) gold customer?”

current avg(for $c in document("CRM.xml")//
customer[@supportLevel="gold"]
return count($c/supportIncident))

The semantics of a current query is exactly the same as
the semantics of the XQuery (without the reserved word
current) applied to the current state of the XML docu-
ment(s) mentioned in the query. Applied to the instance in

Figure 2, that particular customer would not contribute to
this average, because the support level of that customer is
currently platinum.

Note that to write current queries, users do not have to
know the representation of the temporal data, or even which
elements or attributes are time-varying. Users can instead
refer solely to the nontemporal schema when expressing
current queries.

4.2 Sequenced Queries

Sequenced queries are applied independently at each point
in time. An example is, “what is the history of the average
number of open support incidents per gold customer?”

validtime avg(for $c in document("CRM.xml")//
customer[@supportLevel="gold"]
return count($c/supportIncident))

The result will be a sequence of time-varying elements, in
this case of the following form.

<timeVaryingValue>
<timestamp vtBegin="2001-1-1"

vtEnd="2001-2-10"/>
<value>4</value>

</timeVaryingValue>
<timeVaryingValue>

<timestamp vtBegin="2001-2-10"
vtEnd="2001-5-6"/>

<value>2</value>
</timeVaryingValue>
...

Our CRM customer in Figure 2 would contribute to
several of the values. As with current queries, users can
write sequenced queries solely with reference to the non-
temporal schema, without concern for the representation of
the temporal data.

4.3 Representational Queries

There are some queries that cannot be expressed as cur-
rent or sequenced queries. To evaluate these queries, more
than one state of the input XML documents needs to be ex-
amined. These queries are more complex than sequenced
queries. To write such queries, users have to know the
representation of the timestamps (including time-varying
attributes) and treat the timestamp as a common element
or attribute. Hence, we call these queries representational
queries. There is no syntactic extension for representa-
tional queries. An example is, “what is the average number
of support incidents, now or in the past, per gold customer,
now or in the past?”

avg(for $c in document("CRM.xml")//customer
where $c/timeVaryingAttribute
[@value="gold"][@name="supportLevel"]

return count($c/supportIncident))

Such queries treat the timeVaryingAttribute and
timestamp elements as normal elements, without any
special semantics. Our customer in Figure 2 would par-
ticipate in this query because she was once a gold member.

Representational queries are important not only because
they allow the users to have full control of the timestamps,
but also because they provide upward compatibility; any
existing XQuery expression is evaluated in � XQuery with
the same semantics as in XQuery.

5 Semantics
We now define the formal syntax and semantics of

� XQuery statements, the latter as a source-to-source map-
ping from � XQuery to XQuery. We use a syntax-directed
denotational semantics style formalism [23].

There are several ways to map � XQuery expressions
into XQuery expressions. We show the simplest of them
in this section to provide a formal semantics; we will dis-
cuss more efficient alternatives in Section 7. The goal here
is to utilize the conventional XQuery semantics as much as
possible. As we will see, a complete syntax and semantics
can be given in just two pages by exploiting the syntax and
semantics of conventional XQuery.

The BNF of XQuery we utilize is from a recent working
draft [26] of W3C. The grammar of � XQuery begins with
the following production. Note that the parentheses and
vertical bars in an italic font are the symbols used by the
BNF. Terminal symbols are given in a sans serif font.

A � XQuery expression has an optional modifier; the
syntax of � Q � is identical to that of XQuery.

� TQ ��������
current � validtime �

[� BT � , � ET �] 	�
�	�
� Q �
The semantics of � TQ � is expressed with the semantic func-
tion � XQuery ��� , taking one parameter, a � XQuery query,
which is simply a string. The domain of the semantic func-
tion is the set of syntactically valid � XQuery queries, while
the range is the set of syntactically correct XQuery queries.
The mapping we present will result in a semantically cor-
rect XQuery query if the input is a semantically correct
� XQuery query.

5.1 Current Queries

The mapping of current queries to XQuery is pretty simple.
Following the conceptual semantics of current queries, the
current snapshot of the XML documents are computed first.
Then, the corresponding XQuery expression is evaluated
on the current snapshot.

� XQuery � current � Q ����� c ������� Q ���

� Q ��������� QueryProlog ��� QueryBody �

c ������� Q �����
import schema namespace rs=
"http://www.cs.arizona.edu/tau/RXSchema"

at "RXSchema.xsd"
declare namespace tau=

"www.cs.arizona.edu/tau/Func"
s ���������
	�� � � QueryProlog��� current-dateTime()
define function tau:snapshot...
s ���������
	�� � � QueryBody ��� current-dateTime()

The two namespaces defined in the above code are
used by the auxiliary functions. RXSchema.xsd con-
tains definitions of the timestamp and timeVarying-
Attribute elements. The other namespace tau is de-
fined for the semantic mapping. All the auxiliary functions
and variables used for the mapping have this prefix. We
use a new semantic function s ���������
	�� ���� hich takes an
additional parameter, an XQuery expression that evaluates
to the xs:dateTime type. As with other semantic func-
tions utilized here, the domain is a � XQuery expression
(a string) and the range is an XQuery expression (also a
string).

