
Data Bubbles for Non-Vector Data: Speeding-up Hierarchical
Clustering in Arbitrary Metric Spaces

Jianjun Zhou Jörg Sander

University of Alberta, Department of Computing Science
Edmonton, Alberta, Canada T6G 2E8

{ jianjun, joerg }@cs.ualberta.ca

Abstract
To speed-up clustering algorithms, data summa-
rization methods have been proposed, which first
summarize the data set by computing suitable
representative objects. Then, a clustering algo-
rithm is applied to these representatives only, and
a clustering structure for the whole data set is de-
rived, based on the result for the representatives.
Most previous methods are, however, limited in
their application domain. They are in general
based on sufficient statistics such as the linear
sum of a set of points, which assumes that the
data is from a vector space. On the other hand, in
many important applications, the data is from a
metric non-vector space, and only distances be-
tween objects can be exploited to construct effec-
tive data summarizations. In this paper, we de-
velop a new data summarization method based
only on distance information that can be applied
directly to non-vector data. An extensive per-
formance evaluation shows that our method is
very effective in finding the hierarchical cluster-
ing structure of non-vector data using only a very
small number of data summarizations, thus re-
sulting in a large reduction of runtime while trad-
ing only very little clustering quality.

1. Introduction
Data Clustering is an important task for knowledge dis-
covery in databases (KDD). The basic goal of a clustering
algorithm is to partition a set of data objects into groups
so that similar objects belong to the same group and dis-
similar objects belong to different groups. There are dif-

ferent types of clustering algorithms for different types of
applications. A common distinction is between partition-
ing and hierarchical clustering algorithms (see e.g. [9]).
Partitioning algorithms are, for instance, the k-means [10]
and the k-medoids algorithms [9]. Partitioning algorithms
decompose a database into a set of k clusters whereas hi-
erarchical algorithms only compute a representation of the
data set, which reflects its hierarchical clustering struc-
ture, but do not explicitly determine clusters. Examples of
hierarchical clustering algorithms are the Single-Link
method [11] and OPTICS [1].

Clustering algorithms in general, and in particular hi-
erarchical algorithms, do not scale well with the size of
the data set. On the other hand, very fast methods are
most desirable for exploratory data analysis, which is
what clustering is mostly used for.

To speed-up cluster analysis on large data sets, some
data summarization methods have been proposed recently.
Those methods are based on a general strategy that can be
used to scale-up whole classes of clustering algorithms
(rather than inventing a new clustering algorithm):
1) Use a data summarization method that produces “suf-

ficient statistics” for subsets of the data set (using ei-
ther sampling plus a classification of objects to the
closest sample point, or some other technique such as
BIRCH [12]). The data summarizations are some-
times also called “micro-clusters” (e.g. in [8]).

2) Apply (an adapted version of) the clustering algo-
rithm to the data summaries only.

3) Extrapolate from the clustering result for the data
summaries a clustering result for the whole data set.

Different data summarization methods have different ad-
vantages and disadvantages. In [3] it was shown that hier-
archical clustering algorithms such as the Single-Link
[11] method or OPTICS [1] require special information in
order to produce high quality results for small numbers of
data summaries. The proposed data summarizations that
meet all the requirements for hierarchical clustering were
called “Data Bubbles”.

Most techniques to compute data summaries, includ-
ing Data Bubbles, are based on the assumption that the
data is from a vector space. Typically, they compute sta-

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct commer-
cial advantage, the VLDB copyright notice and the title of the publica-
tion and its date appear, and notice is given that copying is by permis-
sion of the Very Large Data Base Endowment. To copy otherwise, or to
republish, requires a fee and/or special permission from the Endowment
Proceedings of the 29th VLDB Conference,
Berlin, Germany, 2003

tistics such as the mean of the set of objects which re-
quires that vector space operations (addition of objects,
multiplication with scalar values) can be applied.

For non-vector spaces, the only information that can
be utilized is a similarity or a dissimilarity distance func-
tion. In this paper we will assume a distance function to
measure the dissimilarities, i.e., we only have information
about distances between objects. This makes it difficult or
at least very expensive to compute the usual sufficient
statistics used to summarize vector data. However, having
a data summarization method that allows a very fast (even
if only approximate) clustering of non-vector data is
highly desirable since the distance functions for some
typical and important applications can be extremely com-
putationally expensive (e.g., a sequence alignment for a
set of RNA or amino acid sequences).

In this paper, we propose a novel data summarization
method that can be applied to non-vector data to produce
high-quality “micro-clusters” to efficiently and effectively
support hierarchical clustering. The information produced
for each data summary is related and improves upon the
information computed for the Data Bubbles proposed in
[3] in the sense that accurate estimations of the informa-
tion needed by hierarchical clustering algorithms is gener-
ated (in fact, we suggest to use our new version of Data
Bubbles even for vector data).

The rest of the paper is organized as follows. We
briefly review related work in section 2. We present the
necessary background regarding the original Data Bub-
bles for vector data and the clustering algorithm OPTICS
in section 3. Section 4 discusses the problems when trying
to generate summary information for sets of non-vector
data and introduces our new method. The experimental
evaluation in section 5 shows that our method allows not
only very effective and efficient hierarchical clustering of
non-vector data, but also that it even outperforms the
original Data Bubbles when applied to vector data. Sec-
tion 6 concludes the paper.

2. Related Work
The most basic method to speed-up expensive data min-
ing algorithms such as hierarchical clustering is probably
random sampling: only a subset of the database is ran-
domly chosen, and the data mining algorithm is applied to
this subset instead of to the whole database. Typically, if
the sample size is large enough, the result of the data min-
ing method on the sample will be similar enough to the
result on the original database.

More specialized data compression methods have been
developed to support, in particular, clustering algorithms.
For k-means type of clustering algorithms, a summary
statistics called “clustering features”, originally intro-
duced for the Birch method [12], has been used by differ-
ent approaches. Birch incrementally computes compact
descriptions of subclusters, called Clustering Features,
which are defined as CF = (n, LS, ss), where LS is the

linear sum and ss the square sum of the n points in the
sub-cluster represented by the clustering feature CF.

The CF-values are sufficient to compute information
like centroid, radius and diameter of a set of points. They
also satisfy an additivity condition, that allows the incre-
mental computation of CF-values when inserting points
into a set: if CF1 = (n1, LS1, ss1) and CF2 = (n2, LS2, ss2)
are the CFs for sets of points S1 and S2 respectively, then
CF1 + CF2 = (n1 + n2, LS1 + LS2, ss1 + ss2) is the clustering
feature for the union of the points in S1 and S2, S1 ∪ S2.

