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Abstract

An order-dependent query is one whose result (interpreted

as a multiset) changes if the order of the input records is

changed. In a stock-quotes database, for instance, retriev-

ing all quotes concerning a given stock for a given day does

not depend on order, because the collection of quotes does

not depend on order. By contrast, finding a stock’s five-

price moving-average in a trades table gives a result that

depends on the order of the table. Query languages based

on the relational data model can handle order-dependent

queries only through add-ons. SQL:1999, for instance, has

a new “window” mechanism which can sort data in limited

parts of a query. Add-ons make order-dependent queries

difficult to write and to optimize. In this paper we show

that order can be a natural property of the underlying data

model and algebra. We introduce a new query language

and algebra, called AQuery, that supports order from-the-

ground-up. New order-related query transformations arise

in this setting. We show by experiment that this framework

– language plus optimization techniques – brings orders-of-

magnitude improvement over SQL:1999 systems on many

natural order-dependent queries.
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1 Introduction

Querying ordered data arises naturally in applications
ranging from finance to molecular biology to network
management. A financial analyst may be interested
in moving averages within or correlations among price
time series. A biologist may be interested in frequent
nucleic acid motifs. A network manager may be in-
terested in packet flow statistics. Several extensions
to SQL have been suggested that are able to express
such order-dependent queries [16, 2, 14, 11].

SQL:1999, through its OLAP amendment, is the
first such language to gain commercial acceptance [11].
It provides this facility through the following new
order-aware features: ordering in the SELECT clause
(OVER...WINDOW construct), a notion of row num-
bering, and an ARRAY data type. Unfortunately,
these extensions, however expressive, result in com-
plex formulations of even simple queries. The complex
formulation is then difficult to optimize.

1.1 Motivational Queries and Problems

Consider the schema Trades(ID, tradeDate, price, ts),
where ID is the ticker symbol of a traded security, ts is
short for timestamp, which identifies the date and time
of a particular trade, tradeDate is a human-readable
form of the day portion, and price is the price of the
trade.

Consider the following query: for a given stock and
a given date, find the best profit one could obtain by
buying the stock and then selling it later that day
(short selling – in which an item is sold before it is
bought – is disallowed). Algorithmically, the solution



is straightforward: compute the profit resulting from
selling at each time t by subtracting the price at t by
the minimum price seen up until t. The answer to the
query is the maximum of these profits. In SQL:1999
this query would look like:1

[SQL:1999]
SELECT max(running diff)
FROM (SELECTID, tradeDate,

price - min(price) OVER
(PARTITION BY ID, tradeDate
ORDER BY ts
ROWS UNBOUNDED PRECEDING)
AS running diff,

FROM Trades ) AS t1
WHERE ID = ’ACME’ AND tradeDate = ’05/11/03’

The nesting here is necessary because a windowed
function (min(price) OVER ...) cannot be an argu-
ment of an aggregating function (max(running diff)).
One opportunity for optimization is to push the
outer query’s selection (ID=’ACME’ AND trade-
Date=’05/11/03’) to the inner query. Although possi-
ble in this particular case, pushing a selection over
a projection containing a generic expression involv-
ing windowed functions (SELECT ... price - min(price)
OVER ...) requires deep analysis. As of this writing,
the commercial optimizers we have tested do not do
such an optimization.

As another example, consider the schema Pack-
ets(pID, src, dest, length, ts), where pID identifies a
packet exchanged between a source (src) and a des-
tination (dest) host. Length refers to the size of the
packet and ts to the moment (timestamp) this packet
was exchanged. A “flow” from a source s to a destina-
tion d ends if there is a 2-minute gap between consec-
utive packets from s to d [3]. In SQL:1999, a network
administrator would issue the following query to know
the count of packets and their average length within
each flow.

[SQL:1999]
WITH
Prec (src, dest, length, ts, ptime) AS
(SELECT src, dest, length, ts,

min(ts) OVER
(PARTITION BY src,dest
ORDER BY ts
ROWS BETWEEN 1 PRECEDING
AND 1 PRECEDING)

FROM Packets),
Flow (src, dest, length, ts, flag) AS
(SELECT src, dest, length, ts,

CASE WHEN ts-ptime > 120 THEN 1
ELSE 0 END

FROM Prec),
FlowID (src, dest, length, ts, fID) AS
(SELECT src, dest, length, ts,

1The queries shown here use somewhat advanced SQL:1999
features. The unfamiliar reader is encouraged to refer to [11].

sum(flag) OVER
(ORDER BY src, dest, ts
ROWS UNBOUNDED PRECEDING)

FROM Flow)
SELECT src, dest, avg(length), count(ts)
FROM FlowID
GROUP BY src, dest, fID

Basically, this query needs to group packets into
flows, and to count the number and average the length
of packets within each flow. Finding the flows is
very hard to express, though, because it involves or-
der. The first sub-query, Prec, creates a new col-
umn, ptime, containing the previous packet’s times-
tamp within each source and destination. Next, the
Flow sub-query adds a flag column that is set to true
(1) at each packet whose difference from the preceding
one exceeds two minutes; otherwise the flag is set to
false (0). Next, the FlowID sub-query sums these flags
cumulatively, creating an auxiliary flow ID, fID. The
main query uses these results.

Optimization of this query should seek to reduce the
work required by PARTITION BY and ORDER BYs.
That is hard because the windows defined in Prec and
in FlowID have slightly different sliding parameters.
The commercial optimizer we tested performed this
query with two sorts before the grouping was done.
Thus they did not perform these optimizations.

The problem with these queries is then two-fold.
Their expression in SQL:1999 is complex and therefore
both hard to read and difficult to optimize.