In both � QueryProlog � (that is, the user-defined func-
tions) and � QueryBody � , only the function calls docu-
ment() and input() need to be mapped. The rest of
the syntax is simply retained. We show the mapping of
document() below. A similar mapping applies to in-
put().

s ���������
	�� � document(� String �) ��� �
tau:snapshot(document(� String �), �)

The auxiliary function snapshot() (given elsewhere
[11]) takes a node � and a time � as the input parameters
and returns the snapshot of � at time � , in which the valid
timestamps and elements not valid now have been stripped
out.

5.2 Representational Queries

The mapping for representational queries is trivial.

� XQuery � � Q ��� � � Q �
This mapping obviously ensures that � XQuery is upward
compatible with XQuery.

5.3 Sequenced Queries

In a sequenced query, the reserved word validtime is
followed by an optional period represented by two date-
Time values enclosed by a pair of brackets. If the period
is specified, the query result contains only the data valid in
this period. The semantics of sequenced queries utilizes the
s ������� semantic function, which we will provide shortly.

� XQuery � validtime � Q ��� �
s ������� Q ��� $tau:period("1000-01-01",

"9999-12-31")

When there is no valid-time period specified in the query,
the query is evaluated in the whole timeline the system can
represent. If the valid-time period is explicitly specified by
the user, the translation is as follows.

� XQuery � validtime [� BT � , � ET �] � Q ��� �
s ��� � � Q ��� tau:period(� BT � , � ET �)

As with s ���������
	�� ��� , the sequenced semantic function
s ������� has a parameter, in this case an XQuery ex-
pression that evaluates to an XML element of the type
rs:vtExtent. This element represents the period in
which the input query is evaluated.

The semantics of a sequenced query is that of applying
the associated XQuery expression simultaneously to each
state of the XML document(s), and then combining the re-
sults back into a period-stamped representation. We adopt
a straightforward approach to map a sequenced query to
XQuery, based on the following simple observation first
made when the semantics of temporal aggregates were de-
fined [21]: the result changes only at those time points that
begin or end a valid-time period of the time-varying data.
Hence, we can compute the constant periods, those peri-
ods over which the result is unchanged. To compute the
constant periods, all the timestamps in the input documents
are collected and the begin time and end time of each time-
stamp are put into a list. These time points are the only
modification points of the documents, and thus, of the re-
sult. Therefore, the XQuery expression only needs to be
evaluated on each snapshot of the documents at each mod-
ification point. Finally, the corresponding timestamps are
added to the results.

s ����� � Q ����� �
import schema namespace rs=
"http://www.cs.arizona.edu/tau/RXSchema"
at "RXSchema.xsd"

import schema namespace tvv=
"http://www.cs.arizona.edu/tau/Tvv"
at "TimeVaryingValue.xsd"

declare namespace tau=
"www.cs.arizona.edu/tau/Func"

s ��� � � QueryProlog �����
define function tau:all-const-periods...
...
for $tau:p in
tau:all-const-periods(� , g ������	�� ��� Q ���)

return tau:associate-timestamp($tau:p,
t ��������������� � � QueryBody��� $tau:p/@vtBegin)

The namespace tvv defines the sequenced time-varying
value type needed in the mapping. The schema that de-
fines tvv is given elsewhere [11]. g ������	�� ��� takes a query
string as input and returns a string consisting of a parenthe-
sized, comma-separated list of the function calls of doc-
ument() that appear in the input string, along with those
mentioned in the definitions of functions invoked by the in-
put string.

The function all-const-periods() takes this list
of document nodes as well as a time period (represented as
two dateTime values) and computes all the periods dur-
ing which no single value in any of the documents changes.
The returned periods should be contained in the input pe-
riod, specified by the first parameter. This function first

finds all the closed-open time points in all the input docu-
ments and contained in the input period. Then it sorts this
list of time points and removes duplicates. The period be-
tween each pair of points that are adjacent forms a [closed–
open) constant period. For example, if three time points 1,
3, and 5 are found, then a list of two timestamp elements
representing the periods [1–3) and [3–5) is returned. The
input documents and the result are all constant over each of
these periods.

The function associate-timestamp() takes a
sequence of items and a timestamp element as input and
associates the timestamp representing the input period with
each item in the input sequence. Both this and the pre-
vious function are auxiliary functions that depend on the
representation. Again, the definitions are provided else-
where [11], for the particular representation in Figure 2.

We need to time-slice all the documents on each of
the constant periods computed by the auxiliary function
all-const-periods() and evaluate the query in each
time slice of the documents (in Section 7, we examine
more sophisticated slicing strategies). Since the docu-
ments appearing in both � QueryProlog � and � QueryBody �
need to be time-sliced, we define s ������� QueryProlog �����
and t � ������� � � ����� QueryBody����� further. In � QueryProlog � ,
only the function definitions need to be mapped. We add
an additional parameter (a time point) to each user-defined
function and use this time point to slice the document spec-
ified in the function.

� FunctionDefn ��� � � define function � FuncName �
(� ParamList ��
)returns � SequenceType �� � ExprSequence� �

s ����� � FunctionDefn ����� �
define function � FuncName � (xs:dateTime
$tau:time, � ParamList ��
) returns � SequenceType ��

t ������� ��� � � � � ExprSequence��� $tau:time �
In � ExprSequence � , only the function calls need to be

changed. The functions are partitioned into two categories:
the user-defined functions and the built-in functions. All
the user-defined functions have one more parameter, there-
fore calling the functions should be changed accordingly.