The CFs are organized in a balanced tree with branch-
ing factor B and a threshold T, where a non-leaf node rep-
resents all objects in the whole sub-tree that is rooted at
this node. A leaf node has to contain at most L entries and
the diameter of each entry in a leaf node has to be less
than T. The generation of a CF-tree is similar to the con-
struction of B+-trees: points p are inserted into the tree by
finding first the leaf in the current CF-tree that is closest
to p. If an entry in the leaf can absorb p without violating
the threshold condition, it is inserted into this entry and
the corresponding CF value is updated. If p cannot be
inserted into an existing entry, a new entry is created in
the leaf node. This may lead to an overflow of the leaf
node causing it (and possibly its ancestors) to be split in a
similar fashion as B-trees. A clustering algorithm is then
applied to the entries in the leaf nodes of the CF-tree.

In [2], a very specialized compression technique for
scaling-up k-means and EM clustering algorithms is pro-
posed. This method basically uses the same type of suffi-
cient statistics as Birch, i.e. triples of the form (n, LS, ss).
The major difference is only that different sets of data
items are treated and summarized independently: points
that are unlikely to change cluster membership in the it-
erations of the clustering algorithm, data summaries that
represent tight sub-clusters of data points, and a set of
regular data points which contains all points which cannot
be assigned to other data summarizations.

In [4], a general framework for “squashing” data is
proposed, which is intended to scale up a large collection
of data mining methods. The method is based on parti-
tioning the dimensions of the data space and grouping the
points into the resulting regions. For each region, a num-
ber of moments are calculated such as mean, minimum,
maximum, second order moments such as Xi

2 or XiXj, and
higher order moments depending on the desired degree of
approximation. Squashed data items are then created for
each region in a way that the moments of the squashed
items approximate those of the original data falling into
the region. This information can also be used to compute
clustering features as above for each constructed region in
order to speed-up k-means type of clustering algorithms.

In [3] it was also proposed to compute sufficient sta-
tistics of the form (n, LS, ss) based on a random sample
by partitioning the data set using a k-nearest neighbour
classification. This method has several advantages over,
for instance the CF-tree: the number of representative
objects for a data set can be determined exactly, and no

other heuristic parameters such as a maximum diameter,
or a bin-size have to be used in order to restrict the num-
ber of partitions that are represented by triples (n, LS, ss).
The method was proposed as follows:
• Draw a random sample of size s from the database to

initialize s sufficient statistics.
• In one pass over the database, classify each object o

to the sampled object p it is closest to and incremen-
tally add o to the sufficient statistics initialized by p,
using the additivity condition given above.

Our experiences in [3] showed that the quality of the suf-
ficient statistics obtained by random sampling is much
better than the CF-values produced by Birch, when used
to generate the additional information that is needed to get
satisfactory results with hierarchical clustering algo-
rithms. The runtime to generate those CF values using a
CF-tree is also significantly larger and make it almost
impossible to beat even a naïve sampling approach to
speed-up clustering, given the same resources. If it takes
too much time to generate data summarizations, naïve
sampling may just use a larger sample and obtain superior
results with a much less complex implementation.

The only other proposal for a data summarization
method for non-vector data that we are aware of is pre-
sented in [6], and is based on Birch. The authors suggest a
generalization of a Birch tree that has two instances
BUBBLE and BUBBLE-FM for non-vector data. Both
methods keep a number of representatives for each leaf
node entry in order to approximate the most centrally lo-
cated object in a CF-tree leaf. In non-leaf level entries,
both methods keep a certain number of sample objects
from the sub-tree rooted at that entry in order to guide the
search process when building the tree. The basic differ-
ence between BUBBLE and BUBBLE-FM is that for
BUBBLE-FM the sample points in the non-leaf node en-
tries are mapped to a d-dimensional Euclidean vector
space using Fastmap [5]. The image space is then used to
determine distances between new objects and the CFs,
thus replacing possibly expensive distance calculations in
the original space by Euclidean distance computations.
We will argue that this approach has similar drawbacks as
the vector version, and we will therefore, base our current
work for non-vector data on a sampling based approach to
produce data summarizations.

3. Data Bubbles for Euclidean Vector Data
In this section, we briefly review the notion of Data Bub-
bles for Euclidean vector spaces as proposed in [3]. We
discuss the special requirements that hierarchical cluster-
ing algorithms such as the Single-Link method and
OPTICS pose on data summarization methods, and we
illustrate the advantages of Data Bubbles.

While simple statistics such as clustering features pro-
duced by Birch, are effective for k-means type clustering
algorithms, they typically are not sufficient to produce
good results using a hierarchical clustering algorithm. The

main reason is that hierarchical clustering algorithms are
based on the distances between sets of data points which
are not represented well by the distances between only the
representative objects, especially when the compression
rate increases. This type of error typically results in a very
distorted clustering structure based on data summaries.
The Data Bubbles in [3] have been proposed to solve
those problems, showing that a data summarization
method, in order to support hierarchical clustering, has to
take into account the extension and the point density of
the data-subset being represented.

3.1 Basic Definitions

A Data Bubble was defined in [3] as follows:
Definition 3.1: A Data Bubble for a set of points X={Xi},
1 ≤ i ≤ n, is a tuple BX = (rep, n, extent, nnDist), where

• rep is a representative object for X, which is as-
sumed to be close to the centre of the set X;

• n is the number of objects in X;
• extent is the radius of BX around rep that encloses

“most” of the objects in X;
• nnDist(k,BX) is a function that estimates the aver-

age k-nearest-neighbour distances in BX .
For d-dimensional points from a Euclidean vector data,
the representative rep, the radius of the Data Bubbles ex-
tent, and the k-nearest-neighbour distances nnDist(k, B)
can be easily estimated using simple sufficient statistics,
which can be incrementally computed during the initial
construction of the Data Bubbles.

The representative rep is simply computed as the

mean of the set of objects in X, i.e., rep = nX
ni

i /
...1

∑

=
.

The radius of BX around rep can be estimated
by the average pair-wise distances within BX, i.e.,

extent =
()

)1(
...1 ...1

2

−⋅

−∑ ∑
= =

nn

XX
ni nj

ji

. This expression can in turn

be computed from the simpler statistics linear sum LS and
square sum ss of all objects in X. LS and ss can be incre-
mentally maintained when constructing a Data Bubble (as
in the construction of cluster features CF in the BIRCH
algorithm). Using these two values, the extent can be cal-

culated as
)1(

22 2

−⋅
⋅−⋅⋅

nn
LSssn .

The average k-nearest-neighbour distances can be es-
timated by a simple arithmetic expression if a uniform
distribution of objects within a Data Bubble is assumed.
This assumption is quite robust in many applications since
a Data Bubble only represents a small fraction of a data
set and the uniformity assumption holds approximately;

under this assumption: nnDist(k,BX) = extent
n
k d ⋅

1

.

3.2 Application to Hierarchical Clustering

Hierarchical clustering algorithms compute a hierarchical
representation of the data set, which reflects its possibly
nested clustering structure.

