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Abstract

Data cube computation is one of the most es-
sential but expensive operations in data ware-
housing. Previous studies have developed
two major approaches, top-down vs. bottom-
up. The former, represented by the Multi-
Way Array Cube (called MultiWay) algorithm
[25], aggregates simultaneously on multiple
dimensions; however, it cannot take advan-
tage of Apriori pruning [2] when computing
iceberg cubes (cubes that contain only ag-
gregate cells whose measure value satisfies
a threshold, called iceberg condition). The
latter, represented by two algorithms: BUC
[6] and H-Cubing[11], computes the iceberg
cube bottom-up and facilitates Apriori prun-
ing. BUC explores fast sorting and partition-
ing techniques; whereas H-Cubing explores a
data structure, H-Tree, for shared computa-
tion. However, none of them fully explores
multi-dimensional simultaneous aggregation.

In this paper, we present a new method, Star-
Cubing, that integrates the strengths of the
previous three algorithms and performs ag-
gregations on multiple dimensions simultane-
ously. It utilizes a star-tree structure, ex-
tends the simultaneous aggregation methods,
and enables the pruning of the group-by’s that
do not satisfy the iceberg condition. Our
performance study shows that Star-Cubing is
highly efficient and outperforms all the previ-
ous methods in almost all kinds of data distri-
butions.
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1 Introduction

Since the introduction of data warehousing, data cube,
and OLAP [8], efficient computation of data cubes
has been one of the focusing points in research with
numerous studies reported. The previous studies can
be classified into the following categories: (1) efficient
computation of full or iceberg cubes with simple or
complex measures [1, 25, 18, 6, 11], (2) selective ma-
terialization of views [13, 3, 9, 10, 21], (3) computa-
tion of compressed data cubes by approximation, such
as quasi-cubes, wavelet cubes, etc. [4, 23, 20, 5], (4)
computation of condensed, dwarf, or quotient cubes
[15, 24, 22, 16], and (5) computation of stream “cubes”
for multi-dimensional regression analysis [7].
Among these categories, we believe that the first

one, efficient computation of full or iceberg cubes, plays
a key role because it is a fundamental problem, and
any new method developed here may strongly influence
new developments in the other categories.
The problem of cube computation can be defined

as follows. In an n-dimension data cube, a cell a =
(a1, a2, . . . , an, c) (where c is a measure) is called an
m-dimensional cell (i.e., a cell in an m-dimensional
cuboid), if and only if there are exactly m (m ≤ n)
values among {a1, a2, . . . , an} which are not ∗. It is
called a base cell (i.e., a cell in a base cuboid) ifm = n;
otherwise, it is an aggregate cell. Given a base cuboid,
our task is to compute an iceberg cube, i.e., the set of
cells which satisfies an iceberg condition, or the full
cube if there is no such condition. We first study the
case that the measure c is the count of base cells, and
min sup (threshold) is the iceberg condition. Then we
extend it to complex measures in Section 5.
Previous studies have developed two major ap-

proaches, top-down vs. bottom-up, for efficient cube
computation. The former, represented by the Multi-
Way Array Cube (called MultiWay) algorithm [25], ag-
gregates simultaneously on multiple dimensions; how-
ever, it cannot take advantage of Apriori pruning when
computing iceberg cubes. The latter, represented by
two algorithms: BUC [6] and H-Cubing[11], computes
the iceberg cube bottom-up and facilitates Apriori
pruning. BUC explores fast sorting and partitioning
techniques; whereas H-Cubing explores a data struc-
ture, H-Tree, for shared computation. However, none
of them fully explores multi-dimensional simultaneous
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Figure 1: Top-Down Computation

aggregation.
Can we integrate the strength of the previous algo-

rithms and develop a more efficient cubing method?
In this paper, a new iceberg cubing algorithm, Star-
Cubing, is proposed, which integrates the top-down
and bottom-up cube computation and explores both
multi-dimensional aggregation and the Apriori prun-
ing. A new data structure, star-tree, is introduced
that explores lossless data compression and prunes
unpromising cells using an Apriori-like dynamic sub-
set selection strategy. Our performance study shows
that Star-Cubing outperforms the previous cubing al-
gorithms in almost all the data distributions.
The remaining of the paper is organized as follows.

In Section 2 the three major algorithms in cube com-
putation are re-examined. In Section 3, we motivate
the integration of the top-down and bottom-up compu-
tation, introduce the star-tree structure, and develop
the Star-Cubing algorithm. Our performance study is
presented in Section 4. A discussion on potential ex-
tensions is in Section 5, and we conclude our study in
Section 6.

2 Overview of Cubing Algorithms

To propose our new algorithm, we first analyze each
of the three popular cubing algorithms.