� FunctionCall �������
� QName � (� � Expr � � , � Expr ��	 � 	�
)
For user-defined functions, the semantics is defined as fol-
lows.

t � ������� � � ����� FunctionCall����� �
� QName � (� , �

t � ������� � � ����� Expr�����
, t ��� ����� � � ����� Expr ������	 � 	�
)

The function document() is the only built-in function
that needs to be mapped.

t � ������� � � ��� document(� String �) � � �
tau:snapshot(document(� String �), �)

� QueryBody � is actually an � ExprSequence � . We will
not repeat the above mapping for � QueryBody � . Note that
the function call input() is treated the same as the func-
tion call document(), in that it should also be time-
sliced. For the brevity, we do not show that mapping here.

Time-slicing a document on a constant period is imple-
mented by computing the snapshot of the document at the
begin point of the period. There are two reasons that we
add one more parameter to user-defined functions and in-
troduce a new function t ������� ��� � � � � instead of using the
existing function s ��� ����� 	�� ��� . First, the constant periods
are computed in XQuery, but the query prolog must pro-
ceed the query body which includes the computation of
the constant periods. Secondly, at translation time it is not
known on which periods the documents appearing inside
function definitions should be time-sliced. This is not a
problem for current queries, where it is known when (now)
the snapshot is to be taken.

The result of a sequenced query should have the valid
timestamp associated with it, which is not the case for
a conventional XQuery expression. Thus, the type of
the result from a sequenced statement is different from
that from a representational or current statement. The
XQuery data types are mapped to timestamped types by
associate-timestamp(). A single value of an
atomic type is mapped to a sequence of elements with the
type tvv:timeVaryingValueType, as shown in the
example in Section 4.2. The mapping of other XQuery data
types is given elsewhere [11].

One concern is how to maintain the order of values
within sequences. Queries can be divided into three broad
classes regarding the order of the result. The first class
consists of queries that do not care about the order. Any
order that is returned is fine. The second class consists of
queries that explicitly sort the resulting sequence, via the
XQuery sortby operator. In our mapping, the sequences
are sorted on the constant period, using a stable sort to
retain the order within a constant period, and then time-
stamped and concatenated. This ensures that the timeslice
of this sequence at any point in time would result in the cor-
rect order. The third class contains queries that do not have
a sortby operator yet is not an unordered query. Here
according to the way that the result is sorted, with a stable
sort by the begin time of the constant period, the document
order of the sequence in each constant period is retained.
Thus, for all the three classes, the order of the result se-
quence is correct.

5.4 Summary

There are three modes in � XQuery. Representational
queries are syntactically and semantically identical to
XQuery queries. Current queries are evaluated on a snap-
shot of each time-varying document. As the snapshot will
contain no timestamp nor timeVaryingAttribute
elements, the conventional XQuery semantics can be used.

Interestingly, for sequenced queries, once the docu-
ment(s) are timesliced based on the constant periods, we

can again utilize the conventional XQuery semantics, thus
ensuring snapshot reducibility [14, 22]. Effectively, a se-
quenced query is treated as a series of conventional queries,
based on the constant periods. This provides a pleasing
symmetry in the formal semantics of the three modes.

Our approach is independent of the representation (other
than the details of some of the XQuery functions utilized by
the mapping); in particular, it is independent of the location
of the timestamps within the document.

6 Stratum Architecture
We would like to carry over the nice symmetry of the se-
mantics into the implementation of � XQuery. We do so
by utilizing a stratum approach. Each � XQuery expression
is mapped to an XQuery expression, which is passed to an
XQuery processor for evaluation.

The architecture of the � XQuery stratum is shown in
Figure 3. The dashed rectangle indicates the boundary of
the stratum. When a query is input, the initial keyword is
examined to determine the kind of query. A representa-
tional query is passed to the underlying XQuery processor
directly, while a current or sequenced query must be con-
verted by the appropriate mapper to effect the translation
given in Section 5. The resulting XQuery expression is sent
to the XQuery processor.

Sequenced query
mapper

XQuery Processor

XQuery

preprocessor

Current query
mapper

Postprocessor

XML data

Stratum

 rep query

current
query

Sequenced
query

� XQuery Result

Figure 3: Architecture of the � XQuery stratum

The two mappings are straightforward. One interest-
ing aspect is that all the semantic functions mentioned in
the previous section are implemented directly in the query
mappers in the stratum. For example, the g � �����	��
� seman-
tic function discussed briefly in Section 5.3 is implemented
by the sequenced query mapper. The documents mentioned
in the query (and in functions called directly or indirectly
by the query) can be determined from a syntactic analysis
of the query except when the document name is a com-

puted string (this situation is discussed in Section 7.6); no
interaction with the XQuery processor is required for that
semantic function. The other semantic functions are also
evaluated in the mappers, to convert a � XQuery expression
as a text string into an XQuery expression, again as a text
string.

Once the XQuery processor has evaluated the query,
the stratum’s postprocessor coalesces the query results.
Coalescing in relational temporal databases is a unary op-
erator [3, 8, 14]; it reduces the number of tuples by elim-
inating duplicate values valid at the same time and merge
tuples that have adjacent time periods and that agree on the
explicit attribute values. Coalescing in an XML context
involves merging versions of elements that have identical
subelements and whose periods of validity are adjacent.