The algorithm OPTICS is based on the notions of
core-distance and reachability-distance with respect to
parameters Eps and MinPts. The core-distance of a point
p represents the point density around p; the reachability
distance is a “smoothed” measure of the distance between
points that avoids Single-Link effects. Using these dis-
tances, OPTICS computes a “walk” through the data set,
and assigns to each object p its core-distance and the
smallest reachability-distance reachDist with respect to an
object considered before p in the walk. The algorithm
starts with an arbitrary object assigning it a reachability-
distance equal to ∞. The next object o in the output is then
always the object that has the shortest reachability dis-
tance d to any of the objects that were “visited” previ-
ously by the algorithm. This reachability-value d is as-
signed to this object o. The output of the algorithms is a
reachability plot, which is a bar plot of the reachability
values assigned to the objects in the order they were vis-
ited. An example reachability plot for a 2-dimensional
data set is depicted in Figure 1. Such a plot is interpreted
as following: “valleys” in the plot represent clusters, and
the deeper the “valley”, the denser the cluster. The tallest
bar between two “valleys” is a lower bound on the dis-
tance between the two clusters. Large bars in the plot, not
at the border of a cluster represent noise, and “nested val-
leys” represent hierarchically nested clusters.

Figure 1. Example reachability plot and dendrogram

Clusters in a hierarchical clustering representation are in
general obtained manually (e.g., by cutting through the
representation). This process is typically guided by a vis-
ual inspection of the diagram – which is why a correct
representation of the clustering structure is very impor-
tant, especially when applying the algorithm to data sum-
marizations instead of the whole data set.

The most important issue when applying hierarchical
clustering to Data Bubbles is the distance function that is
used to measure dissimilarity between two Data Bubbles.
In [3] it has been shown that using the distance between
representatives and the extent of Data Bubbles for vector
data, a distance between Data Bubbles can be computed
that dramatically improves the result of hierarchical clus-
tering compared to using only the distance between repre-
sentatives. This notion of distance that is aware of the
extent of Data Bubbles is depicted in Figure 2. If the Data
Bubbles do not overlap, it is basically the distance be-
tween the “borders” of the Data Bubbles (distance be-

tween representative objects of the Data Bubbles minus
the extents of the Data Bubbles plus the 1-nearest
neighbour distances of the Data Bubbles), otherwise, i.e.,
if they overlap, it is the estimated nearest neighbour dis-
tance of the Data Bubble that has the larger nn-distance.

Figure 2. Illustration of the distance between original
Data Bubbles for vector data (Fig. adapted from [3])

The second important issue in hierarchical clustering of
data summarizations is the adaptation of the graphical
result. The reason is that the Data Bubbles typically repre-
sent sets of objects that may contain significantly different
numbers of objects, and that can have largely differing
point densities. Including only the representative of a Data
Bubble in the hierarchical output representation will most
often lead to a very distorted picture of the true clustering
structure of a data set. Therefore, for OPTICS, the bar for
each Data Bubble in the reachability plot is expanded
using the so-called “virtual reachability”. More precisely,
for each Data Bubble representing n points, n bars are
added to the reachability plot. The height of each bar is
calculated as the virtual reachability of the Data Bubble,
which corresponds to the estimated average reachability
distance for points within the Data Bubble (basically the
estimated MinPts-nearest neighbour distance). Other hier-
archical algorithms such as the Single-Link method can
be similarly adapted to work with Data Bubbles. Due to
page limitations, we cannot discuss these extensions here.

4. Data Bubbles for Non-Vector Spaces
The only information that can be utilized in a non-vector
space is the distance function, i.e., information about dis-
tances between objects. Therefore, it is difficult in such
spaces to get an accurate and at the same time computa-
tionally inexpensive estimation for the important compo-
nents defined for the original Data Bubbles. We cannot
compute new “artificial” objects such as a mean, which is
guaranteed to be in the centre of the respective set, and
hence would be the best representative for the objects in a
Data Bubble. We also cannot compute statistics like the
linear sum or the square sum of the objects that would
allow us to incrementally maintain a good estimation of
the radius of a Data Bubble around the representative.
Similarly, there is no inexpensive or incremental way to
compute an estimation of the average k-nearest-neighbour
distances in a Data Bubble. We will argue that for these
reasons the original definition of Data Bubbles has to be
significantly changed and adapted in order to deal with
the particular problems of non-vector spaces.

C A

B
(a) Data set (b) Reachability Plot

A C B

C A

B
(a) Data set (b) Reachability Plot

A C B A C B

The main purpose of Data Bubbles is to support effec-
tive and highly efficient hierarchical clustering based on
the summary information provided by the Data Bubbles.
The representative, the extent, and the average k-nearest-
neighbour distances of a Data Bubble serve only the pur-
pose of defining effective distance notions for hierarchical
clustering. For the algorithm OPTICS, which we will use
to evaluate our method, these notions are:
• The notion of a distance between Data Bubbles,

which has to “be aware” of the extension of the Data
Bubbles. This is the most important notion for effec-
tive hierarchical clustering.

• The core-distance of a Data Bubble, which is also
used to define the “virtual reachability” for objects,
needed to correctly expand a reachability plot.

• The reachability-distance of a Data Bubble relative to
another Data Bubble, which is needed during the
execution of OPTICS. The appropriateness of the
reachability-distance is dependent on the previous
two notions, since it is defined using only core-
distance and the distance between Data Bubbles.

Errors in estimating a representative, the extent, or the
average k-nearest-neighbour distances will lead to errors
when computing the above distances, which in turn will
produce errors in the clustering result using Data Bubbles.
To make things worse: errors for different components in
a Data Bubble may depend on and amplify each other,
e.g., an error in the estimation of the representative will
obviously lead to an increased error in the extent around
the representative, if we keep the original definition of
extent as a radius around the representative that contains
most of the objects of the Data Bubble.

In the following sub-sections we will analyze these
problems and propose a new and more suitable version of
Data Bubbles that solves these problems. In order to dis-
cuss the problems, we will assume the following minimal
procedure to generate s Data Bubbles for non-vector data
(the complete method will be given later in this section):
1. Sample s objects from the database randomly.
2. Assign each object in the database to the closest sam-

ple object from the set of objects obtained in step 1.
This means that using this procedure, the only information
we can utilize in our computation of data summarizations
are the s objects drawn from the database in step 1 (they
may be used, for instance, as candidates for representative
objects), and the distances of all objects to all the sample
objects obtained in step one. These distances have to be
computed in any case to determine the closest representa-
tive for each object.

4.1 Representative Objects

In a non-vector space the representative object for a Data
Bubble has to be an object from the Data Bubble itself
since we cannot compute a mean for the set of objects.
Theoretically, the best representative for a set of objects
in a non-vector space is a medoid, i.e. an object that is

located most centrally in the set of objects, in the sense
that its overall distance to all other objects in the Data
Bubble is minimal. More formally:

Definition 4.1 A medoid for a set of objects X is an object
m ∈ X such that for all p ∈ X: ∑∑

∈∈
≤

XoXo
opdistomdist),(),(.

A medoid, although it seems to be the best choice of a
representative has a severe drawback: determining a me-
doid for a set of n objects is computationally expensive
(O(n2)), since all pair-wise distances have to be computed.
Because we want to use very high compression rates in
practice (i.e., only a very small number of Data Bubbles,
and hence a very large number of objects represented by
one Data Bubble on average), it is not feasible to deter-
mine a medoid for a Data Bubble with this exhaustive
search method. The same amount of computation could be
better used to cluster a larger subset of objects directly
without generating Data Bubbles.