2.1 MultiWay

MultiWay [25] is an array-based top-down cubing algo-
rithm. It uses a compressed sparse array structure to
load the base cuboid and compute the cube. In order
to save memory usage, the array structure is parti-
tioned into chunks. It is unnecessary to keep all the
chunks in memory since only parts of the group-by ar-
rays are needed at any time. By carefully arranging
the chunk computation order, multiple cuboids can be
computed simultaneously in one pass.
Taking ABCD as the base cuboid, Figure 1 shows

that the results of computing cuboid ACD can be used
to compute AD, which in turn can be used to compute
A. This shared computation makes MultiWay perform
aggregations simultaneously on multiple dimensions,
which leads to the computation order shown in Figure
1, where intermediate aggregate values can be re-used
for the computation of successive descendant cuboids.
The MultiWay algorithm is effective when the prod-

uct of the cardinalities of the dimensions are moder-
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Figure 2: Bottom-Up Computation

ate. If the dimensionality is high and the data is too
sparse, the method becomes infeasible because the ar-
rays and intermediate results become too large to fit
in memory. Moreover, the top-down algorithm can-
not take advantage of Apriori pruning during iceberg
cubing, i.e., the iceberg condition can only be used af-
ter the whole cube is computed. This is because the
successive computation shown in Figure 1 does not
have the anti-monotonic property [2, 17]: if a cell in
ABD does not satisfy min sup, one cannot assert that
its “children cell” in the cuboid AB does not satisfy
min sup either since a cell in AB is likely to contain
more base cells than that in ABD.

2.2 BUC

BUC [6] employs a bottom-up computation by starting
at the apex cuboid and moving upward to the base
cuboid, as shown in Figure 2. Cuboids with fewer
dimensions now become parents of cuboids with more
dimensions. BUC starts by reading the first dimension
and partitioning it based on its distinct values. Then
for each partition in the first dimension, it recursively
computes the remaining dimensions.
The bottom-up computation order facilitates

Apriori-based pruning. For example, if the count of
a cell c in a cuboid A is smaller than min sup, then the
count of any descendant cells of c (with more dimen-
sions, e.g., AC, ACD) can never be higher than min sup.
Thus the descendant cells of c can be pruned. This is
implemented as follows: During partitioning, each par-
tition’s size is compared with min sup. The recursion
stops if the count does not satisfy min sup.
The partition process is facilitated by a linear sort-

ing method, CountingSort. CountingSort is fast be-
cause it does not perform any key comparisons to find
boundaries. In addition, the counts computed during
the sort can be reused to compute the group-bys.
Partitioning and sorting are the major costs in

BUC’s cube computation. Since recursive partitioning
in BUC does not reduce the input size, both partition
and aggregation are costly. Moreover, BUC is sensitive
to skew in the data: the performance of BUC degrades
as skew increases.

BUC is a divide-and-conquer algorithm: After a par-
ticular partition has been computed, all descendant
cuboids are calculated before the algorithm switches
to another partition. In the calculation of the de-



Algorithm Simultaneous
Aggregation

Partition
& Prune

MultiWay Yes No
BUC No Yes
H-Cubing Weak Yes
Star-Cubing Yes Yes

Table 1: Summary of Four Algorithms

scendants, Apriori pruning is used to reduce unneces-
sary computation based on the anti-monotonic prop-
erty, which was not possible in the top-down computa-
tion. However, unlikeMultiWay, the results of a parent
cuboid does not help compute that of its children in
BUC. For example, the computation of cuboid AB does
not help that of ABC. The latter needs to be computed
essentially from scratch.

2.3 H-Cubing

H-Cubing [11] uses a hyper-tree structure, called H-
Tree, to facilitate cube computation. Each level in the
tree represents a dimension in the base cuboid. A base
tuple (cell) of d-dimensions forms one path of length d
(i.e., d nodes) in the tree. Nodes at the same level of
tree that hold the same value are linked together via
side-links. In addition, a Header Table is associated
with each level to record the count of every distinct
value in all the dimensions not below the current one,
and provides links to the first node of the correspond-
ing values in the H-Tree.
With this data structure, there are two methods to

compute the cube: bottom-up (BOT) vs. top-down
(TOP) tree traversal. In both methods, the algorithm
starts at a particular level of the H-Tree, i.e., a par-
ticular dimension, and examines the group-by’s that
include that level and levels above it in the H-Tree.
The aggregation is facilitated by the Header Table con-
structed in the initial pass of the data and Header
Tables local to the current group-by. During the ag-
gregation, if the count of a particular node is below
min sup, it skips itself and jumps to the next node via
the side-link. The difference between the two traversal
methods, H-Cubing-BOT and H-Cubing-TOP, is that
the former starts the process at the bottom of the H-
Tree, whereas the latter starts at the top.
One advantage of H-Cubing is that since the internal

nodes of the H-Tree structure collapse duplicated data,
shared processing and some simultaneous aggregation
can be explored. Also, it computes less dimension
combinations before proceedings to more dimensions,
and thus leads to Apriori pruning for iceberg cube com-
putation. However, similar to BUC, it cannot use the
intermediate results at computing low dimensions to
facilitate the computation of high dimensional cuboids.

3 Star-Cubing: An Integration of Top-
Down and Bottom-Up Computation

To take advantage of the existing three cubing algo-
rithms, we exploit the potentials of both the top-down
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Figure 3: Star-Cubing: Top-down computation with
bottom-up growing shared dimensions

and bottom-up models and a data structure similar to
H-Tree. This leads to our proposal of the Star-Cubing
algorithm. Before presenting the details of the new
method, we first summarize the major computational
properties of the four algorithms in Table 1. The prop-
erties of Star-Cubing will become clear in this section.
The Star-Cubing algorithm explores both the top-

down and bottom-up models: On the global computa-
tion order, it uses the top-down model similar to Fig-
ure 1. However, it has a sub-layer underneath based on
the bottom-up model by exploring the notion of shared
dimension. This integration allows the algorithm to
aggregate on multiple dimensions while still partition
parent group-by’s and prune child group-by’s that do
not satisfy the iceberg condition. In this section, we
first introduce the new concepts and data structures
and then present the algorithm.