Of the three kinds of queries discussed in Section 4,
current queries do not return a time-varying result, and so
coalescing is not relevant. For representational queries, we
do not (and indeed cannot) coalesce the result. Hence, co-
alescing is only relevant for sequenced queries.

In most cases, the result of a sequenced query is a se-
quence of elements. Associated with each element is a
timestamp, denoting some period of time. This period is
a constant period of its parent element. However, it may
not be the maximal constant period of its parent element.
Consider the example query used in Section 4.2. It is pos-
sible that the average is 5 during two separate but adjacent
periods. In this case, the result is uncoalesced (the result
is represented by two elements when one would do). Coa-
lescing this result will merge the two elements into one.

Coalescing temporal XML data is different in many as-
pects from coalescing relational data. It is an open question
whether coalescing can be done efficiently in XQuery, or
whether this computation is best done in the stratum.

7 Optimization of Slicing

In Section 5.3, we presented one method to map sequenced
� XQuery expressions to XQuery. In this method, we
time-sliced all the input documents at the finest granular-
ity of modification time by using every single time point
present as a begin time or an end time in a timestamp
or timeVaryingAttribute element contained in each
document. We call this method maximally-fragmented
time-slicing. (We emphasize that this approach is far more
efficient than taking a timestamp of the document at ev-
ery time point in which it is valid, termed unfolding in the
context of temporal relations [18]. Maximally-fragmenting
still uses the periods in the data to compute the constant
periods.) However, a query may not touch the information
of the most frequently updated elements.

In the CRM example in Figure 2, the most frequently
changing element is action. Maximally-fragmented
time-slicing always slices the document on the constant
periods of action. The example query in Section 4.2
does not go all the way down to action. In particu-
lar, examining Figure 2 indicates that a constant period of
[2002-4-11–2002-4-29) is sufficient, without being broken

into two periods at 2002-4-21. Slicing the whole document
at all the time points found in the timestamp periods often
involves too much work over too many constant periods. In
this section, we discuss several optimizations that compute
fewer constant periods and slice only portions of the doc-
ument; these optimizations are largely independent of the
query language and representation. Details of the semantic
mapping for these optimizations are given elsewhere [11].

7.1 Selected Node Slicing

Given a query string, the stratum can find all the names of
the elements and the attributes specified in the query. Col-
lecting the valid time points of only these nodes, construct-
ing the constant periods for them, and time-slicing the doc-
uments only on these constant periods is sufficient. Each
of the constant periods found in this process is the coarsest
period during which all the nodes specified in the query are
guaranteed to be stable. In this way, the query body is eval-
uated in fewer periods in the generated XQuery. Thus, the
translated query is expected to be more efficient. An added
benefit is that the result may already be coalesced, without
further effort by the stratum.

For the example query mentioned in the last section,
the stratum first determines that the elements specified in
the query are customer and supportIncident; the
time-varying attribute supportLevel is also referenced.
The XQuery function element-const-periods()
takes a sequence of documents and a sequence of strings
as node names (elements or attributes) to collect the times
appearing at those nodes (or inherited from ancestor nodes,
if not timestamped directly) and then constructs the con-
stant periods. If the schema is available, the stratum can in-
struct this function as to when to stop descending through
the XML data, via a third parameter.

This method and the maximally-fragmented time-
slicing method both time-slice the documents at the doc-
ument level on a sequence of constant periods. However, a
query may not touch a large part of the document. Time-
slicing this untouched part is wasted work. In the next two
sections, we present methods that avoid time-slicing the un-
used subtrees.

7.2 Per-Expression Slicing

XQuery is a functional language which allows various
kinds of expressions to be nested with full generality. Per-
expression slicing time-slices the subtree that is referenced
by the relevant portion of the recursively evaluated query
expression; this slicing is only on the constant periods of
the root of this subtree. The sequenced version of the cur-
rent expression then is evaluated on the time-sliced subtree.
The result, a sequence of trees each of which associated
with valid time-stamps, is again time-sliced on the constant
periods of these trees for the evaluation of the expression
at the next level. The constant periods in the subsequent
level are shorter than, and contained within, the constant
periods in the previous level. Thus, those unused subtrees
are pruned before they are time-sliced. Since some of the

validtime avg(for $c in
(let $tau:sequence:=document("CRM.xml")
return
for $tau:dot in $tau:sequence return
$tau:dot/descendant-or-self::customer)

return
count(let $tau:sequence := $c return
for $tau:dot in $tau:sequence return
$tau:dot/child::supportIncident))

Figure 4: Normalizing the example query

nodes do not have timestamps, we need a way to remem-
ber the valid period for such nodes. In the section, we will
present two per-expression slicing approaches: copy-based
and in-place per-expression slicing. They utilize different
methods to record the valid periods for the intermediate re-
sults.

7.3 Copy-Based Per-Expression Slicing

To record the valid periods of the intermediate results,
copy-based slicing timestamps all the intermediate results
no matter whether they are timestamped in the original doc-
ument. During the query evaluation, copy-based slicing
prunes the irrelevant portion of the document tree either be-
cause that portion is not referenced in the query or because
that portion is not valid in the input period. This pruning is
done by copying the relevant portion and then associating
every element and attribute with the exact timestamp.