Using our minimal procedure to construct data sum-
marizations, there are basically three alternatives to de-
termine some representative objects for a Data Bubble
more efficiently but also less optimally – all with advan-
tages and disadvantages:
1. “Initial sample object”: keep the initial sample object

that is used to generate a Data Bubble as the repre-
sentative of the Data Bubble.

2. “Relocation using a sub-sample”: after the generation
of the Data Bubble, take a small sub-sample from the
Data Bubble, including the initial sample object, and
determine an exact medoid only in this subset.

3. “Maintaining several candidates”: while generating
the Data Bubble, keep a number of objects as poten-
tial representatives in main memory (e.g. first m ob-
jects assigned to the Data Bubble). When assigning
objects, compute and sum up distances not only to the
initial sample object but also to the additional candi-
dates in the Data Bubble. After the generation of the
Data Bubble, select the candidate with the lowest
sum of distances.

The first alternative, keeping the initial sample object, is
the least expensive, since no additional computation is
necessary. But, it is also the alternative with the largest
error. The quality of the representatives found by the sec-
ond alternative obviously depends on the size of the sub-
sample drawn from the Data Bubble. Our experiments
showed however, that for instance a 5% sub-sample of a
Data Bubble will result in representatives that are only
slightly better approximations of a true medoid, and the
effect on the quality of the clustering result is not signifi-
cant. Taking larger sub-samples, however, is also too ex-
pensive in the same sense as the exhaustive method: in-
stead of taking a sub-sample to relocate the representative,
we can use a larger sample without bubble generation to
improve the clustering result. Alternative 3, i.e., maintain-
ing several candidates during the generation of the bub-
bles, has basically the same properties as alternative 2.

Note that, even in the best case, i.e., if we
could get an exact medoid for the whole
set of objects in a Data Bubble, we may
produce noticeable errors in the cluster-
ing result because there are limits to the

accuracy of a medoid as being in the centre of the set of
objects that it represents. This is in fact a drawback for
any representative object that has to be an element of the
set itself (opposed to a computed mean in case of vector
data). The figure to the left depicts an extreme case where
the data set does not contain an object close to the centre
of the set. Due to this drawback, even the best selection of
a representative for a Data Bubble may result in an error
when estimating the extent of a Data Bubble and conse-
quently in the distance between Data Bubbles to a degree
that would not occur for vector Data Bubbles.

Using any of the three alternatives, and keeping the
original definition of a Data Bubble, we cannot guarantee
that our representative will be close enough to the “cen-
tre” of the data set to avoid errors. On the other hand, hav-
ing a representative close to the centre of a Data Bubble is
not an objective in its own for hierarchical clustering.
Only the above listed distance notions for Data Bubbles
are important. As we will see in the next subsection, we
can in fact compensate for a less centred representative by
applying a new and much more sophisticated distance
function for Data Bubbles. Representatives that are not
close to the centre of a data set will only lead to an error
in the clustering result when using the original idea of
extent of a Data Bubble around a representative and the
original definition of distance that is based on this extent.

Therefore, we choose alternative 1 and keep the initial
sample object as the representative of a non-vector Data
Bubble, which has no computational overhead.

4.2 Average knn-Distances, Core-Distance, and
 Virtual Reachability Distance

The estimation of the average k-nearest-neighbour dis-
tances nnDist(k, B) for a Data Bubble B is closely related
to the core-distance and the virtual reachability distance
of B. The nearest neighbour distance is also used in the
original definition of the distance between Data Bubbles.

Because there is no notion of volume and dimension-
ality in a non-vector space, we cannot apply a simple
function to calculate the average k-nearest-neighbour dis-
tances as in a vector space. When constructing Data Bub-
bles for non-vector data, we have similar alternatives to
determine an estimation of the average k-nearest-
neighbour distances as we have for the selection of a rep-
resentative object (using a sub-sample of the objects in a
Data Bubble and compute the k-nearest-neighbour dis-
tances only in this sub-sample is, however, not an option:
they would very likely be highly overestimated):
1. “knn-distances w.r.t. the initial sample object”: when

assigning objects to Data Bubbles, maintain a list of
the k smallest distances relative to each initial sample

object. For each Data Bubble, simply use the k small-
est-distances to its representative as the estimation of
the average knn-distance in the whole Data Bubble.

2. “knn-distances w.r.t. several reference objects”: keep
a number of objects from a Data Bubble in main
memory (e.g. the first m objects assigned to the Bub-
ble) and compute distances to these objects for all ob-
jects that are assigned to the Data Bubble. For each of
the reference objects, maintain a list of the k smallest
distances. After the generation of the Data Bubble,
compute an estimation of the average k-nearest-
neighbour distances by averaging those values.

As for the selection of the representative objects, the first
alternative has no significant computational overhead
since the distances to the initial sample objects have to be
computed anyway. The computational cost and the im-
provement in the estimation of the knn-distances for the
second alternative depend on the number of reference
object that are kept in main memory. As before, if we
keep too many reference objects, the gain in accuracy will
not outweigh the increased number of distance computa-
tions. For the same amount of additional distance compu-
tations, we may be able to get a better result by just taking
a larger sample size to begin with.

The important question regarding the average knn-
distances in a Data Bubble is: for which values of k do we
need the estimation and how accurate do they have to be?
The most important use of the knn-distances is for esti-
mating the core-distance of a Data Bubble. The core-
distance also defines the virtual reachability value for a
Data Bubble, which is used when “expanding” a Data
Bubble in the clustering output. Typically, we don’t want
to use values for MinPts that are too small, in order to
avoid single-link effects and to reduce the effect of noise
(see [1] for details). In practice, we mostly use values
which are significantly larger than 5 for larger data sets;
and we may consider MinPts values in the range of 5 only
for relatively small data sets. To estimate the core- and
virtual reachability distance of a Data Bubble we there-
fore only need knn-distances for the larger values of
k=MinPts that we want to use for clustering. Fortunately,
the larger values of the average knn-distance in a Data
Bubble can be estimated with an acceptable error using
only the distances to the initial sample object. In fact, the
larger k, the more accurate the estimation using only the
initial sample object (or any other reference object, or the
average over several reference objects). Only for very
small values of k, especially for k=1, is the actual value
nnDist(1, B) for most of the objects in B quite different
from the average nearest-neighbour distance. The nearest
neighbour distance in a Data Bubble B, nnDist(1, B), is
only used in the original definition of distance between
Data Bubbles, which we will not use for non-vector data
because of other reasons. Therefore, we don’t need the
more error prone estimation of nnDist(k, B) for very small
values of k. And, since the use of only a few reference
objects does not significantly improve the result for the

larger values of k, we choose here again the more efficient
alternative 1 to estimate the knn-distances (up to the
maximum value of MinPts), i.e., we use only the initial
sample objects and the distances that we have to compute
in the construction of Data Bubbles anyway.