We have designed a data model, language, and sys-
tem where expressions dependent on order are natural
to write, fostering the exposure of idioms that the op-
timizer can exploit.

1.2 AQuery: First Look

In our data model, tables are not viewed as multi-
sets, but rather as ordered entities that we call arrables
(standing for array-tables). An arrable’s ordering may
be defined at creation time using an ORDERED BY
clause and can later be altered.

Our query language, AQuery, is a semantic exten-
sion of the multiset relational model (i.e., SQL 92)
that includes the classical SELECT-FROM-WHERE-
GROUP BY-AGGREGATE-HAVING clauses. The
main extensions are based on a new clause called
ASSUMING ORDER which defines the order of the
arrables identified in the FROM clause. Predicates
and expressions, in whichever clause they are, can
count on the order defined by the ASSUMING clause,
leading to the natural expression of order-dependent
queries as we show in section 2.

It is up to the optimizer to match the input arrables’
existing order with a query’s ASSUMING ORDER
and to decide whether and when further sorting is nec-
essary, as we show in section 3. This flexibility stems



from the fact that in the AQuery algebra, each op-
erator has an order-preserving and an order-cavalier
variant. The transformations we suggest here may
move the sort over other operators, possibly entailing
a change to an alternate variant. We show that this
schema is able to integrate new transformations with
classical ones.

Our experiments, in section 4, show orders of mag-
nitude differences between AQuery’s and current com-
mercial SQL:1999’s renditions of queries and show that
the transformations generate highly efficient plans.

In section 5, we identify several languages that have
also considered order as a first-class concept and from
which AQuery draws inspiration. In the same section,
we also comment on the sources for some of our opti-
mization techniques.

Finally, section 6 summarizes our contributions and
describes future work.

2 Data Model and Algebra

2.1 Arrables and Order

Definition 1 (Arrables). Let T be a set of types
in which each t ∈ T corresponds to a basic type (e.g.,
integer, boolean, etc) or to a one-dimensional array
made up of elements of a basic type. Let A be a finite,
unbounded array of elements of a type t ∈ T . The
cardinality of A is its number of elements. The k-th
element of A is denoted by A[k], and k is said to be an
index or position in A. Indexes start at 0. An arrable
r is a collection of named arrays A1, · · · , An that have
the same cardinality, and such that each Ai, 1 ≤ i ≤ n,
is of a type of T . 2

The Figure 1 shows examples of two well-formed
arrables. Their schema corresponds to the table
Trades described in Section 1.1. Observe that if
A1, · · · , An are all vectors (i.e., their elements are all
scalars), arrables have the appearance of tables as we
know them. That is the case for the arrable Trades in
that figure. We will show shortly how arrables having
vector elements, such as the arrable Series in the same
figure, can be useful.

ts

05/11/03
05/11/03
05/11/03
05/11/03
05/11/03

12.02
43.23
12.04
12.05
43.22

pricetradeDate

Series
ACME
WXYZ

[1 5 9]
[2 13]

ID ts

05/11/03
05/11/03

tradeDate

ID

[12.02 12.04 12.05]
[43.23 43.22]

price

Trades
ACME
WXYZ
ACME
ACME
WXYZ

1
2
5
9
13

Figure 1: Example of two well-formed arrables

Definition 2 (Arrable Indexing). The k-th record

of an arrable r is formed by the k-th element of each
of r’s component arrays. This operation, denoted in-
dexing, is represented as r[k] = 〈A1[k], · · · , An[k]〉. 2

For instance, Trades[0] corresponds to the
record 〈ACME, 05/11/03, 12.02, 1〉, Trades[1] to
〈WXY Z, 05/11/03, 43.23, 2〉, and so on.

Because an arrable consists of arrays and arrays are
ordered, an arrable is ordered.

Definition 3 (Ordered by). An arrable r may be
(lexicographically) ordered by a subset of its arrays,
B1, · · · , Bm ⊆ A1, · · · , An. If the ordering is ascending
and k1 and k2 are two indexes of r and k1 < k2, then
either (i) B1[k1] = B1[k2], · · · , Bm[k1] = Bm[k2] or (ii)
there exists a i, 1 ≤ i ≤ m, such that Bi[k1] < Bi[k2]
and if i > 1 then B1[k1] = B1[k2], · · · , Bi−1[k1] =
Bi−1[k2]. The definitions are symmetric for descending
orders, but for purposes of exposition, we will consider
order to be ascending throughout this paper. 2

For instance, the arrable Trades of Figure 1 could be
defined as Trades(ID, tradeDate, price, ts) ORDERED
BY ts.2

Definition 4 (Order-Equivalence). Let r and s be
arrables over the same set of attributes. Suppose that
r is ORDERED BY some attributes X1, · · · , Xp, and s
by Y1, · · · , Yq . Then r and s are order-equivalent with
respect to attributes B1, · · · , Bm, denoted r ≡B1,···,Bm

s, if the following conditions hold: (i) r and s are
multiset-equivalent (i.e., there exists a permutation of
rows P 1, P 2 such that P 1(r) = P 2(s)); (ii) B1, · · · , Bm

is a prefix of both X1, · · · , Xp and Y1, · · · , Yq. When
r and s are simply multiset-equivalent, we say that
r ≡{} s. 2

2.2 Column-Oriented Semantics

One problem in expressing order-dependent queries is
that each resulting row may depend on a combination
of values from more than one input row. For exam-
ple, consider the Trades table and a query to find the
difference between each price and its previous value,
assuming a time order. The query needs to access two
prices at once that are in distinct rows to calculate
the pairwise difference. Row-oriented languages such
as SQL can iterate over only one row at a time, though.
Thus they need to resort to either a self-join or to an
auxiliary construct to build a row that contains both
prices. This operation has to be repeated for each pair.