The stratum maps each non-terminal in a parsed
� XQuery expression to a segment of valid XQuery code.
Each production is handled individually, to minimize the
slicing that is required. Since any XQuery program can
be normalized by using the core grammar [26] (a subset
of the XQuery grammar) provided by the W3C, defining
the semantics on just the core grammar of � XQuery is suf-
ficient. Rather than listing the complete translation rule
for each production, which is tedious and is provided else-
where [11], we use an example to illustrate the mapping.

Consider the example query ”what is the history of the
average number of open support incidents per customer?”

validtime avg(for $c in
document("CRM.xml")//customer

return count($c/supportIncident))

The normalized result of this query is shown in Figure 4.
This result is obtained by applying the normalization for-
mally defined in W3C working draft [26]. The only differ-
ence is we change the prefix fs to tau, since the normal-
ization is the starting point of per-expression slicing and is
treated as part of the mapping. We do not normalize built-
in functions. Each step of a path expression is converted to
some let and for expressions. The length of the query
is increased while the number of distinct nonterminals to
be dealt with is reduced. Some complicated expressions
such as FLWR expressions and quantified expressions are
removed during normalization.

Normalization is performed within the stratum before
the translation of sequenced queries. The mapping is de-
fined by the function c � ����� . The period � is propagated

from the top level of the expression to the bottom during
the mapping. The normalized result of this example in-
cludes four kinds of non-terminals of the core grammar:
� FunctionCall � , � ForExpr � , � LetExpr � , and � PathExpr � .
Each of the four kinds is time-sliced individually.

The outermost part of the example query is a function
call which calls the built-in function avg(). Copy-based
slicing maps the built-in function calls by going through
the following steps. First, all the constant periods of the in-
put data (and the subtree rooted at the input data) are found
and put into a sorted sequence. Then, the original func-
tion is called once on each snapshot of the input data on
each constant period. Finally the results are timestamped
accordingly.

We have seen the production of � FunctionCall � in Sec-
tion 5.3. The mapping of it is defined as follows.

c � � � FunctionCall ����� �
let $tau:par1 := c � � � Expr � �����
let $tau:par2 := c � � � Expr � �����
for $tau:p in tau:all-const-periods(� ,

union($tau:par1, $tau:par2))
return tau:associate-timestamp($tau:p,

� QName � (tau:snapshot($tau:par1,
$tau:p/@vtBegin),

tau:snapshot($tau:par2,
$tau:p/@vtBegin)))

The query in Figure 4 calls the function avg(), which
has only one input parameter. In this particular query,
the � Expr � � in the first let expression is replaced with
a � ForExpr � , and the second let expression is redundant
and thus removed in the mapping.

The syntax production and the translation of � ForExpr �
are defined as follows.

� ForExpr ��� � ��
for $ � VarName � in � Expr � return 	 �

� TypeswitchExpr �

c � � � ForExpr ����� �
for $tau:i in c � � � Expr �����
for $tau:p in tau:periods-of($tau:i)
let $ � VarName � :=
tau:copyrestrictedsubtree($tau:p,$tau:i)
return c � ��� TypeswitchExpr ��� $tau:p

The auxiliary function periods-of() returns all the
timestamps associated with the input node. The function
copyrestrictedsubtree() takes one or more time
periods and a variable as inputs. It propagates the time pe-
riod from the top node of the variable to all its descendants
by removing the branches not valid in the input periods and
modifying the timestamps of the remaining nodes.

We continue the translation of the example query by re-
placing the � Expr � and � TypeswitchExpr � in the definition
above with � LetExpr � and � FunctionCall � respectively. In
XQuery, � LetExpr � binds a variable to the value of an ex-
pression which could be a single item or a sequence. In

sequenced � XQuery, the expression is evaluated to a se-
quence even it is a single item at each time point. So the
expression is time-sliced in each constant period to ensure
the variable is bound to the correct value. The syntax pro-
duction and mapping of � LetExpr � is as follows.

� LetExpr ��������
let $ � VarName � := � Expr � return 	 �

� TypeswitchExpr �

c � � � LetExpr ����� �
let $tau:s :=c � � � Expr �����
for $tau:p in

tau:const-periods(� , $tau:s)
let $ � VarName � :=
tau:copy-restricted-subtree($tau:p,

$tau:s)
return c � ��� TypeswitchExpr ��� $tau:p

The function const-periods() is similar to all-
const-periods(). The only difference is that the for-
mer returns the constant periods for each of the nodes in
the input sequence, not for all the subelements.

In the example query, the � LetExpr � returns another
� ForExpr � , which returns a � PathExpr � . A � PathExpr � in
the normalized query has only one step, as shown in the fol-
lowing production. The � PathExpr � in the example query
is the first case, a � ForwardStep � .
� PathExpr ������� $ � VarName � / � ForwardStep �
� $ � VarName � / � ReverseStep �
� � PrimaryExpr �

� ForwardStep ��� � � � ForwardAxis � � NodeTest �

c � � $ � VarName � / � ForwardStep ����� �
for $tau:step in

$ � VarName � / � ForwardAxis � c � ��� NodeTest �����
where not(tau:special-node($tau:step))
return tau:copyrestrictedsubtree(� ,

$tau:step)

In the example query, the � ForwardAxis � and the
� NodeTest � are descendant-or-self:: and cus-
tomer respectively. The fuction c � ��� NodeTest ��� maps
the namespace of the input node name to the correspond-
ing timestamped namespace. Since all the elements and
attributes are timestamped during evaluation, their struc-
tures are changed and do not belong to their original name-
spaces. The stratum defines a timestamped analog for
each namespace. Whenever a namespace is referenced in
the query, it is mapped to its timestamped analog. The
function special-node() returns true when the in-
put node is a special node (e.g., timestamp and time-
VaryingAttribute) for representing the valid periods.
This where clause filters out those special nodes when the
� NodeTest � is a wildcard.