Using the estimation of k-nearest neighbour distances,
the core-distance of a Data Bubble B (average distance of
objects in B to the MinPts nearest neighbour – so that they
are core objects), and virtual reachability distance of B
(the distance needed for the expansion of the reachability
plot after clustering) are then defined similarly as in [3]:

Definition 4.2 Let B be a Data Bubble. The virtual reach-
ability and core-distance of B are defined using the esti-
mated knn-distances, nnDist(k, B), as following:
 virtualReachability(B)=core-dist(B)=nnDist(MinPts,B).

4.3 The Distance Between Data Bubbles

The original distance between Data Bubbles in [3] is
based on the extents of the Data Bubbles as illustrated
above in Figure 2. The purpose of the extent of a Data
Bubble is to be able to define the distance between Data
Bubbles as the distance between their borders, which are
approximated by the extents.

However, the extent as the average pair-wise distance
in a Data Bubble is expensive to estimate since there is no
supporting statistics that could be collected incrementally
while constructing a Data Bubble. The only option to get
an estimation of the average pair-wise distance would be
to draw a sub-sample of objects from a Data Bubble and
compute all pair-wise distances in this sub-sample. The
accuracy of this approach depends on the size of the sub-
sample. The value could be used as a radius around the
representative within which most of the objects of the
Data Bubble are supposed to be located. Since this is the
intended interpretation of the extent, we could alterna-
tively use only the distances to the representative and
maintain incrementally a distance around the representa-
tive so that “most” objects of the Data Bubble fall inside
this radius around the representative (similar to maintain-
ing the knn-distances). The second alternative for estimat-
ing a global extent is much more efficient but also much
more error-prone since it is very sensitive to outliers.

To work properly, both approaches have to assume (in
addition to having a small error) that the representative is
close to the centre, which we know, we cannot guarantee
in a non-vector space. In fact, errors in choosing represen-
tatives and errors in the estimation of the extent amplify
each other, resulting in large errors in the clustering result,
because the distances between Data Bubbles will be heav-
ily distorted. As a solution, we propose a new definition
of distance between Data Bubbles, which is based on
simple statistics that uses only the distances between ob-
jects and sample objects (which are computed when con-
structing a Data Bubble anyway). All the needed notions
can be maintained incrementally and without significant
computational overhead.

Conceptually, in order to compensate for an error in
the selection of the representatives, we want to distinguish
the extent of a Data Bubble around its representative in
different directions – “direction” being defined using only
distances between the representative and other objects.
For instance, if a representative is not centreed well in a
Data Bubble, the distances to the “border” of the Data
Bubble may be very different in different “directions”.
Figure 3 illustrates this concept using a 2-dimensional
Data Bubble B where the extent from the representative
rB in direction of object O1 is much smaller than the ex-
tent in direction of object O2. The notions required to
formalize these intuitions will be introduced in the follow-
ing. Please note that all concepts will be defined without
any reference to vector space properties or operations, and
that although we will use 2-dimensional point data to il-
lustrate the concepts, the notions are solely based on dis-
tances between objects.

Figure 3. “Directional extent” of a Data Bubble

In order to define more accurate distances between Data
Bubbles, the goal is to find a more accurate representation
of the “border” of a Data Bubble. However, we only need
to know the distance between the representative and the
border, i.e. the extent of a Data Bubble, in the directions
of the (representatives of) other Data Bubbles. Intuitively,
given any two Data Bubbles, A and B, and their represen-
tatives, rA and rB, we can divide the Data Bubble B into
two parts with respect to Data Bubble A: one part contain-
ing the objects in B that are “in the direction of A” in the
sense that the distance between them and the representa-
tive of A, rA, is smaller than the distance between the two
representatives rA and rB; the second part of B contains
the other objects, which are called to be “in the reverse
direction of A”. Formally:

Definition 4.3 Let A and B be two sets of objects, repre-
sented by rA and rB, respectively.

• Bubble(B).InDirection(A):=
 {o ∈ B| dist(o, rA) ≤ dist(rA, rB)}
For each object o ∈ Bubble(B).InDirection(A) we say
that o lies in the direction of A.

• Bubble(B).InRevDirection(A):=
 {o ∈ B| dist(o, rA) > dist(rA, rB)}
For each object o ∈ Bubble(B).InRevDirection(A) we
say that o lies in the reverse direction of A.

Figure 4 illustrates these notions: all objects o ∈ B that lie
inside the circle having rA as centre and the distance be-
tween rA and rB as radius, are in direction of A, i.e. in
Bubble(B).InDirection(A); objects o’ ∈ B which are out-
side the circle lie in “reverse” direction of A, i.e. in
Bubble(B).InRevDirection(A).

B
O1

O2

rB

Figure 4. Illustration of direction and reverse direction

Following a similar intuition, the next notion we define is
the notion of a border distance of a Data Bubble in the
direction of another Bubble:

Definition 4.4 Let A and B be two sets of objects, repre-
sented by rA and rB, respectively. The border distance of
B in the direction of A is defined as

Bubble(B).borderDistInDirection(A):=
 dist(rA,rB) –)),((min rAodist

Bo∈

The border distance of B in the direction of A is defined as
the distance between the two representatives minus the
distance between the representative of A, rA, and the ob-
ject o in B that is closest to rA. Figure 5 illustrates our
estimation of the border distance of a Data Bubble B in
the direction of another Bubble A.

Figure 5. Illustration of border distance

A consequence of our definition of border distance is that
– in contrast to what can happen in the original Data Bub-
bles – the extents of two Data Bubbles can never overlap,
i.e., the distance from a representative rB of a Data Bub-
ble B to its “border”, in the direction of a Data Bubble A
with representative rA, can never be larger than half the
distance between the two representatives:

Lemma 4.1 Given two Data Bubbles A and B with repre-
sentatives rA and rB, respectively. Let
Bubble(B).borderDistInDirection(A) be the border dis-
tance of B in the direction of A. If the distance function is
a metric, i.e., satisfies the triangle inequality, then
Bubble(B).borderDistInDirection(A) ≤ dist(rA, rB)/2.
Proof. Suppose the border distance is greater than
dist(rA, rB)/2. It follows that dist(o, rA) < dist(rA, rB)/2,
where)),((minarg rAodisto

Bo∈
= . And because o ∈ B, by

construction of B it must be dist(o, rB) ≤ dist(o, rA). But
then it follows that dist(o, rA) + dist(o, rB) ≤ 2*dist(o, rA)
< dist(rA, rB), which violates the assumption that the tri-
angle inequality holds. Hence
Bubble(B).borderDistInDirection(A) ≤ dist(rA, rB)/2.

Our definition serves well in a “normal” situation of well-
separated bubbles as depicted in Figure 6, where the dis-
tance between the “borders” of the bubbles gives a good
estimate of the true distance between the point sets.