3.1 Shared Dimensions

An observation of Figure 1 may disclose an interest-
ing fact: all the cuboids in the left-most sub-tree of
the root include dimensions ABC, all those in the sec-
ond sub-tree include dimensions AB, and all those in
the third include dimension A. We call these common
dimensions the shared dimensions of those particular
sub-trees. Based on this concept, Figure 1 is extended
to Figure 3, which shows the spanning tree marked
with the shared dimensions. For example, ABD/AB
means cuboid ABD has shared dimension AB, ACD/A
means cuboids ACD has shared dimension A, and so
on.
The introduction of shared dimensions facilitates

shared computation. Since the shared dimension is
identified early in the tree expansion, there is no need
to compute them later. For example, cuboid AB ex-
tending from ABD in Figure 1 is pruned in Figure 3
because AB was already computed in ABD/AB. Also,
cuboid A extending from AD is pruned because it was
already computed in ACD/A.
Before introducing computation on the shared di-

mensions, we have the following lemma.

Lemma 1. If the measure of an iceberg cube is anti-
monotonic, and if the aggregate value on a shared di-
mension does not satisfy the iceberg condition, all the
cells extended from this shared dimension cannot sat-
isfy the iceberg condition either.
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Figure 4: A fragment of the base cuboid tree

Rationale. Cells extended from a shared dimension
contain more attributes (i.e., dimensions) than those in
the shared dimension. These new attributes offer new
partitions for the set of cells. If the shared dimension
does not satisfy the iceberg condition, the new par-
titioned set contains no more tuples (base cells) than
that in the shared dimension, and it will not satisfy
the condition either, based on the property of anti-
monotonicity [17]. Hence we have the lemma.

As an example, if the value in the shared dimension
A is a1 and it fails to satisfy the iceberg condition, the
whole sub-tree rooted at a1CD/a1 (including a1C/a1C,
a1D/a1, a1/a1) can be pruned.
The presence of the shared dimensions in the partial

ordering of top-down computation makes it possible to
take the advantages of the bottom-up evaluation. Sim-
ilar to BUC, Lemma 1 will allow us to partition and
prune based on shared dimensions. By integrating the
top-down and bottom-up models, it gives us the best of
both worlds. One critical requirement of the proposed
method is that aggregate value of the shared dimen-
sions must be calculated first. For example, before
aggregating a partition in the cuboid ABD, the related
partition must be aggregated in the shared dimension
AB already. We will discuss how this can be achieved
later.

3.2 Cuboid Trees

We use trees to represent individual cuboids. Figure 4
shows a fragment of the cuboid tree of the base cuboid
ABCD. Each level in the tree represents a dimension,
and each node represents an attribute. Each node
has four fields: the attribute value, aggregate value,
pointer(s) to possible descendant(s), and pointer to
possible sibling. Tuples in the cuboid are inserted one
by one into the tree. A path from the root to a node
represents a tuple. For example, node c2 in the tree
has aggregate (count) value of 5, which indicates that
there are five cells of value {a1 b1 c2 *}.
This representation collapses the common prefixes

to save memory usage and allows us to aggregate the
values at internal nodes. With aggregate values at in-
ternal nodes, one can perform pruning based on shared
dimensions. For example, the cuboid tree of AB can be
used to prune possible cells in ABD.

A B C D Count

a1 b1 c1 d1 1
a1 b1 c3 d3 1
a1 b2 c2 d2 1
a2 b3 c3 d4 1
a2 b4 c3 d4 1

Table 2: Base (Cuboid) Table: Before star reduction.

Dimension Count = 1 Count ≥ 2

A - a1(3), a2(2)
B b2, b3, b4 b1(2)
C c1, c2 c3(3)
D d1, d2, d3 d4(2)

Table 3: One-Dimensional Aggregates

3.3 Star Nodes and Star Trees

If the single dimensional aggregate on an attribute
value p does not satisfy the iceberg condition, it is
useless to distinguish such nodes in the iceberg cube
computation. Thus the node p can be replaced by ∗ so
that the cuboid tree can be further compressed. This
motivates us to introduce the concepts of star node
and star tree.
The node p in an attribute A is a star node if the

single dimensional aggregate on p does not satisfy the
iceberg condition; otherwise, p is a non-star node. A
cuboid tree that consists of only non-star nodes and
star(-replaced) nodes is called a star-tree.
Let’s see an example of star-tree construction.

Example 1. A base cuboid table is shown in Table 2.
There are 5 tuples and 4 dimensions. The cardinalities
(number of distinct values) for dimensions A, B, C, D
are 2, 4, 3, 4, respectively.
The one-dimensional aggregates for all attributes

are shown in Table 3. Suppose min sup = 2 (i.e., ice-
berg condition). Clearly, only attribute values a1, a2,
b1, c3, d4 satisfy the condition. All the other values
are below the threshold and thus become star nodes.
By collapsing star nodes, the reduced base table is Ta-
ble 4. Notice the table contains two fewer rows and
also fewer distinct values than Table 2.
Since the reduced base table is smaller than the

original one, it is natural to construct the cuboid tree
based on the reduced one. The resultant tree is the
star-tree, which will be smaller due to the elimination
of trivial data.