So far, we have seen how to translate the example se-
quenced query to XQuery. As this example does not cover

the whole language (the translation of the remainder of
the core grammar in all of its glory may be found else-
where [11]), there are some other interesting problems we
would like to discuss here. Most of the expressions, though
are not shown in this paper, are similar to � LetExpr � in that
they first find the constant periods at the current level, then
evaluate the following expressions in each constant period.
Since time-varying attributes are represented by elements,
the translation should take care of this conversion, which
can be found in the long version of this paper. Due to the
copy-based nature, the results at each step are not the origi-
nal nodes in the documents, but copies of those nodes with
the same value in the corresponding valid periods. It is
easy to understand that the ancestor information cannot be
obtained. Thus, this approach does not work for reverse
axis in path expression, nor for some built-in funtions that
need the identifier of the original node. In the next section,
we introduce a per-expression slicing approach that works
for the entire language.

7.4 In-Place Per-Expression Slicing

Rather than timestamping all the intermediate results, in-
place per-expression slicing keeps all the intermediate re-
sults with the document. To record the valid period of
these intermediate results, it puts the intermediate results
and their actual timestamps in one sequence in the form
of (item, timestamp, item, timestamp, ...). When the eval-
uation of the query is finished, the stratum associates the
actual timestamps with each item to obtain the final result.
In this way, the XQuery engine can identify each node in
the context of the original document and find the ancestor
of each node as well.

As an example, the � ForExpr � is translated as follows
(cf., the definition of c � ��� ForExpr ����� in the previous sec-
tion).

i � � ��� ForExpr ����� �
let $tau:s:=i � � � � Expr �����
for $tau:v in $tau:s
let $tau:vi:=index-of($tau:s, $tau:v)
where ($tau:vi mod 2 = 1) return
let $tau:p:=item-at($tau:s, $tau:vi+1)
let $ � VarName � := ($tau:v,$tau:p)
return i � � � � TypeswitchExpr ��� $tau:p

In this approach, whenever an item is needed in the evalua-
tion, an (item, timestamp) pair is provided. The difference
between copy-based slicing and in-place slicing is shown
in Figure 5. Suppose, a sub-tree rooted at A without time-
stamps has two timestamped sub-elements B and C (Fig-
ure 5(a)). Suppose this sub-tree is the intermediate result
for some evaluation on the period of [5-7), copy-based slic-
ing makes a copy of the relevant portion with the correct
timestamp as shown in Figure 5(b), while in-place slicing
returns the original sub-tree with an actual timestamp as
shown in Figure 5(c).

In-place slicing can handle all the sequenced queries in
the cost of keeping more data in the intermediate results

A

[1-4)B C [3-6)

A

C [5-6)

[5-7) A

[1-4)B C [3-6)

T [5-7)

(a) Original (b) Copy-based (c) In-place
sub-tree slicing slicing

Figure 5: Intermediate results for per-expression slicing

and generating longer XQuery expressions. On the other
hand, since it does not change the nodes in the intermediate
results, the timestamped analog for each namespace and
data type is not needed.

7.5 Idiomatic Slicing

Idiomatic slicing applies to copy-based per-expression slic-
ing. As we have seen, the normalization of path expres-
sions is tedious. A path expression with one step is normal-
ized to at least three lines of let-for expressions. If there is
a path expression with multiple steps, the result of the nor-
malization will be much longer than the path expression. In
each step, the data is time-sliced and the valid timestamps
are propagated to the lower level nodes. Since let and
for expressions both time-slice the expression appearing
in them, there are a lot of time-slices generated. For exam-
ple, the variable $tau:sequence is sliced at least twice
in each step.

To avoid the extra slicing, a path expression can be
translated without normalization. This is an instance of id-
iomatic slicing, in which two or more consecutive expres-
sions in a query are analyzed as a unit to determine where
the time-slicing most profitably should occur. We defines
an auxiliary function tau:seqpath() to evaluate path
expressions for copy-based slicing. This function works
for most path expressions except for those with predicates.

There are several situations in which idiomatic slicing
applies. One is when a let expression binds a variable
$a to a sequence, followed by a for expression that binds
a variable $b to each of the items in $a. When the for
expression is translated, there is no need to evaluate $a
in sequenced semantics, because the evaluation period for
$a does not change and the function copyrestricted-
subtree() will do useless work on $a.