In contrast, AQuery adopts a column-oriented se-
mantics in that a variable is bound to an entire array.
Because variables in AQuery always refer to arrays, ex-
pressions always define mappings from a list of arrays
to an array. For instance, the above pair-wise differ-
ence can be captured by a simple expression – price -
prev(price). The function prev() over an array A is an

2We are omitting the typing information here for the sake of
simplicity. A complete definition would include also NULL and
referential integrity information.



array such that prevA[i] = A[i− 1] if i > 0 and A[0] if
i = 0. For two arrays A and B such that |A| = |B|,
minus (-) is element-wise subtraction.

The function prev() is a sample of the set of vector-
to-vector functions that AQuery includes. These func-
tions are classified according to their dependency on
the input’s array sort order and on the cardinality of
the output they generate. For instance, prev() is order-
dependent and size-preserving. The latter property in-
dicates that it outputs vectors that have as many ele-
ments as the input array. Formally order-dependency
can be defined as follows.

Definition 5 (Order-Dependency). An expres-
sion e that maps a list of arrays to an array is said
to be order-independent if for all operand arrays Ai,
1 ≤ i ≤ m, where m is the degree of the expres-
sion, and for any corresponding permutations Aperm

i ,
e(A1, · · · , Am) ≡{} e(Aperm

1 , · · · , Aperm
m ). For example,

avg(price) is order-independent. An expression that is
not order-independent is order-dependent. For exam-
ple, price - prev(price), is order-dependent. 2

Other functions in the order-dependent, size-
preserving category are the running aggregates. A run-
ning minimum over an array A, mins(A), is minsA[i] =
min(A[i], minsA[i − 1]) for 0 < i < |A| or A[i] for i =
0. Running aggregates use this “s”-as-suffix pat-
tern. A running sum over an array A, denoted
sums(A), is sumsA[i] = A[i] + sumsA[i − 1] for 0 <
i < |A|, or A[i] for i = 0. Some running aggregates
can be computed over sliding windows. For instance,
a running average using a fixed-sized window of w po-
sitions over an array A is denoted avgs(w, A) and is
defined as avgsw,A[i] = sum(A[i−(w−1)]..A[i])/w, for
w−1 ≤ i < |A| or sum(A[0]..A[i])/i for 0 ≤ i < w−1.3

Another category of vector-to-vector functions
are those that are order-dependent but not size-
preserving. If they retain either the beginning or
the end of an array, they are called edge functions.
For instance, the first n positions of an array A, de-
noted first(n, A), is firstA,n = A[0..n − 1]. Similarly,
lastA,n = A[|A| − n..|A| − 1].

The classic SQL aggregate functions (min, max,
avg, count) can be seen as non-order-dependent, non-
size-preserving vector-to-vector functions.

2.3 An Algebra and Query Language

The AQuery algebra supports the operators of the re-
lational algebra. But here each operator takes array-
typed expressions as arguments. If an expression
is order-dependent, then the operator behaves in an
order-preserving way. Otherwise the operator behaves
in an order-cavalier way. The order-cavalier variant of

3Such a definition is commonplace in financial applications.
Other domains may require avgs() to return NULLs on positions
where the window is incomplete. In any case, it is often conve-
nient to have the running average return an array the same size
as its argument.

an operator is simply one that is multiset equivalent
to its order-preserving variant. In the remaining of the
section we define the order-preserving variants of the
relational algebra operators.

Definition 6 (Projection). Let r be an arrable and
e = e1, · · · , em be a list of expressions involving r’s ar-
rays, such that |e1| = · · · = |em|. An order-preserving
projection of r over e, denoted πop

e (r), is defined as
follows.

projection(e,r)
1. s:= empty arrable having the same schema as e
2. for i = 0 to |r|-1
3. append <e1[i],· · ·,em[i]> to s
4. end for
5. output s

As mentioned before, if any ei is order-dependent,
the projection is said to be order-preserving, otherwise
the projection is order-cavalier, denoted simply πe(r).
2

Definition 7 (Selection). Let r be an arrable and p
be a predicate mapping a list of r’s arrays into an array
of booleans, such that |r| = |p|. An order-preserving
selection of r over p, denoted σop

p (r), is defined as fol-
lows.

selection(p,r)
1. s:= empty arrable having the same schema as r
2. for i = 0 to |r|-1
3. if p[i] is true
4. append r[i] to s
5. end if
6. end for
7. output s

As for a projection, a selection can be order-
dependent, and either order-preserving or order-
cavalier. 2

An arrable’s sort order is a property that can be
manipulated on a per-query basis.

Definition 8 (Sort). Let r(A1, · · · , An) be an arrable
and B1, · · · , Bm ⊆ A1, · · · , An. By a sort of r over
B1, · · · , Bm, we mean a permutation s of r that is OR-
DERED BY B1, · · · , Bm. 2

Having defined these operators, it is now possible to
show the AQuery’s rendition of the best-profit query.

SELECT max(price - mins(price))
FROM Trades

ASSUMING ORDER ts
WHERE ID = ’ACME’ AND tradeDate = ’05/11/03’

AQuery clauses (SELECT, FROM, ...) are pro-
cessed in the same order as SQL’s. Semantically,
ASSUMING ORDER is translated to a sort after
the FROM clause is computed. It enforces the de-
sired order for the query and it obliges future clauses
(WHERE, GROUP BY, HAVING, and SELECT) to



be translated to order-preserving algebra variations.
(This is the required semantics. Optimization may
avoid performing the sort this early as we show later.)