To help identify which nodes are star-nodes, a star-
table is constructed for each star-tree. Figure 5 shows
the structure of the star-tree and its corresponding

A B C D Count

a1 b1 ∗ ∗ 2
a1 ∗ ∗ ∗ 1
a2 ∗ c3 d4 2

Table 4: Compressed Base Table: After star reduction.
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star-table constructed from Table 4 (where only the
start nodes are shown in the star-table). In actual
implementation, one could use a bit-vector or a hash
table to represent the star-table for fast lookup.
To ensure that the table reduction performed in Ex-

ample 1 is correct, we need to show that the star-tree
compression is lossless.

Lemma 2. Given a specific iceberg condition, the
compression performed for derivation of star-tree by
collapsing star nodes is loseless.

Rationale. If the single-dimensional aggregate for node
p in a particular dimension cannot satisfy the iceberg
condition, augmenting p with more dimensions cannot
derive any new aggregate that can satisfy the iceberg
condition, based on the Apriori property. Therefore,
it is safe to replace that attribute with the star node,
denoted by *. By doing so, the cardinality of the di-
mension will be smaller and the corresponding cuboid
tree will be more compressed, but it will not lose any
aggregate cell that satisfy the iceberg condition.

3.4 Multi-Way Star-Tree Aggregation

With the generated star-tree, one can start the process
of aggregation by traversing in a top-down fashion.
Traversal will be depth-first. The first stage (i.e., the
processing of the first branch of the tree) is shown in
Figure 6. The leftmost tree in the figure is the base
star-tree. The subscripts by the nodes in the tree show
the order of traversal. The remaining four trees are
BCD, ACD/A, ABD/AB, ABC/ABC from left to right. They
are the child trees of the base star-tree, and correspond
to the second level in Figure 3. The subscripts in them
correspond to the same subscripts in the base tree, and
they denote the steps when they are created during the
tree traversal. For example, when the algorithm is at
step 1, the BCD child tree root is created. At step 2,
the ACD/A child tree root is created. At step 3, the
ABD/AB tree root and the b* node in BCD are created.
When the algorithm has reached step 5, the trees

in memory are exactly as shown in Figure 6. Since the
depth-first traversal has reached a leaf, it will start
backtracking. Before traversing back, the algorithm
notices that all possible nodes in the base dimension

(ABC) have been visited. This means the ABC/ABC
tree is complete so the count is output and the tree is
destroyed. Similarly, upon moving back from d* to c*
and seeing that c* has no siblings, the count in ABD/AB
is also output and the tree is destroyed.
When the algorithm is at b* during the back-

traversal, it notices that there exists a sibling in b1.
Therefore, it will keep ACD/A in memory and perform
depth-first search on b1 just as it did on b*. This
traversal and the resultant trees are shown in Figure
7. The two rightmost child trees are created again but
now with the new values from the b1 subtree. The
trees that remained intact during the last traversal are
reused and the new aggregate values are added on. For
instance, another branch is added to the BCD tree.
Just like before, the algorithm will reach a leaf node

at d* and traverse back. This time, it will reach a1 and
notice that there exists a sibling in a2. In this case, all
child trees except BCD in Figure 7 are destroyed. After-
wards, the algorithm will perform the same traversal
on a2. This is shown in Figure 8. Notice that BCD
keeps growing while the others have started fresh.
There are several issues that we did not discuss or

encounter here due to the simplicity of our base table.
Also, we did not recursively build child trees. There
could also be the case that a non-star node in the base
tree could become a star-node in a child tree. We shall
discuss these and more issues as follows.

3.4.1 Node Ordering

The star-tree data structure is a compressed version of
the original data. It provides a good improvement in
memory usage; however, in general, searching in a tree
still takes time. For example, to search for a specific
node in a particular level in Figure 5 would require
O(n) time where n is the number of nodes in the level
or the cardinality of that dimension. To search for an
entire tuple would require O(dn) time where d is the
number of dimensions.
In order to reduce such cost, the nodes in the star-

tree are sorted in alphabetic order in each dimension.
For example, in Figure 6, the nodes in the first level
are sorted in the order of a1, a2. In general, all the
levels will have the order of *, p1, p2, . . ., pn. The
position of the star-node can be anywhere but it is
the first in our implementation since we believe that it
may often occur more frequently than any other single
node. This ordering allows a node to be easily located
during tree traversal, and it only needs to be done once
in the construction of the base cuboid. All the local
star-trees will be generated from the base cuboid and
thus will inherit the ordering.