Figure 6. “Normal” Data Bubble separation

In practice, some situations can occurs where a Data Bub-
ble may contain a “gap” in a particular direction. If the
Data Bubbles represent points from different clusters but
their representatives happen to be close enough so that
one Data Bubble contains points from both clusters.
Figure 7 illustrates such a case.

Figure 7. A“gap” in Data Bubble B (border distance in
direction A is larger than in reverse direction of A)

These situations can lead to errors in the clustering result
because the difference between the borders, and hence the
distance between Data Bubbles may be underestimated.
As a consequence, cluster separations may be lost. For
vector Data Bubbles, this problem does not occurs as fre-
quently as for non-vector Bubbles, since the extent is es-
timated by the average pair-wise distance, which in the
case depicted in Figure 7 would still be close to the true
extent of B (which is much smaller than the depicted di-
rectional border distance of B).

In order to detect those and similar situations, we
maintain certain statistics with respect to the distances of
objects in a Data Bubble B to its representative rB. The
values we compute when constructing a Data Bubble are:
1) average distance of the objects in B in direction of each
other Data Bubble (and reverse directions), 2) the stan-
dard deviation of the distances in all those directions.
Definition 4.5 Let A and B be two sets of objects, repre-
sented by rA and rB, respectively. Let
BA=Bubble(B).InDirection(A) denote the set of objects in
B that lie in direction of A and let
BrevA= Bubble(B).InRevDirection(A) denote the set of
objects in B that lie in the reverse direction of A.

• Bubble(B).aveDistInDirection(A):=
A

Bo

B

rBodist
A

∑
∈

),(

Bubble(B).aveDistInDirection(A) is the average distance
between the representative of B and the objects in B that
lie in direction of A.

• Bubble(B).aveDistInRevDirection(A):=
revA

Bo

B

rBodist
revA

∑
∈

),(

Bubble(B).aveDistInRevDirection(A) is the average dis-
tance between the representative of B and the objects in B
that lie in reverse direction of A.

rA rB
A B

o

Bubble(B).borderDistInDirection(A)

rA rB
A B

rA rB

A
B

Bubble(B).borderDistInDirection(A)

A B

o o’ rA rB

Definition 4.6 Let A and B be two sets of objects, repre-
sented by rA and rB, respectively. Let again
BA=Bubble(B).InDirection(A) and
BrevA= Bubble(B).InRevDirection(A). Let furthermore,

)().(AirectionaveDistInDBBubbledist
AB = and

)(Re).(AvDirectionaveDistInBBubbledist
revAB =

• Bubble(B).stdevInDirection(A):=

A

Bo
B

B

distrBodist
A

A∑
∈

− 2)),((

Bubble(B).stdevInDirection(A) is the standard devia-
tion of the distances between the representative of B
and the objects in B that lie in direction of A.

• Bubble(B).stdevInRevDirection(A):=

revA

Bo
B

B

distrBodist
revA

revA∑
∈

− 2)),((

Bubble(B).stdevInRevDirection(A) is the standard de-
viation of the distances between the representative of
B and all objects in B lying in reverse direction of A.

When constructing a Data Bubble B, the defined averages
and standard deviations of distances relative to other bub-
bles A can be maintained incrementally:
Lemma 4.2 Given a set of distance values
D = (d1, d2, …, dn). Let lsD denote the linear sum of the
distance values in D, i.e., ∑ == ni idlsD ...1 , and let ssD
denote the square sum of the distance values in D, i.e.,

∑ == ni idssD ...1
2)(. Then, the average distance dave in D

can be computed as dave=lsD/n, the standard deviation of

the distances can be computed as ()
2

2

n
lsDssDn −⋅

=σ .

Proof. By simple arithmetic transformations.
Since a linear sum and a square sum of distances in

certain directions can be computed incrementally while
constructing Data Bubbles, it follows that also the average
and the standard deviation of those distances can be main-
tained incrementally without much computationally over-
head: all needed distances are computed anyway in the
classification step of the Data Bubble creation.

The “directional” versions of border distance, average
distance and standard deviation of the distances help us to
detect “gaps” in a Data Bubble in many cases. The situa-
tion depicted in Figure 7, e.g., is indicated by the fact that
the border distance of Bubble B in direction of A is both
much larger than in the reverse direction and much larger
than the average distance in direction of A. Two other
examples of “gaps” in a bubble are given in Figure 8.
In order to avoid overestimating the extent of a Data Bub-
ble (and consequently underestimating the distance be-
tween Data Bubbles) in the presence of “gaps”, we intro-
duce a refined notion of “directional” border distance,
which we call “directional extent” of the Data Bubble.

Figure 8. Examples of a “gap” in a Data Bubble B

Definition 4.7 Let A and B be two sets of objects, repre-
sented by rA and rB, respectively. Let Ave, and Stdv be
the average respectively the standard deviation of the dis-
tances in B in direction of A or the reverse direction of A
– whichever is smaller. The extent of B in the direction of
A, Bubble(B).extentInDirection(A), is then defined as
Bubble(B).extentInDirection(A):=
)2),().(min(StdvAveAnInDirectioborderDistBBubble ⋅+

Basically, the (directional) extent of a Data Bubble is ei-
ther the (directional) border distance, or the (directional)
average distance plus two times (directional) standard
deviation – whichever is smaller. Taking the average dis-
tance plus two times standard deviation is a way to esti-
mate a (“directional”) border around the representative
that will include most of the points within that limit.

Having a good estimation of the extent of a Data Bub-
ble in a certain direction, we can define the distance be-
tween two Data Bubbles simply as the distance between
their representatives minus their directional extents.

Definition 4.8 Let A and B be two sets of objects, repre-
sented by rA and rB, respectively. The distance between A
and B is defined as
 dist(A,B)=dist(rA,rB)–Bubble(A).extentInDirection(B)
 –Bubble(B).extentInDirection(A)
In summary, our new method for constructing a collection
of s Data Bubbles for non-vector data is as following:
1. Draw randomly a sample of s objects from the database.

Each sample object will be the representative object rB
for one of the s Data Bubbles B.

2. Classify, i.e., assign each object in the database to the
closest representative object rB in the set of objects ob-
tained in step 1, and maintain incrementally the follow-
ing information about each Data Bubble B:
a) The distances to the k-nearest neighbours of the rep-
resentative object rB, up to a value k=MinPts. These k-
nearest-neighbour distances, nnDist(k,B) are used to de-
fine core-dist and virtual reachability as in [3], i.e.,
core-dist(B)=virtualReachability(B)=nnDist(MinPts,B).

(a) Average distance of B in direction of A is larger
 than in the reverse direction

rB
B

rA

A

(b) Standard deviation of B in direction of A is much
 larger than in the reverse direction

rA
A

rB
B

b) Relative to each other Data Bubble A:
- Bubble(B).borderDistInDirection(A)
- Average distance and standard deviation in
 direction of A and in reverse direction of A.