Note that due to the column-oriented semantics of
AQuery, the mins() function is called only once and
takes the whole price vector as an argument. Sub-
tracting a vector (mins(price)) from another (price)
with the same cardinality is a standard array expres-
sion [1], as is taking the max() of the resulting vector.

The above query is translated to the AQuery alge-
bra as follows, letting e= max(price - mins(price)) and
p= (ID = ’ACME’) ∧ (tradeDate = ’05/11/03’), as:

πop
e (σop

p (sortts(Trades)))

Grouping in AQuery uses an arrable’s facility to
store array-valued fields. Intuitively, a grouping oper-
ation partitions the operand arrable into disjoint sub-
arrables that share the same group value. It then
transforms each sub-arrable into a single row by re-
placing each non-grouped column (in the sub-array)
by its equivalent array-typed value. For instance, the
arrable Series in Figure 1 shows the effect of group-
ing the arrable Trades in the same figure by ID and
tradeDate.

Definition 9 (Grouping). Let r be an arrable and
g = G1, · · · , Gm be a list of expressions over r’s arrays
such that |G1| = ... = |Gm| = |r|. That is, to each
r[i] there must exist a group characterized by g[i]. The
order-preserving group-by of r over g, denoted gbyop

g ,
is defined as follows.

group-by(g,r)
1. groups := empty arrable having the same schema as g
2. s:= empty arrable having the same schema as r

3. for i = 0 to |r|-1
4. if g[i] in groups
5. j:= index of g[i] in groups
6. for each column C in r
7. if C is not a grouped-by column
8. concat r[i].C to s[j].C
9. end if
10. end for
11. else
12. append g[i] to groups
13. append r[i] to s
14. end if
15.end for
16.output s

Step 13 above forms a single element list (or equiva-
lently a vector). Step 8 concatenates to that list. The
result is that fields may consist of vectors. As before,
group by is order-dependent if any of its grouping ex-
pressions is. Group-by can also have an order-cavalier
variation. Further, it is convenient to have an order-
generating version of group-by. Semantically, such a
group by delivers the results ordered by the grouping
expression. 2

The network management query benefits from
AQuery’s order-dependent grouping, as Figure 2 de-
picts. Recall that this query involves a group-by over
source host, destination host, and a flow ID between
them. Flow ID is order-dependent – a new flow be-
tween a pair of hosts starts whenever there is a 120-
seconds gap between consecutive packets. In AQuery,
such a grouping expression corresponds to src, dest,
sums(deltas(ts)>120). Figure 2(a) shows how this ex-
pression is computed, supposing the Trades arrable
is sorted over src, dest, and ts and that the boolean
TRUE carries a value of 1, and the FALSE, 0.

Grouping and aggregation are independent opera-
tions in AQuery. The arrable we see in 2(b) shows
the result of the grouping operation alone. Note
that the non-grouped columns of Packets have arrays
within fields. Because fields may be arrays (though
not arrables), aggregate functions may apply over an
entire column or over each field. To express the lat-
ter, AQuery provides an operator modifier called each
that applies functions to each array-valued element of
a column.

Definition 10 (Each Modifier). Let the array A
be a parameter of a function F . The execution of F
modified by ’each’ is defined as follows:

each(F, A)
1. B := empty array of the same type of F ’s result
2. for i = 0 to |A|-1
3. append F(A[i]) to B
4. end for
5. output B

This definition is naturally extended for cases where
F takes more than one argument. An “each-ed” oper-
ator is necessarily an order-preserving one. 2

Each is a way of applying an operator to each field
of a grouped column. In figure 2(c) we see that avg()
was applied to each of the array-values of the column
length, and similarly to count(ts). Having defined the
operators involved in the network management query,
we can now show its AQuery rendition.

SELECT src, dest, avg(length), count(ts)
FROM Packets

ASSUMING ORDER src, dest, ts
GROUP BY src, dest, sums(deltas(ts) > 120)

The algebraic version of the network man-
agement query, supposing that e= src, dest,
each(avg(),length), each(count(),ts) and g= src, dest,
sums(deltas(timestamp)>120), looks like the following.
We mark with a corresponding superscript the opera-
tions that have components modified by each.

πeach
e (gbyop

g (sortsrc,dest,ts(Packets)))

Cross-product (×) in AQuery is order-cavalier and
hence has the same definition as in the relational al-
gebra. By contrast, joins have both order-preserving
and order-cavalier variations.
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(b)

(c)

s1
s1
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s2
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s1

src destPackets’’ avg(length)
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235

count(ts)

2

3
1

Figure 2: Grouping Trades over src, dest, sums(deltas(ts) > 120): (a) computing the groups; (b) replacing the groups by
single records; and (c) aggregating using the each modifier

Definition 11 (Join). Consider the arrables
r(A1, · · · , An) and s(B1, · · · , Bm). A left-right order-
preserving join of r and s over the join predicate p,
denoted r 1

lrop
p s, is defined in the following way.

join(p, r, s)
1. o:= empty arrable with schema 〈A1, · · · , An, B1, · · · , Bm〉
2. for i = 0 to |r| - 1
3. for j = 0 to |s| - 1
4. if p(r[i],s[j]) is true
5. append 〈A1[i], · · · , An[i], B1[j], · · · , Bm[j]〉 to o
6. end if
7. end for
8. end for
9. output o

A query’s order may require that only one of the
join operand arrables’ order be preserved. In that
case a simpler order-dependent variation of the join
can be used. A left order-preserving join, r 1

lop
p s,

is one that is order-equivalent with respect only to
A1, · · · , An to a left-right order-preserving join of the
same two arrables. 2

Consider the arrable Portfolio(ID, tradedSince)
ORDERED BY ID, which stores information about
the stocks that make one analyst’s portfolio. It is a
subset of the stocks that appear in Trades. To extract
the ten last quotes for each stock in the portfolio, then
the following query does the job.