3.4.2 Child Tree Pruning

A child tree is one level lower than the current tree,
e.g., a1CD/a1 is a child of the base-tree as shown in
Figure 6. To improve cubing performance, one should
prune useless child trees. There are two conditions
that the current node must satisfy in order to generate
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child trees: (1) the measure of the current node must
satisfy the iceberg condition; and (2) the tree to be
generated must include at least one non-star (i.e., non-
trivial) node. This is because if all the nodes were star
nodes, it means that none of them satisfies min sup
and is of no use to the iceberg cube. Therefore, it
would be a complete waste to compute them.
The tree pruning based on the second condition can

also be observed in Figures 6–7. For example, the left
sub-tree extending from node a1 in the base-tree in
Figure 6 does not include any non-star nodes. Ac-
cording to the second condition, the a1CD/a1 sub-tree
should not have been generated. They were still gen-
erated in the figure just for the illustration of the child
tree generation process.

3.4.3 Star Nodes

It is possible that a non-star node in the base tree could
become a star-node in a child tree. For example, a
node could just barely satisfy the iceberg condition in
the base tree, but when it is divided in the child trees,
it no longer satisfies the condition. For this reason,
it is required that all the nodes be checked again in
the construction of child trees. That is, all the trees
shown in Figures 6–8 have their own star table which
will count the nodes and make them star-nodes where
appropriate.

3.5 Memory Management

Due to the numerous construction and destruction of
cuboid trees in the algorithm, memory management
becomes an important issue. Instead of using the
standard memory allocation command (e.g., new and
delete in C++), we will instead maintain a free node
list. During the construction of a tree, whenever a new
node is needed, the algorithm will just request a node
from the free node list. When deallocating a node, the
algorithm will just add the node back to the list of free
nodes.
To initialize the free node list, the algorithm will

allocate kdn nodes into a node buffer, where d is the
number of dimensions, n is the number of tuples, and k
is a scaling factor dependent on the iceberg condition.
The larger the minimum support is, the smaller k is.
In practice, a value of 0.2 is usually sufficient for k. To
begin, the free node list is empty. New nodes from the
node buffer are added to the list whenever nodes are
needed. When the free node list and node buffer are
both empty, more nodes are acquired from the system
memory.
This memory management strategy proves to be an

effective optimization to the algorithm for two reasons:
(1) with the free node list, memory allocation com-
mands are replaced by pointer operations, which are
much faster; and (2) by avoiding constantly allocat-
ing and de-allocating small memory chunks (nodes are
small) in the system memory heap, fragmentation is
avoided.

In practice, the total memory requirement is usually
less than kdn. This is because the star-tree compresses
the data.
Similar to the free node list, the algorithm main-

tains a free cuboid tree list as well.

3.6 Dimension Ordering

Similar to other iceberg cube algorithms, Star-Cubing
is sensitive to the order of the dimensions. The goal
of ordering dimensions is to prune the trees as early
as possible. The internal nodes whose aggregate val-
ues do not satisfy the iceberg condition by the biggest
value should be processed earlier.
For the best performance, the dimensions are or-

dered on cardinality in descending order. Please note
that this ordering is in reverse of the dimension or-
dering of the H-Tree where dimensions are ordered on
cardinality in ascending order (the dimension with the
least cardinality is on the top, the closest to the root).
The cardinality-descending ordering of the dimensions
on the star-tree may lead to the generation of bigger
initial (base) tree, but it leads to a better chance of
early pruning. This is because the higher the cardi-
nality, the smaller the partitions, and therefore the
higher possibility that the partition will be pruned.

3.7 Star Table Construction

The star-tree is a major component of the algorithm.
It collapses the attributes and makes the tree size
shrink quickly. To build the star-tree, the star-table
is needed. Although the cost to build the star-table
is non-trivial, without it the total computation of the
star-tree will be much more expensive.
There are, however, two situations where the star-

table does not need to be computed. First, no star-
table is needed in the computation of a full cube be-
cause there is no star node. Second, when a node is at
a high level of the ancestor tree, i.e., the correspond-
ing partition is fairly big, the chance for star node to
appear at this level is slim. It is not beneficial to com-
pute the star-table. One can use the aggregate value
on the node to estimate whether a star-table should
be computed.

3.8 Star-Cubing Algorithm

Based on previous discussions, the Star-Cubing algo-
rithm is summarized as follows.

Algorithm 1 (Star-Cubing). Compute iceberg cubes
by Star-Cubing.

Input: (1) A relational table R, and (2) an iceberg
condition, min sup (taking count as the measure)

Output: The computed iceberg cube.

Method: Each star-tree corresponds to one cube-tree
node, and vice versa. The algorithm is described in
Figure 9.



BEGIN
scan R twice, create star-table S and star-tree T ;
output count of T.root;
call starcubing(T, T.root);

END

procedure starcubing(T, cnode)// cnode: current node
{
1. for each non-null child C of T ’s cube-tree
2. insert or aggregate cnode to the corresponding

position or node in C’s star-tree;
3. if (cnode.count ≥ min sup) {
4. if (cnode 6= root)
5. output cnode.count;
6. if (cnode is a leaf)
7. output cnode.count;
8. else { // initiate a new cube-tree
9. create CC as a child of T ’s cube-tree;
10. let TC as CC ’s star-tree;
11. TC .root′s count = cnode.count;
12. }
13. }
14. if (cnode is not a leaf)
15. call starcubing(T, cnode.first child);
16. if (CC is not null) {
17. call starcubing(TC , TC .root);
18. remove CC from T ’s cube-tree; }
19. if (cnode has sibling)
20. call starcubing(T, cnode.sibling);
21. remove T ;
}