7.6 Comparison

We have proposed five ways to effect time-slicing of the
input documents into constant periods to enable sequenced
queries. Maximally-fragmented time-slicing produces the
shortest XQuery expressions. It works in all cases except
where the name of a document is itself an expression. Se-
lected node time-slicing reduces the number of constant
periods, sometimes significantly, at the expense of more
analysis by the stratum. Per-expression slicing reduces the
number of constant periods further, while also not requir-
ing the entire document to be sliced. It can handle the name
of a document as an expression. Although copy-based slic-
ing cannot handle reverse steps in path expressions nor a
few built-in functions, in-place slicing supports the entire

language. One drawback of per-expression slicing is fur-
ther analysis by the stratum, and expansion of a query into
the core grammar. Idiomatic time-slicing, a refinement of
copy-based slicing, may shorten both the resulting XQuery
and the time complexity of that query by slicing more judi-
ciously.

While performance tradeoffs clearly depend on the way
in which the underlying XQuery engine implements con-
ventional XQuery statements, we now show that there
are queries and documents that favor each of the five ap-
proaches.

Maximally-fragmented slicing. Consider a document
with every node timestamped with the same period. A
query asks for all the sub-elements (specified as a wildcard)
under a particular element over the entire timeline. Since
there is only one constant period, maximally-fragmented
slicing time-slices the document only at the beginning time
and evaluates the query only once. Selected node slic-
ing does not work due to the wildcard. Other slicing ap-
proaches need to propagate the timestamp at each level of
the document, which is not necessary in this case.

Selected node slicing. Consider a document with ev-
ery node timestamped. There is one element named e
and all its ancestors and siblings have the same very long
valid period, while its descendants have very short periods.
A query asks for the element e favors this approach, be-
cause it time-slices the document only once. Maximally-
fragmented slicing has to time-slice the document many
times. Other approaches again need to propagate the time-
stamp from the root.

Copy-based per-expression slicing. Consider a docu-
ment with some parent and its child elements timestamped.
Each of the children has many versions. A query asks for
the second child element in a short period, but not the short-
est period in the document. Copy-based slicing filters out
a large portion of the document tree early at upper level of
the evaluation. Maximally-fragmented slicing and selected
node slicing both slice the whole document on many short
constant periods. In-place slicing keeps more sub-elements
in the intermediate results. Idiomatic slicing does not work
for the path expression with position predicates.

In-place per-expression slicing. Consider the same
document as in the last paragraph. Now the query is
changed to ask for the second child element that has an
ancestor named a in a short period. Copy-based slicing
cannot handle ancestors. Other approaches still have the
disadvantages mentioned in the last paragraph.

Idiomatic slicing. Use the same document. When the
query asks for all the child elements in a short period with-
out position predicates, idiomatic slicing is best in that it
reduces the size of the result XQuery code and it avoids
repeatedly slicing some intermediate nodes.

8 Related Work

The related work includes the research of querying rela-
tional temporal databases and the more recent work on the
temporal aspect of XML data.

As mentioned in Section 1, there has been some work
addressing the transaction time dimension of XML data [6,
7, 16]. These papers focus on aspects of XML version-
ing, including representing, detecting, and querying the
changes in XML documents. Our work concentrates on
how to evaluate � XQuery by leveraging existing XQuery
engines. The time-slicing approaches do not depend on the
representation of the temporal information and they work
fine for transaction time querying.

Dyreson et al. proposed a framework for capturing and
querying meta-data properties including temporal informa-
tion in a semistructured data model [9]. This work can be
viewed as an extension to a conventional semistructured
database. Temporal constituents in XML and their repre-
sentation were investigated by Manukyan et al. [15]. They
did not address the problem of querying temporal XML.

Grandi and Mandreoli [12] introduced valid time into
the XML documents and an extension to XQL to express
temporal predicates. In our terminology, their approach
would be considered to support representational queries
with additional predicates. Buneman et al. presented a
timestamp-based approach to archive scientific data [4].
They focus on how to merge different versions (documents)
to one document with some nodes timestamped. Their
work may be helpful to temporal coalescing of XML data.

9 Summary and Future Work

In this paper, we have presented a temporal XML query
language, � XQuery, that minimally extends the syntax and
semantics of XQuery. This language supports three kinds
of queries: current, sequenced, and representational. A
stratum approach is used to exploit the presence of XQuery
implementations. Time-slicing the documents on constant
periods is the main technique used in the translation. We
proposed five time-slicing methods to map current and se-
quenced � XQuery expressions to XQuery.

Our approaches work on both valid time and transaction
time data and queries. They are independent of the rep-
resentation (the dependencies appear only in the auxiliary
XQuery functions).

Future work includes comparing the different time-
slicing methods empirically and further optimizing the
mappings to eliminate redundant XQuery code and con-
stant periods, and to exploit the schema. How to effi-
ciently coalesce temporal XML data is an open question.
Also of interest are techniques to augment the underly-
ing XQuery evaluation engine to more efficiently support
costly � XQuery queries. In some applications, data stored
in a relational database is published as XML data. Mapping

� XQuery expressions to SQL given the correspondence be-
tween the relational schema and the XML schema would be
useful.

Acknowledgments

We thank Bengu Li and Curtis Dyreson for help in the ini-
tial stages and Merrie Brucks and Shankar Ganesan of the

University of Arizona Department of Marketing for help
with the CRM case study. This research was supported
in part by NSF grants IIS-0100436 and EIA-0080123 and
grants from the Boeing Corporation and Microsoft.

References
[1] H. Ahlert, “Enterprise Customer Management: Inte-

grating Corporate and Customer Information,” in Re-
lationship Marketing, Springer, 2000.