SELECT t.ID, last(10, price)
FROM Trades t, Portfolio p

ASSUMING ORDER ts
WHERE t.ID= p.ID
GROUP BY t.ID

Semantically, the query first performs a cross-
product (×) between Trades and Portfolio. Cross-
product in AQuery is order-cavalier. Next, the AS-
SUMING clause imposes the desired sort order and
the join predicate is applied. Note that the order
is imposed on the result of the Cartesian product.
Then, the resulting arrable is partitioned into groups
according to ID values. The assumed order is pre-
served within each group. The last() function “trims”

each array-valued priced column to a maximum of
the ten last positions of each price array. Letting e=
ID, each(last(),10,price) and p= Trades.ID=Portfolio.ID,
this query can be represented as:

πeach
e (gbyop

ID(σop
p (sortts(Trades × Portfolio))))

Our purpose here was to show that by incorporating
order from the ground up, AQuery can express order-
dependent queries naturally. More advanced arrable
manipulation features are described in [10].

3 Query Transformations

Sort elimination [17] and sort move-around [15] are
known techniques that can be applied to AQuery op-
timization. AQuery’s semantics and, in particular, the
edge built-in functions (e.g., first, last) allow other ag-
gressive order-related optimizations as well. We intro-
duce these new techniques through examples.

3.1 Implicit Selections and Sort-edge

Let Connections(host, port, client, timestamp) OR-
DERED BY timestamp be an arrable that stores the
clients’ addresses that accessed a network’s services
(port, host) and when did they do so. Suppose one
wants to find the last client that connected to server
“atlas.” In AQuery:

SELECT last(1, client)
FROM Connections

ASSUMING ORDER timestamp
WHERE host = ’atlas’

We are going to show plans in the usual diagram-
matic way. The above query’s initial plan is depicted in
Figure 3(a). We introduce some auxiliary notation as
follows. A single arc between a pair of operators means
that the producer operator is outputting records in
an order-cavalier fashion (i.e., in the most efficient or
simple way possible, without guaranteeing any order).
Double-arcs mean it is doing so in an order-preserving
way. Arrows represent the net effect of the application
of a transformation. Each arrow is annotated with the
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Figure 3: Implicit selection and sort-edge optimizations

corresponding transformation number. The formal de-
scriptions of the transformations are given in Table 1.
We say pos(r) = i when we refer to the record r[i]. The
special indexes for an arrable r, FIRST and LAST, are
0 and |r|−1, respectively. Finally, order(r) returns the
list of attributes the arrable r is ORDERED BY.

A regular selection such as σhost=′atlas′ can be
pushed down over a sort [15]. Transformation 2 in Ta-
ble 1 is a slight variation of that in [15] where order-
preservation is made explicit. There are two advan-
tages to commuting the sort and the selection here:
the selection can benefit from the existing order on
Connections (host), and delaying the sort reduces the
number of records that would need to be sorted.

The projection πlast(1,client) includes an implicit se-
lection, i.e., it is interested in only one client. This is a
peculiarity of AQuery’s column-oriented semantics – a
projection over a function that itself does a selection.
The transformation 3 in Table 1 is a new transforma-
tion that replaces a projection with indexing by a pure
projection plus a selection of the desired positions. If
such positions are on one end of the operand array,
we call this selection an edge selection. The result of
applying this transformation is seen in Figure 3(b).

The advantage of isolating the edge-selection from
the original projection is that while the latter can’t
be moved around easily, the former can. In this ex-
ample, the existence of an edge selection after a sort
suggests that there is no need to sort all the input just
to use some of the elements. In AQuery, the physi-
cal operator sort-edge implements the logical pattern
σop

edge−condition(sort(r)). The sort-edge uses a modi-

fied heapsort to keep the top (or bottom) n elements,
as appropriate. This is similar to the approach used
in [2] except that we modify the heapsort to make it
stable.4 The final plan is shown in Figure 3(c).

3.2 Sort Splitting

There are situations in which the arrable’s existing or-
der facilitates the evaluation of part of a query, even
though it does not match the query’s ASSUMING
ORDER. Consider again the arrable Connections OR-
DERED BY host. The following query finds all the

4A stable sort is one that does not change the original order
of records having identical value on the sorted key. Heapsort
is not naturally stable. It becomes stable if one concatenates a
tuple ID to the key.
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clients that connected to the last host to which a client
hooked in.

SELECT client
FROM Connections

ASSUMING ORDER timestamp
WHERE host = last(1,host)

Note that the predicate host = last(1,host) makes
sense as an array expression. The array host is com-
pared to the single element array (treated as a scalar)
last(1, host) resulting in an array of booleans. Posi-
tions that map to false are eliminated by the WHERE
clause.

An initial plan for this query appears in Figure 4(a).
Timestamp is not a prefix of order(Connections), thus
the sort over timestamp is required. However, host
is a prefix of order(Connections), and therefore the
selection σhost=last(1,host) may take advantage of it.
This is where the split-sort technique comes in.

If A and B are arrays of an arrable r, a selection
σA=(B[i])(r) can be replaced by a semi-join as described
by transformation 6 in table 1. The benefit of the semi-
join is that we can now manipulate order on each of
the semi-join’s arguments differently.