Figure 9: The Star-Cubing algorithm

Analysis. With the step-by-step discussions in this sec-
tion, the program is self-explanatory. Based on Lem-
mas 1 and 2, the algorithm derives the complete and
correct iceberg cube with the input table R, and the
iceberg condition, min sup.
The efficiency of the algorithm is based on three

major points: (1) It uses iceberg pruning. With a tree
structure, each node in the base tree is a potential root
of child tree. The aggregate value of that root can be
tested on the iceberg condition and unnecessary aggre-
gates are avoided. (2) It explores the multi-way tree
aggregation. By scanning base tree once, it aggregates
value on multiple children trees. (3) It uses star-tree
compression. The algorithm explores the star-nodes
under the iceberg threshold and builds star-table for
each tree. The star-nodes make tree shrink quickly.
Thus both computation time and memory requirement
are reduced.

4 Performance Analysis

To check the efficiency and scalability of the proposed
algorithm, a comprehensive performance study is con-
ducted by testing our implementation of Star-Cubing
against the best implementation we can achieve for
the other three algorithms: MultiWay, BUC, and H-

Cubing, based on the published literature. All the four
algorithms were coded using C++ on an AMD Athlon
1.4GHz system with 512MB of RAM. The system ran
Linux with a 2.4.18 kernel and gcc 2.95.3. The times
recorded include both the computation time and the
I/O time. Similar to other performance studies in cube
computation [25, 6, 11], all the tests used the data set
that could fit in main memory.
For the remaining of this section, D denotes the

number of dimensions, C the cardinality of each di-
mension, T the number of tuples in the base cuboid,
M the minimum support level, and S the skew or zipf
of the data. When S equals 0.0, the data is uniform;
as S increases, the data is more skewed. S is applied
to all the dimensions in a particular data set.

4.1 Full Cube Computation

The first set of experiments compare Star-Cubing with
all the other three algorithms for full cube computa-
tion. The performance of the four algorithms are com-
pared with respect to tuple size (Figure 10), cardinal-
ity (Figure 11) and dimension (Figure 12). In the first
experiment, we randomly generated data sets with 5
dimensions, varying the number of tuples from 1000K
to 1500K. In the second experiment, we varied the car-
dinalities for each dimension from 5 to 35. Finally, we
increased dimension number from 3 to 7 while keeping
the cardinality of each dimension at 10. The tuple size
for latter two datasets was 1000K. All the data were
uniformly distributed, i.e., skew was 0.
The experimental results are shown in Figures 10

– 12. We did not use more dimensions and greater
cardinality because in high dimension and high cardi-
nality datasets, the output of full cube computation
gets extremely large, and the output I/O time dom-
inates the cost of computation. This phenomenon is
also observed in [6] and [18]. Moreover, the existing
curves have clearly demonstrated the trends of the al-
gorithm performance with the increase of dimensions
and cardinality.
There are three main points that can be taken from

these results. First, Star-Cubing and MultiWay are
both promising algorithms under low dimensionality,
dense data, uniform distribution, and low minimum
support. In most cases, Star-Cubing performs slightly
better than MultiWay. The performance of MultiWay
degraded quickly when dimension increased.
Second, in those cases, BUC showed the worst per-

formance. BUC was initially designed for sparse data
set. For dense data, the cost of partition is high, and
the overall computation time increases.
Third, the two H-Cubing algorithms performed pro-

gressively worse as cardinality increased. This is be-
cause when cardinality is high, the H-Tree built from
the initial data is wider and traversal on the H-Tree
to maintain the links costs more time. Although Star-
Cubing uses a similar tree structure as H-Tree, Star-
Cubing generates sub-trees during the computation
and the tree sizes are shrinking quickly.
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Figure 10: Full Cube Computation
w.r.t. Tuple Size, where D = 5, C =
5, S = 0, M = 1
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Figure 11: Full Cube Computa-
tion w.r.t. Cardinality, where T =
1M, D = 5, S = 0, M = 1
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Figure 12: Full Cube Computa-
tion w.r.t. Dimension, where T =
1M, C = 10, S = 0, M = 1
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Figure 13: Iceberg Cube Computa-
tion w.r.t. Cardinality, where T =
1M, D = 7, S = 0, M = 1000
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Figure 14: Star-Cubing vs. BUC
w.r.t. Minsup, where T = 1M, D =
10, C = 10, S = 0
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Figure 15: Star-Cubing vs. BUC
w.r.t. Cardinality, where T =
1M, D = 10, S = 1, M = 100

0

20

40

60

80

100

0.5 1 1.5 2

R
un

tim
e 

(S
ec

on
ds

)

Skew (Zipf)

H-Cubing TOP
H-Cubing BOT

BUC
Multi-way

Star-Cubing

Figure 16: Data Skew, where T =
150K, D = 10, C = 8, M = 1000
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Figure 17: Star-Cubing vs. BUC
w.r.t. Skew, where T = 1M, D =
10, C = 10, M = 100
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Figure 18: Memory Usage w.r.t.
Skew, where T = 1M, D = 10, C =
10, M = 100
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Figure 20: Scalability w.r.t. # Tu-
ples, where D = 10, C = 10, S = 0
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Figure 21: Memory Usage w.r.t. #
of Tuples, D = 10, C = 10, S = 0