3. Compute the extent of each Data Bubble B in direction
of every other Data Bubble A:

 Ave:=min(Bubble(B).aveInDirection(A),
 Bubble(B).aveInRevDirection(A));
 Dev:=min(Bubble(B).stdevInDirection(A),
 Bubble(B). stdevInRevDirection(A));
 Bubble(B).extentInDirection(A):=
 min(Bubble(B).borderDistInDirection(A), Ave + 2*Dev).

After the construction of the Data Bubbles and the com-
putation of the directional extent values, hierarchical algo-
rithms such as the Single-Link method can be applied to
the non-vector Bubbles by using the distance between
Data Bubbles defined in definition 4.7.

The clustering algorithm OPTICS is based on the no-
tion of reachability distance. For point objects, the reach-
ability distance of an object o1 relative to an object o2 was
defined as the maximum of dist(o1, o2) and core-
distance(o2) (see [1] for details). For Data Bubbles, the
notion of the reachability distance of a Data Bubble B1
relative to a Data Bubble B2 can be defined analogously:

Definition 4. 9 Let A and B be two Data Bubbles,. The
reachability distance of B relative to A is defined as

reach-dist(B,A)=
 max(dist(rA,rB), core-dist(A), core-dist(B)).

This definition is an improved version of the definition
used in [3], which estimates the reachability distance of a
hypothetical object o in B1 in direction of B2, relative to
an object in B2 in direction of B1. Analogously to the defi-
nition of reachability distance for points, if the two bub-
bles are far apart, the reachability distance will be equal to
the distance between the bubbles. If the bubbles are very
close to each other, which is indicated by at least one of
the core-distances being larger than the distance between
the bubbles, the hypothetical object o can be considered
as being located at the border of both Data Bubbles, and
we estimate its core-distance by the larger of the two
core-distances, which in turn is used as the estimation of
the reachability distance. The definition given in [3] only
considers the core-distance of the Bubble A when estimat-
ing the reachability distance of Bubble B relative to A.
The old definition underestimates the reachability value
for points at the border of B significantly if A is relatively
dense in its “centre” and close to a less dense Bubble B
(resulting in errors in the clustering structure). Further-
more, this definition allows a much easier integration of
Data Bubbles into OPTICS than the original method.

5. Performance Evaluation
In this section, we perform an extensive experimental
evaluation of our Data Bubbles. The results show that our

new method is highly scalable, that it produces reliable
results even for very small numbers of Data Bubbles, that
it is significantly better than random sampling, and that it
even has an improved accuracy compared to the original
Data Bubbles when applied to vector data.

5.1 Data Sets and Experimental Setup

We evaluate the performance of our new method for non-
vector Data Bubbles using the following data sets:

First, a synthetic 2-dimensional point data set, called
DS-Vector, which is used to show that even for a Euclid-
ean vector space the new version of Data Bubbles (which
only uses the distance information and none of the vector
space properties) outperforms the original Data Bubbles
(for a vector space) proposed in [3]. The reachability plot
obtained when clustering the whole data set using
OPTICS is depicted in Figure 9 (left). The data set con-
tains 50000 points distributed over 8 clusters and 4%
background noise. The eight clusters have similar sizes
and most of them are located very close to each other as
can be seen from the relatively low reachability values
that separate most of them. Therefore, this data set is a
good test bed for evaluating the new directional definition
of extent and the heuristics to handle gaps in bubbles.

The second data set, called DS-Tuple, which we use to
evaluate the relative performance of our non-vector Data
Bubbles, is a synthetic set of binary strings. Each object
of DS-tuple is a 100-bit 0/1 sequence, and the similarity
between two such sequences s1 and s2 is measured using
the Jaccard coefficient, i.e. 2121 ssss ∪∩ . 80% of the
objects form 10 clusters and the remaining 20% are noise.
Two of the clusters are very small (123 and 218 objects),
making the problem of finding them very challenging for
data summarization techniques. The reachability plot ob-
tained when clustering the whole data set using OPTICS
is depicted in Figure 9 (right) (the two tiny clusters are
indicated by arrows).

The third data set used to illustrate the practical rele-
vance of our method is a real data set containing RNA
sequences. The application and the data set, called DS-
Real, are explained in more detail in section 5.2.

Figure 9. Reachability plots for the whole synthetic
data sets used for the evaluation

The values reported in the following sections for the
synthetic data sets are average values over 1000 repeti-
tions of each experiment. In order to measure the quality
of the hierarchical clustering results based on data sum-
marizations, we use the following scoring scheme: For

reach.-plot for DS-Vector reach.-plot for DS-Tuple

very small clusters

each reachability plot obtained for data summarizations,
we apply a heuristic to select the best cut-line through the
diagram. The heuristics evaluates 40 different cut-lines
through a reachability plot in equidistant intervals. Each
cut-line is assigned a score based on the number of clus-
ters that are present with respect to this cut through the
reachability plot. If k clusters are found (0 ≤ k ≤ maxi-
mum number of clusters in the original data set, k_max),
then the cut-line gets a score of k/k_max. If k is greater
than k_max, it gets a score of 0. Hence missing clusters,
finding spurious clusters, and splitting clusters gets pe-
nalities. The intention of this score is to penalize espe-
cially those results where the algorithm produces struc-
tures that are not existent in the original data set and
which may lead to misinterpretations of a data set. The
cut-line with the best score is selected as an approxima-
tion of the cut that a user would select as the best one.

All experiments were performed on an AMD Ath-
lonxp1800+ workstation with 512 MB of memory.

5.2 Experimental Results

Comparison with original Data Bubbles

First, we compare our new method with the original Data
Bubble method using the vector data set DS-Vector. The
scores for both methods when increasing the number of
Data Bubbles are depicted in Figure 10. The results
clearly show that our new directional definition of extent
and the heuristics to handle gaps in Data Bubbles leads to
a better quality of the results, even when not using any of
the vector space properties.

Figure 10. New versus old method using vector data

Comparison with random sampling

In this section we apply our method to the non-vector data
set DS-Tuple. We evaluate both the quality and the run-
time benefits of non-vector Data Bubbles. The first set of
experiments shows the relative performance of our
method compared to a random sampling approach, which
just clusters a random sample of the data set and then as-
signs every object in the database to the closest sample
object. This approach represents a baseline method, which
is in fact difficult to beat since it is very efficient. If a
method is computationally relatively expensive in the
construction of its data summarizations (such as the Birch
based methods BUBBLE and BUBBLE-FM), random
sampling can be more effective since it can use the same
amount of resources to simply cluster a larger sample.

Figure 11 shows the result of the comparison on DS-
tuple. The quality of plots created by our method is con-

sistently better than that of random sampling. For exam-
ple, when using 50 bubbles/samples, our method is almost
always able to recover all the significant clusters and finds
one of the 2 small ones regularly, while random sampling
recovers only 7 of the 8 big clusters quite consistently.
Two example plots are depicted in Figure 11 (a).

Figure 11 (b) shows the average score for both meth-
ods when varying the number of bubbles/samples. We
obtain an up to 40% better quality when using very high
compression rates (low numbers of bubbles). In general,
we consistently obtain a score that can be obtained by
random sampling only when the number of sample points
is at least twice the number of Data Bubbles (this rate
increases with the number of bubbles/samples).