Figure 4(b) shows the result of applying that trans-
formation. Note that last(1, host) = host[LAST ].
Let’s analyze each side of the semi-join in turn. On the
right-hand side we have the pattern edge-selection /
sort, which can be efficiently implemented, as we have
discussed. By contrast, the left-hand-side sort changes
what could be an interesting order to the semi-join op-
eration. We can thus defer it until after the join. The
transformation 5 in Table 1 commutes a semi-join and
a sort. This transformation can be derived from [15]
and says that sorting the result of a semi-join is equiv-
alent to sorting its left stream and then performing
an order-preserving semi-join assuming the conditions
stated in Table 1 hold. The net effect here is that com-
puting the semi-join predicate is facilitated by an ex-
isting order and that sorting over the timestamp needs
to be done only for the records generated by the semi-
join – much cheaper than the original join over the
whole arrable. The resulting plan appears in Figure
4(c).

A contrasting technique where a big sort is ex-
changed by a number of smaller ones is described next.



Sort Reduction/Elimination
(1) sortA(r) ≡order(r) r if A is a prefix of order(r)

Selection
(2) σop

p ( sortA(r) ) ≡A sortA( σp(r) ) if p is not order-dependent

Projection
(3) πop

e[i](r) ≡order(r) πop
e ( σpos()=i(r) ) e is an expression over r’s arrays

Join and Semi-Join

(4) sortA(r ��HHA=B s) ≡A sortA(r) ��HH
lop
A=B s if A,B ∈ schema of r,s, resp.

(5) sortA(r ��HHA=B s) ≡A sortA(r) ��HH
lop
A=B s if A,B ∈ schema of r,s, resp.

(6) σop

A=(B[i])(r) ≡order(r) r ��HH
lop
A=B σpos()=i(r) if A,B ∈ schema of r

(7) σop
p (r ��HH

lop
A=B s) ≡order(r) σop

p ( σeach
p (gbyA(r)) ��HH

lop
A=B s ) if A,B ∈ schema of r,s, resp.,

p is ‘pos()=FIRST’ or ‘pos()=LAST’,
and B is unique

Group-By
(8) gbyop

A ( sortA,B(r) ) ≡A,B sorteach
B ( gbyog

A (r) )

Table 1: A subset of the equivalences between sort and remaining algebra operators

3.3 Sort Embedding

Consider the arrable Trades(ID, tradeDate, price, times-
tamp), this time with no determined ORDERED BY.
(Often trades arrive in a “near-timestamp” order.)
The query seeks the ten most recent prices for each
security ID. In AQuery:

SELECT ID, last(10,price)
FROM Trades

ASSUMING ORDER ID, timestamp
GROUP BY ID

An initial plan for this query is shown in Figure
5(a). We can separate the implicit selection from the
projection as we did before. The resulting plan ap-
pears in Figure 5(b).
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Figure 5: Sort-embedding optimization

It is possible to delay sort until after the GROUP
BY ID is done. If delayed, sort would have to be ap-
plied only within each group. This is what we call
sort embedding. Moreover, for this particular query
the smaller sorts would be then followed by edge se-
lections – sort-edge would apply. The transformation
8 in table 1 allows commuting a sort with a group-by.
Note that (a) the group by results must be ordered
over the grouping list (i.e., an order-generating opera-
tor); and (b) grouping must be over a prefix of sort’s

arguments. The result of this transformation is shown
in Figure 5(c). Note how a double-arc connects group-
by and sort-each, because this instance of group by is
order generating.

3.4 Edgeby and Early Edge Selection

Let us look at another scenario where an edge selection
may reduce cardinality early in a query. We use the
arrable Trades here as well, but we now assume it is
ORDERED BY timestamp. The arrable Portfolio(ID,
name, tradedSince) ORDERED BY ID stores the subset
of securities with which an analyst deals. Name is
a unique identifier of securities in Portfolio, and so
is ID. To retrieve the last price of a security named
“DataOrder” one would do:

SELECT last(1, price)
FROM Trades, Portfolio

ASSUMING ORDER timestamp
WHERE Trades.ID=Portfolio.ID

AND name = ”DataOrder”

An initial plan for this query is depicted in Figure
6(a). A common heuristic to improve performance is
to push down the regular selection over the sort, and
further over the join. The transformation 2 in Table 1,
which comes from [15] allows us to do so. The result
is seen in Figure 6(b).

Upon detection of an appropriate existing order
(i.e., order(Trades) matches the ASSUMING ORDER
of the query), the optimizer would try to eliminate the
sorting completely. Transformation 4 in table 1 com-
mutes a join with a sort while still keeping track of
order. That is a slight variation of a transformation
in [15] in which order-preservation is made explicit.
As Trades is already ORDERED BY timestamp, that
sort may be eliminated, as transformation 1 in Table
1 determines. This transformation comes from [17].
The result is seen in Figure 6(c).
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This query also contains a projection-with-
selection, and again we can break them apart. The
consequent presence of the edge selection after the join
suggests that we may not need to perform the edge se-
lection in its entirety. Portfolio.ID is a key and so it
guarantees that each record in Trades will match at
most one record in Portfolio. (Foreign key joins are
among the most frequent of equijoins.) In these condi-
tions we could push down this edge selection in the fol-
lowing way. For each ID in Trades, find its last record.
This can be done by grouping Trades by ID and edge-
selecting each last record. Because of the edgeby car-
dinality reduction, the join would be performed over
far fewer records. The final selection would then pick
the desired price. This is what transformation 8 in
table 1 does. The final plan is shown in Figure 6(d).

An edge-selection applied to groups is an idiom,
called Edgeby, that can be highly optimized. Edgeby
is a physical operator capable of implementing the log-
ical pattern σeach

edge−condition(Gby(r)). Instead of sepa-
rating all elements of an arrable into groups just to
use a slab of them (e.g., first n, last n, drop n, etc),
edgeby discards, on-the-fly, elements for groups that
already fulfill the edge condition. In our example, we
need the end of an array (i.e., last() over ascending
order) of prices for each ID. A backwards edgeby ID
on the sorted Trades keeps a record if it belongs to a
heretofore unseen ID or a group having less than ten
records.