4.2 Iceberg Cube Computation

The second set of experiments compare the four algo-
rithms for iceberg cube computation. Except Multi-
Way, all the algorithms tested use some form of prun-
ing that exploits the anti-monotonicity of the count
measure. As seen in the previous experiments, both
MultiWay and H-Cubing do not perform well in high di-
mension and high cardinality datasets. We compared
BUC and Star-Cubing under high dimension and high
cardinality individually. The results are shown in Fig-
ures 13–15.
The data set used in Figure 13 had 1000K tuples

with 7 dimensions and 0 skew. The min sup was 1000.
The cardinality of each dimension was increased from 5
to 15. We can see that BUC and Star-Cubing performed
better in sparse data. We further compared these two
algorithm with higher dimension and cardinality.
In Figure 14, the data set had 1000K tuples with

10 dimensions, each with cardinality of 10. The skew
of data was 0. At the point where min sup is 1000,
Star-Cubing decreases the computation time more than
50% comparing with BUC. The improvements in per-
formance get much higher when the min sup level de-
creases. For example, when min sup is 50, Star-Cubing
runs around 5 times faster than BUC. The I/O time
no longer dominates the computation here.
Figure 15 shows the performance comparison with

increasing cardinality. Star-Cubing is not sensitive to
the increase of cardinality; however, BUC improves its
performance in high cardinality due to sparser condi-
tions. Although a sparser cube enables Star-Cubing to
prune earlier, the star-tree is getting wider. The in-
crease in tree size requires more time in construction
and traversal, which negates the effects of pruning.
We suggest switching from Star-Cubing to BUC in

the case where the product of cardinalities is reason-
ably large compared to the tuple size. In our exper-
iment, for 1000K tuple size, 10 dimensions, and min-
imum support level of 100, if data skew is 0, the al-
gorithm should switch to BUC when cardinality for
each dimension is 40, if data skew is 1 (shown in Fig-
ure 15), the switching point is 100. The reason that
the switching point increased with data skew is that

skewed data will get more compression in star-tree,
thus will achieve better performance. We will show
more detailed experiments in the next section.

4.3 Data Skew

In this section, we will show that skewness affects the
performance of the algorithms. We use Zipf to con-
trol the skew of the data, varying Zipf from 0 to 3 (0
being uniform). The input data had 1000K tuples, 10
dimensions, and cardinality of 10 for each dimension,
and the min sup was 100.
Figure 16 shows the computation time for the four

algorithms. Skewed data made MultiWay, H-Cubing
and Star-Cubing perform better. BUC is the only
one that degrades. MultiWay improved because many
chunked arrays now hold a zero count while other
chunks hold a very big count. The array indices with
zero count do not need to be processed at all while the
bigger counts do not increase the workload to Multi-
Way. The two H-Cubing algorithms in Figure 16 start
performing much better once S was around 1.5. This
can be explained by the size of the H-Tree. With
skewed data, each node in the H-Tree is further re-
duced in size because not all values in each dimension
appear now. So as S increases, the H-Tree grew thin-
ner. Similarly, skewed data also makes the star-tree
thinner and thus achieve better performance.
We also compared BUC with Star-Cubing in sparse

dataset in Figure 17. The result is similar to Fig-
ure 16: BUC’s performance degraded with increased
skew while Star-Cubing improved. Even if the dupli-
cate collapsing code was added to BUC (BUC-Dedup)
[11], BUC still degraded until the duplications com-
pensated for the loss of pruning.
Finally, Figure 18 shows the memory usage of Star-

Cubing comparing with the original data size.

4.4 Additional Star-Table Aggregation

Star-Cubing requires the construction of the star table
in advance. The benefits of the star table are profound:
it collapses the attributes dynamically and makes the
star-tree shrink quickly. There are additional costs
that come with this construction, but we will show that



it is not a major expense in the context of computing
the iceberg cube. Furthermore, without the star-table,
the algorithm as a whole will suffer.
Figure 19 shows the comparison of computation

times between Star-Cubing with and without star-
tables. When the min sup is 10, both perform sim-
ilarly; however, when the min sup gets larger, star-
table contributes to reduce the size of star-tree, thus
reduces the computation time. The proportion of time
used in constructing the star-table over the total run
time is less than 30%.

4.5 Scalability

Using dimension of 10, cardinality of 10, skew of 0,
minimum support of 100, we generated several data
sets with up to 1000K tuples. Figure 20 shows the scal-
ability of Star-Cubing with respect to different min sup
level. The figure shows Star-Cubing is scalable with re-
spect to database size.
Figure 21 shows the total memory requirement with

respect to size of data sets. As seen from the figure,
the total memory requirement is slightly larger than
the original data size, and the total memory usage is
almost the same for different min sup levels. This is
because the memory is mainly used by the base tree.
The sub-trees are relatively small.