Figure 11 (c) shows the scale-up of both methods with
respect to the number of bubbles/samples. Both methods
scale linearly. They both have the same amount of dis-
tance computation and hence their runtime is very close to
each other, especially when the sampling rate is low.
Random sampling is slightly faster when using a large
sample rate and a relatively cheap distance function (Jac-
card coefficient in this case). In real applications, how-
ever, the distance function is typically much more expen-
sive (e.g., a sequence alignment score as in our real world
data set DS-Real), and the runtime of both methods will
be dominated heavily by only the distance computation
(e.g., 638sec for Data Bubbles versus 635sec for sampling
on the DS-Real data set).

Figure 11. non-vector data bubbles vs. random
sampling on the DS-Tuple data set.

Figure 12 shows the absolute runtime and the speed-up
factors (compared to OPTICS on the whole database),
when varying the database size, using subsets of DS-
Tuple. Our algorithm (100 data bubbles) scales linearly
with the size of database, and we achieve as expected
large speed-up values over OPTICS: between 77 and 400.
Note that this speed-up is also dependent on the distance
function, and for much more expensive distance functions
the expected speed-up will be much larger.

0.78
0.8

0.82
0.84
0.86
0.88

0.9

100 150 200 250
N um ber of D ata Bubbles

Sc
or

e

N ew M ethod
O ld m ethod

(a) reachability-plots for bubbles and sampling

0.5

0.6

0.7

0.8

0.9

1

0 50 100 150 200 250

Number of Bubbles/Samples

Sc
or

e

Data Bubbles
Ramdon Sampling

0

5

10

15

20

25

30

0 50 100 150 200 250
Number of Bubbles/Samples

R
un

tim
e

(s
ec

)

Data Bubbles
Ramdom Sampling

 (b) quality (c) runtime

50 bubbles 50 samples

Figure 12. Scale-up speed-up w.r.t number of objects

An Application to a Real Data Set

The RNase P Database [13] is a compilation of ribonucle-
ase P (RNase P) sequences and other information. In the
last a few years, the number and diversity of RNase P
RNA sequences available have increased significantly and
analysing this data set has become an important issue.
Clusteranalysis can help detecting functional subgroups in
this data set and help understanding the evolutionary rela-
tionships between the sequences.

In this application, we used global sequence alignment
under the standard affine gap penalty scoring scheme
(used in BLAST) to cluster the sequence database. The
OPTICS result for the whole data set is shown in Figure
13(a). Figure 13(b) shows a good result using 50 Data
Bubbles. It is easy to verify that the results are very
similar. The clustering structure corresponds mostly to the
already known evolutionary relationships and matches
well with the annotations in the database. An exception is
the Bacteria.Gamma family that is partitioned into two
sub-groups, which both are mixed with respect to the
existing annotations of the sequences. This is an
interesting finding that is currently investigated in more
detail.

(a) Result of OPTICS DS-Real, runtime = 6578 sec

(b) Result of OPTICS-Bubbles, runtime = 638 sec

Figure 13: Results for the RNA data set

6. Conclusions
In this paper, we presented a new data summarization
method for non-vector data. The method uses only dis-
tance information, and introduces the novel concept of a
directional extent of a set of objects. We show that the
distance between bubbles based on this notion of extent
even improves upon Data Bubbles when applied to vector
data. An extensive performance evaluation also shows
that our method is more effective than a random sampling
approach, using only a very small number of data summa-
rizations, and thus resulting in a large reduction of run-
time (up to 400 times) while trading only very little clus-
tering quality. The method allows us to obtain results
even for data sets where clustering the whole data set is
infeasible because of the prohibitive cost of the distance
function.

Acknowledgements
• We would like to thank Yiping Zhou for fruitful dis-

cussions in the early stages of this project, and Dr.
Guohui Lin for providing code and advice regarding
the real data set and the sequence alignment.

• Research partially funded by NSERC Canada.

References
[1] Ankerst M., Breunig M. M., Kriegel H.-P., Sander J.

OPTICS: Ordering Points To Identify the Clustering Struc-
ture. SIGMOD 1999, pp. 49-60.

[2] Bradley P. S., Fayyad U., Reina C.: Scaling Clustering
Algorithms to Large Databases. KDD 1998, pp. 9-15.

[3] Breunig M., Kriegel H.-P., Kröger P., Sander J.: Data Bub-
bles: Quality Preserving Performance Boosting for Hierar-
chical Clustering. SIGMOD 2001, pp. 79-90.

[4] DuMouchel W., Volinsky C., Johnson T., Cortez C., Pregi-
bon D.: Sqashing Flat Files Flatter. KDD1999, pp. 6-15.

[5] Faloutsos C., Lin K.-I.: Fastmap: A fast algorithm for in-
dexing, datamining and visualization of traditional and
multimedia databases. SIGMOD 1995, pp. 163-174.

[6] Ganti V., Ramakrishnan R., Gehrke J., Powell A., French
J.: Clustering Large Datasets in Arbitrary Metric Spaces.
ICDE 1999, pp. 502-511.

[7] Jain A. K. and Dubes R. C.: Algorithms for Clustering
Data. Prentice-Hall, Inc., 1988.

[8] Jin W., Tung A. K. H., Han J.: Mining top-n local outliers
in large databases. KDD 2001, pp. 293-298.

[9] Kaufman L., Rousseeuw P. J.: Finding Groups in Data: An
Introduction to Cluster Analysis. John Wiley & Sons, 1990.

[10] MacQueen J.: Some Methods for Classification and Analy-
sis of Multivariate Observations. Proc. 5th Berkeley Symp.
Math. Statist. Prob., 1967, Vol. 1, pp. 281-297.

[11] Sibson R.: SLINK: an optimally efficient algorithm for the
single-link cluster method. The Computer Journal Vol. 16,
No. 1, 1973, pp. 30-34.

[12] Zhang T., Ramakrishnan R., Linvy M.: BIRCH: An Effi-
cient Data Clustering Method for Very Large Databases.
SIGMOD 1996, pp. 103-114.

[13] RNase P Database, North Carolina State University,
http://www.mbio.ncsu.edu/RNaseP/home.html

0

5

10

15

10000 20000 30000 40000 50000

Number of Object

R
un

tim
e

(s
ec

)

0
200

400
600

10000 30000 50000

Number of Objects

Sp
ee

d-
up

 fa
ct

or

 (a) scale-up (b) speed-up

Archea.Euryarchaeal
Bacteria.Cyanobacterial

Bacteria.High.Saccharomonospora

Bacteria.Gamma

Bacteria.Chlamydiae.[Chlamydia|Chlamydiophia]

Eukariotes.Nuclear

Archea.Euryarchaeal

Bacteria.Cyanobacterial

Bacteria.High.Saccharomonospora

Bacteria.Gamma

Bacteria.Chlamydiae.[Chlamydia|Chlamydiophia]

Eukariotes.Nuclear