4 Experimental Results

To evaluate the relative performance of (a) AQuery vs.
SQL:1999 queries and (b) syntactic-directed transla-
tions vs. optimized plans for AQuery queries, we have
conducted an experimental study.

All our experiments were executed on a Pentium III-

M 1.13Mhz with 1 Gb of memory running Linux with
no special setting of process priorities. The timings
reported here correspond to wall clock timings.

4.1 Performance Measurements

AQuery’s rendition of the best-profit and the network-
management queries contained no nesting and were
straightforward to optimize. The figure 7 shows the
relative performance improvement of AQuery plans
versus an SQL:1999 commercial optimizer’s. AQuery
results were between eight and twenty one times faster
for the best-profit query, and between two and three
time faster for the network management query.
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Figure 7: AQuery’s vs. SQL:1999 Relative Performance

The best-profit query numbers were generated us-
ing Trades arrables/tables with varying number of se-
curities from 200 to 1000, and using 1000/trades per
security. Recall that this query was interested in prof-
its for a given security for a given date. The time
difference is due to AQuery’s ability to push down the
selection predicate and to use an index to evaluate it.
The subsequent sort reorders only the trades for the
relevant security. Because the SQL:1999 representa-
tion used a complicated nesting structure (see Section
1.1), its optimizer could not move the selection. That
plan sorted tuples that ended up being discarded.

For the network management query we used a Pack-
ets arrable/table with 100 sessions and varying number
of packets for each session from 2K to 10K. AQuery’s
plan was faster because it required only one sort to
be done, the one enforcing the ASSUMING ORDER
clause. Group-by in AQuery depends – and thus ben-
efits – from that ordering. By contrast, the SQL:1999
optimizer had to figure out how to deal with two unre-
lated WINDOWS specifications (see Section 1.1). This
resulted in having two distinct sorts before the process-
ing of the group by, which did not benefit from them.

Moral: AQuery’s structural simplicity helps in find-
ing better plans.

In most cases, an edgeby requires a small fraction
of the time required to perform the associated group-



by, if done in its entirety as shown in Figure 8(a).
We used the arrable Trades with 1 million records di-
vided evenly among 10, 100, 1000, and 10000 secu-
rities. An edgeby over security ID with varying slab
sizes is tested. The more records edgeby can discard,
the faster its response time. For instance, when only
a few distinct securities are used, groups are large,
and therefore most records fall off the slabs even for
the biggest slab sizes tested, greatly improving per-
formance. As the groups get smaller (i.e., more dis-
tinct securities are used), highly selective slabs gets
better performance. A degenerate case is seen where a
100-slab is taken from groups that are themselves 100
records wide (i.e., 10000 securities). Edgeby doesn’t
improve performance here – but doesn’t hurt either.
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The idea behind the sort embedding technique is
that a sort can be delayed until after a group by,
and can be replaced by several sorts over the grouped
columns (sort-each’s). Figure 8(b) characterizes the
performance gains of sort-eaches as compared to the
entire sort they replace. We used arrables of 1 mil-
lion records and varied the number of groups in which
the arrable was divided. When only one group exists,
there’s no point in applying the technique – but, again,
there’s no penalty in doing so. Trading one big sort
by several smaller ones starts to payoff whenever more
than 10 groups exist.

Sort-edge presented similar results as those of sort-
stop [2] and we omit these results.

Moral: Reduction of work due to edge selections or
sort handling techniques is significant.

AQuery’s optimizer integrates sort with the stan-
dard relational operators such as selection and group
by. For instance, in the query of section 3.1 it was able
to apply selection push-down over a sort. Figure 9(a)
shows that this technique was particularly efficient for
arrable instances where the number of distinct hosts
was greater than 10. But plans using a plain, regular

sort on instances with less than 10 distinct hosts would
still perform poorly. By identifying the implicit edge
selection of that query and by using it to reduce the
number of records to sort, AQuery generated an op-
timized plan that performed best in all the instances
tested.

Figure 9(b) shows the performance gains of apply-
ing the sort splitting technique to the example query of
section 3.2. The efficiency of the optimized plan stems
from delaying the enforcement of the ASSUMING or-
der up until after the semi-join reduces the number of
records to be sorted. The gains stabilized at instances
with 100 or more distinct hosts because at this point
the cost of the query is dominated by the semi-join
itself as opposed to the sort of its results. Note that
application of this technique whenever the number of
hosts is too low (e.g. just one) may represent an unnec-
essary overhead – although a small one. So, this tech-
nique depends on the data distribution, underscoring
the need for cost-based optimization.

Figure 9(c) shows the comparative performance of
plans for the example query of section 3.3. The naive
plan sorts the whole arrable, groups the entire result
and applies the edge-selection only at the end. Cost
remains rather high, even when the edge selection re-
moves most records. By contrast, the optimized plan
trades one big sort for several smaller ones – sort-edges,
in fact. Thus, even in the degenerate case where each
group has only one record (i.e., number of distinct
hosts is equal to the cardinality of the arrable), the
optimized plan saves the cost of a big sort. The curves
show order of magnitudes difference at instances with
small number of distinct hosts.

Finally, Figure 9(d) shows the results for the naive
and the optimized plans for the example query of sec-
tion 3.4. By applying an edgeby early in the plan, the
number of records that have to be joined is consider-
ably reduced. The optimized plan also takes advantage
of the existing order, eliminating any sort altogether.
The result is consistently faster response times.

Moral: AQuery transformations bring substantial
performance improvements, especially when used with
cost-based query optimization.