In summary, we have tested four cubing algorithms:
MultiWay, BUC, H-Cubing, and Star-Cubing, with the
variations of density, min sup, cardinality and skew-
ness. For dense data, Star-Cubing is always the best,
MultiWay and H-Cubing are also good when dimen-
sionality is low. For sparse data, both Star-Cubing
and BUC are good candidates. Usually, Star-Cubing
performs better than BUC. If the cardinality is low,
Star-Cubing runs several times faster than BUC. How-
ever, if the cardinality goes really high, BUC performs
better. For skewed data, Star-Cubing improves its per-
formance when the data skew increases, while BUC’s
performance deteriorates. H-Cubing-Top also performs
very well for low-dimensional skewed data. Although
there is no all-around clear-cut winner; however, in
most cases, Star-Cubing performs better or substan-
tially better than others.

5 Discussion

In this section, we will discuss a few issues related to
Star-Cubing and point out some research directions.

5.1 Handling Large Databases

All the data sets used in our performance tests can fit
in main memory. One may wonder what may happen
if the dataset cannot fit in memory. Actually, Star-
Cubing does not require that the base star-tree fit in
memory. This is because for any branch of the base
star-tree, Star-Cubing will need to scan it only once, as
demonstrated in Figures 6–8. Thus one can load the
star-tree page by page. When a used star-tree page
is swapped out, the space it occupies can be released

since one will not need to visit it again in the cubing
process. Thus the largest star-tree, which is the ini-
tial base tree, will not need to be in memory. Only
the lower level, smaller trees will need to be kept in
memory during cube computation. Please note that
the memory management method proposed in Section
3.5 has taken this factor into consideration, with the
additional optimization by designing our own efficient
but simple memory management routines.
One may also consider the case that even the much

smaller, non-base trees may not fit in memory, al-
though we believe that such a chance is rare if the di-
mension ordering rule is observed. In this case one can
adopt projection-based preprocessing similar to that
in FPtree-based frequent pattern mining [12] and do
cubing for each projected database.

5.2 Computing Complex Measures

Throughout the paper, we have used count() as
the iceberg measure. Complex measures such as
average() can be easily incorporated into our algo-
rithm, based on the technique proposed in [11].
For example, for computing iceberg cube with the

condition, “min sup(c) = k and average(c) > v”, for
each cell c, one may store top-k quant-info at each
node of the tree and use the same technique as that
proposed in [11, 15] to perform anti-monotonicity test-
ing to filter out those unpromising nodes during the
cube computation process. Computing other complex
measures may adopt the similar techniques suggested
in [11].

5.3 Materializing only Cube Shells in a High
Dimensional Cube

Due to the nature of the exponential growth of the
number of cells in a data cube with the growth of the
number of dimensions, it is unrealistic to compute a
full cube or even an iceberg one for high dimensional
data cubes. Instead, one may compute only the cube
“shells” in a high dimensional cube by materializing
only those cuboids that consist of a small number of
dimension combinations. That is, one may material-
ize only up to m-dimensional cuboids in an n-D cube,
where m is a small integer, such as 5, but n could be
nontrivial, such as 50.
Bottom-up processing, such as BUC and H-Cubing,

can handle such “shell” computation naturally because
it computes cuboids from low dimensional combina-
tions to higher ones. However, the pure top-down cub-
ing, such asMultiWay, will encounter its difficulty since
it computes from high-dimension combination toward
lower ones. Without computing from 50-dimensional
cuboid to 49-, 48-, . . . , one cannot reach small dimen-
sional cuboid computation.

Star-Cubing solves this difficulty nicely by explor-
ing the notion of share dimension. Since the maxi-
mum number of generated dimensions cannot be over
5 (suppose m = 5), instead of trying to project and
generate unneeded dimension combinations, only the



shared dimensions with dimension no more than 5 will
be generated and examined. Thus the computation is
in the same spirit as bottom-up processing, and the
derived algorithm should still be efficient, with no ad-
ditional overhead.

6 Conclusions

For efficient cube computation in various data distri-
butions, we have proposed an interesting cube com-
putation method, Star-Cubing, that integrates the
strength of both top-down and bottom-up cube com-
putation, and explores a few additional optimization
techniques. Two optimization techniques are worth
noting: (1) shared aggregation by taking advantage of
shared dimensions among the current cuboid and its
descendant cuboids; and (2) prune as soon as possi-
ble the unpromising cells during the cube computa-
tion using the anti-monotonic property of the iceberg
cube measure. No previous cubing method has fully
explored both optimization methods in one algorithm.
Moreover, a new compressed data structure, star-tree,
is proposed using star nodes. And a few other opti-
mization techniques also contribute to the high perfor-
mance of the method.
Our performance study demonstrates that Star-

Cubing is a promising method. For the full cube com-
putation, if the dataset is dense, its performance is
comparable with MultiWay, and is much faster than
BUC and H-Cubing. If the data set is sparse, Star-
Cubing is significantly faster than MultiWayand H-
Cubing, and faster than BUC, in most cases. For
iceberg cube computation, Star-Cubing is faster than
BUC, and the speedup is more when the min sup de-
creases. Thus Star-Cubing is the only cubing algorithm
so far that has uniformly high performance in all the
data distributions.
There are many interesting research issues to fur-

ther extend the Star-Cubing methodology. For ex-
ample, efficient computation of condensed or quo-
tient cubes, computing approximate cubes, computing
cube-gradients [14], and discovery-driven exploration
of data cubes [19] using the Star-Cubing methodology
are interesting issues for future research.
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