[2] J. Anton and N. L. Petouhoff, Customer Relation-
ship Management, Prentice Hall, 2002.

[3] M. H. Böhlen, R. T. Snodgrass, and M. D. Soo, “Coa-
lescing in Temporal Databases,” in Proceedings of the
International Conference on Very Large Databases,
pp. 180–191. Bombay, India, September 1996.

[4] P. Buneman, S. Khanna, K. Tajima, and W-C. Tan,
“Archiving Scientific Data,” in Proceedings of the
ACM SIGMOD International Conference, pp.1–12.
Madison, Wisconsin, June 2002.

[5] S-Y. Chien, V. J. Tsotras, and C. Zaniolo, “Effi-
cient Schemes for Managing Multiversion XML Doc-
uments,” the VLDB Journal, Volume 11. Issue 4.
(2002) pp. 332–353.

[6] S-Y. Chien, V. J. Tsotras, C. Zaniolo, and D. Zhang,
“Efficient Complex Query Support for Multiversion
XML Documents,” in Proceedings of the Interna-
tional Conference on EDBT, pp. 25-27. Prague,
Czech, March 2002.

[7] G. Cobena, S. Abiteboul, and A. Marian, “Detecting
Changes in XML Documents,” in Proceedings of the
IEEE International Conference on Data Engineering,
pp. 41–52. San Jose, February 2002.

[8] C. E. Dyreson, ”Temporal Coalescing with Now,
Granularity, and Incomplete Information,” in Pro-
ceedings of the ACM SIGMOD International Confer-
ence, San Diego, CA, June 2003.

[9] C. E. Dyreson, M. H. Bohlen, and C. S. Jensen, “Cap-
turing and Querying Multiple Aspects of Semistruc-
tured Data,” in Proceedings of the International Con-
ference on Very Large Databases, pp. 290–301. Edin-
burgh, Scotland, 1999.

[10] S. Gallant, G. Piatetsky-Shapiro, and M. Tan, ”Value-
based Data Mining for CRM,” in Proceedings of the
SIGKDD International Conference, 2003.

[11] D. Gao and R. T. Snodgrass, “Syntax, Semantics,
and Evaluation of the � XQuery Temporal XML
Query Language,” TimeCenter TR-72, March 2003.
www.cs.auc.dk/TimeCenter/pub.htm

[12] F. Grandi and F. Mandreoli, “The Valid Web: A
XML/XSL Infrastructure for Temporal Management
of Web Documents,” in Proceedings of International
Conference on Advances in Information Systems, pp.
294-303. Izmir, Turkey, October 2000.

[13] IBM, “Xperanto Technology Demo,” Mar 2002.
http://www7b.boulder.ibm.com/dmdd/library
/demos/0203xperanto/0203xperanto.html.

[14] C. S. Jensen and C. E. Dyreson (eds), “A Consensus
Glossary of Temporal Database Concepts—February
1998 Version,” in Temporal Databases: Research
and Practice, O. Etzion, S. Jajodia, and S. Sripada
(eds.), Springer-Verlag, pp. 367–405, 1998.

[15] M. G. Manukyan and L. A. Kalinichenko, “Temporal
XML,” in Proceedings of ADBIS, Vilnius, Lithuania,
September 2001.

[16] A. Marian, S. Abiteboul, G. Cobena, and L. Mignet,
“Change-centric Management of Versions in an XML
Warehouse,” in Proceedings of International Confer-
ence on Very Large Databases, pp. 581-590. Rome,
Italy, September 2001.

[17] Microsoft Corporation, “XML Query Language
Demo,” http://131.107.228.20/xquerydemo

[18] N. A. Lorentzos and Y. G. Mitsopoulos, “SQL Exten-
sion for Interval Data,” IEEE Transactions on Knowl-
edge and Data Engineering 9(3): 480–499, 1997.

[19] Oracle Corporation, “Oracle XQuery Prototype:
Querying XML the XQuery way,” March 2002.
http://otn.oracle.com/sample code/tech/
xml/xmldb/xmldb xquerydownload.html.

[20] R. T. Snodgrass and I. Ahn. “Temporal Databases”.
IEEE Computer, 19(9):35–42, September 1986.

[21] R. T. Snodgrass, S. Gomez, and L. E. McKenzie, “Ag-
gregates in the Temporal Query Language TQuel”.
IEEE Transactions on Knowledge and Data Engi-
neering 5(5): 826-842 (1993)

[22] R. T. Snodgrass, “The Temporal Query Language
TQuel”. ACM Transactions on Database Systems
12(2): 247-298 (1987)

[23] J. E. Stoy, Denotational Semantics: The Scott-
Strachey Approach to Programming Language
Theory. The MIT Press 1979.

[24] World Wide Web Consortium, “XML Schema Part
0: Primer,” W3C Recommendation, May, 2001.
http://www.w3.org/TR/2001/
REC-xmlschema-0-20010502

[25] World Wide Web Consortium, “XQuery 1.0: An
XML Query Language,” W3C Working Draft, Au-
gust, 2002. http://www.w3.org/TR/2002
/WD-xquery-20020816/

[26] World Wide Web Consortium, “XQuery 1.0 and
XPath 2.0 Formal Semantics,” W3C Working Draft,
August, 2002. http://www.w3.org/TR/2002
/WD-query-semantics-20020816/