5 Related Work

Whereas SQL:1999 is the commercially most signifi-
cant implementation of order-dependent queries, other
systems, both commercial and research, have proposed
many excellent ideas.

5.1 Optimization Techniques

Sort order has always been treated in the optimiza-
tion process as a physical property to be included in
a plan (if not specified by SQL’s ORDER BY clause)
to support an efficient algorithm like the merge join.
Mechanisms such as Starburst’s “glue” [9] or Volcano’s
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“enforcer” [5] made sure a sort step was added when-
ever an efficient algorithm required it.

In [17], the authors added an order-optimization
step before plans were enumerated in the context of
DB2’s optimization process. This step may dramat-
ically improve queries that have order requirements
due to the clause ORDER BY, GROUP BY, or the DIS-
TINCT modifier. But order optimization in [17] was
still a separate optimization step in that transforma-
tions involving sort elimination or reduction (i.e., sort
over fewer attributes) were not considered at the same
time transformations involving other algebraic opera-
tors were. By contrast, because we consider sort oper-
ators with other operators in the spirit of [15], we are
able to discover techniques such as sort splitting or sort
embedding (i.e., transformations 6 and 8, respectively,
in Table 1).

In [2] a clause STOP AFTER was suggested which
was capable of limiting the resulting cardinality of
queries whose results were ordered (by an ORDER BY).
When only the top-k tuples of a query’s result need be
consumed, queries can run much faster. Our sort-edge
is similar to stop-sort. A difference between that work
and ours is that, again, their order optimization pro-
cess happens as a separate, isolated phase. Because
we integrate the two, AQuery uses the stop-after idea
within groups as well. After all cardinality restriction
is a generally useful technique.

The first work, to the best of our knowledge, to pro-
vide optimization of order in an integrated framework
was [15]. Most of their list-based transformations ap-
ply to AQuery. The transformations we presented here
extend their framework with several new techniques
(e.g., transformations 3 and 7 in Table 1).

Other optimization rules related to order or ordered
structures were suggested in the context of their cor-
responding query languages, which we discuss next.

5.2 Languages

AQuery is a descendent of KX systems’s KSQL [7]
from which AQuery takes its arrable notion – a fully
vertically partitioned implementation of tables, each
of whose columns is an array. AQuery differs from
KSQL by trying to preserve the SQL flavor to a much
greater extent than KSQL, by the use of the ASSUM-
ING clause to make the use of order declarative, by the
introduction of transformations, and by the exploita-
tion of a cost-based framework for optimization.

The sequence query languages SEQUIN [16] and
SRQL [14] are precursors of SQL:1999 in that they are
SQL dialects that handle order-based queries. They
are true to the spirit of [13] which showed that or-
der was a much needed feature in queries. SEQUIN
treats sequences as an extended abstract data type,
although a sequence can serve as the sole source of
data for a query. SRQL was inspired by SEQUIN
and treats tables as ordered relations. AQuery bor-
rowed from these languages the early introduction in
a query of an order defining clause. Both SEQUIN
and SRQL keep the tuple semantics of SQL, as op-
posed to the vector (column) processing of AQuery.
A consequence is that several valid vector expres-
sions in AQuery are invalid in these languages, e.g.
max(price - mins(price)). Another difference is in
the way non-1NF relations/arrables are handled. In
[16], if a table has a sequence attribute, SEQUIN is
used to express predicates over the sequence, while
SQL is used over the table. That can lead difficult-
to-read queries and complex optimization transforma-
tions. Further, SRQL did not pursue non-1NF ordered
relations, whereas we have found them very useful.

Non-SQL efforts at query languages and data mod-
els based on arrays have been suggested before [8, 12].
Neither AQL [8] nor AML [12] provides a declarative
mechanism to define the order in which the queries
manipulate data. Queries process data in the order
it is stored. While that makes sense for databases of
raster images [12] or scientific data in CDF format [8],



it makes less sense in general data processing. Nev-
ertheless, one could argue that these languages could
easily incorporate a sort function and express most, if
not all, of the queries here. We agree. We would wel-
come such extensions because the implementors may
then arrive at interesting optimizations that would be
complementary to ours. Finally, we have a bias for
pragmatic reasons for an SQL dialect, but reasonable
people can differ on this point.

A particularly inspiring feature of the AQL opti-
mizer is that it has the powerful capability of optimiz-
ing operators (or newly added functions) on the calcu-
lus level, i.e., by application of variations of λ-calculus
reductions over the operators definitions. Reductions
help find syntactically simpler forms of an expression
while keeping its semantics intact. We have not yet
fully exploited that ability in AQuery. On the other
hand, we have shown that, for instance, the sort split-
ting technique requires more than simplifying an ex-
pression. It involved transforming what was one sort
plus a selection in a semi-join plus two sorts plus a
selection – and that resulted in sorting fewer tuples
than the simpler expression. AML by contrast uses a
fixed set of transformation rules aimed generically at
function application on array slabs. A complete fusion
of these ideas requires more exploration.

6 Conclusion

AQuery builds on previous language and query opti-
mization work to accomplish the following goals:

1. Incorporate order in a declarative fashion to a
query language (using the ASSUMING clause)
built on SQL 92.

2. Introduce a query semantics that, while keeping
compatibility to SQL’s, supports inter-tuple cal-
culations without query nesting.

3. Add order-dependent functions (e.g. sums, first)
that are natural to express and flexible, for in-
stance, to allow querying top-k elements within
groups.

4. Create a simple, yet powerful optimization frame-
work that results in performance that is an order
of magnitude faster than commercial SQL:1999
systems for natural queries. Edge optimization
and sort splitting and embedding seem to be par-
ticularly promising for order-dependent queries.
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