
Maximizing the Output Rate of Multi-Way Join Queries over
Streaming Information Sources

Stratis D. Viglas Jeffrey F. Naughton Josef Burger

University of Wisconsin—Madison
Department of Computer Sciences

1210 W Dayton st.
Madison, WI 53706, USA

{stratis , naughton , bolo }@cs.wisc.edu

Abstract

Recently there has been a growing interest in join
query evaluation for scenarios in which inputs arrive
at highly variable and unpredictable rates. In such
scenarios, the focus shifts from completing the com-
putation as soon as possible to producing a prefix of
the output as soon as possible. To handle this shift in
focus, most solutions to date rely upon some combi-
nation of streaming binary operators and “on-the-fly”
execution plan reorganization. In contrast, we con-
sider the alternative of extending existing symmetric
binary join operators to handle more than two inputs.
Toward this end, we have completed a prototype im-
plementation of a multi-way join operator, which we
term the “MJoin” operator, and explored its perfor-
mance. Our results show that in many instances the
MJoin produces outputs sooner than any tree of bi-
nary operators. Additionally, since MJoins are com-
pletely symmetric with respect to their inputs, they
can reduce the need for expensive runtime plan reor-
ganization. This suggests that supporting multi-way
joins in a single, symmetric, streaming operator may
be a useful addition to systems that support queries
over input streams from remote sites.

1 Introduction

Traditionally, multi-way join queries have been evalu-
ated by trees of binary, partially blocking, pipelined join
operators. While this has proven effective in the common
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case of local join inputs, when moving to distributed do-
mains where queries are executed over remote streaming
sources, it is worth considering whether or not this tradi-
tional approach is sufficient. Prior work has answered
that the traditional approach is not sufficient, and has
addressed the problem of streaming inputs by retaining
binary execution trees but by replacing blocking opera-
tors with streaming symmetric operators [11, 14], possi-
bly coupled with dynamic reorganization of the execu-
tion tree [7, 12] in response to fluctuating input rates. In
this paper we explore the complementary approach of al-
lowing non-binary trees; that is, by generalizing existing
streaming binary join algorithms to produce a multi-way
streaming join operator, which we callMJoin, that works
over more than two inputs.

While the MJoin is a simple generalization of sym-
metric binary join algorithms, to our knowledge such an
operator has not been considered in the literature. This
is unfortunate because the MJoin has a number of at-
tractive properties in streaming environments. Using a
single multi-way join, an arrival from any input source
can be used to generate and propagate results in a sin-
gle step, without having to pass these results through
a multi-stage binary execution pipeline. Furthermore,
since the operator is completely symmetric with respect
to its inputs, there is no need to restructure a query plan
in response to changing input arrival rates. However, it
was not clear from the outset how these abstract proper-
ties would translate into actual performance; it was also
not clear exactly how the MJoin operator should handle
memory overflow. In this paper we address these issues.

Our main results are that in many cases the MJoin op-
erator produces its output sooner than any tree of binary
join operators; that, like the streaming binary join oper-
ators on which it is based, MJoin is ideal for in-memory
joins but can be extended to provide streaming behavior
in the presence of memory overflow; that a technique we
term “coordinated flushing” can improve the output rate
in the presence of overflow; and finally, that the addition
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Figure 1: A traditional binary join execution tree

of the MJoin operator introduces an interesting new op-
timization problem, the problem of deciding how best to
partition a large multi-way join into a set of one or more
MJoin operators.

To understand the motivation for our work, consider a
scenario in which a system runs a multi-way join query
over remote data sources arriving as streams. Using tra-
ditional query evaluation techniques, the execution plan
would be organized as a sequence of binary join opera-
tors, as shown in Figure 1. If we assume the joins are
implemented with the hash join algorithm, using stan-
dard terminology and notation, the system would build
hash tables on the left and probe them from the right.

While such an approach has proven effective in tradi-
tional centralized systems, in a scenario where inputs are
remote the situation is different. To see this, note that in
Figure 1, the plan will start producing results only after
the hash tables for the left inputs,S1 andS3 throughSn,
have been built, since with standard hash join operators
the build phase of the left input must complete before
the probe phase of the right input starts. Worse yet, if
the right input of any join blocks, the whole tree blocks.
Symmetric binary operators, such as the symmetric hash
join [14], were proposed to address this problem by elim-
inating blocking behavior.

However, even with symmetric nonblocking binary
operators, problems may arise. Assuming that all inputs
of Figure 1 are remote and that each join is evaluated
with a symmetric binary join algorithm, consider the case
in which anS1 arrival joins withX1,2 already readS2 tu-
ples. TheseX1,2 tuples are propagated upstream and, if
they contribute to the final result, they have to go through
each step of the execution tree until they appear in the
output. At each step, the operator at that step handles
these tuples, inserting them into one hash table and using
them to probe the other. That creates a large number of
in-flight tuples, causing additional storage and communi-
cation overhead. This overhead can increase the system
resources required per output tuple, which in turn can
slow the output rate.

A tree of binary operators also introduces secondary,
subtler effects, which are inherent in the binary execution
tree paradigm. The issue is that if different streaming
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Figure 2: A multiple input join operator

sources deliver their inputs at different rates, the even-
tual output rate can differ as a function of which tree of
binary operators (e.g., deep or bushy, fast inputs high in
the tree or at the leaves) the optimizer chooses. This de-
pendence is exacerbated when some or all of the opera-
tors in the tree overflow their memory quotas and spool
some fraction of their inputs to disk for later process-
ing. Finding the tree that optimizes the output rate in
such a scenario is challenging; even worse, if the input
rates vary over time, there may be no single tree that is
best for the entire duration of the query execution, and
the complexity of on-the-fly query plan restructuring be-
comes necessary [7].

However, it is not clear that the multiway join will
be superior in all cases. A particular concern is whether
replacing a tree of binary operators by a single multiway
operator will cause excessive recomputation of partial re-
sults. Another concern has to do with memory overflow
— specifically, how can a multiway join flush the many
hash tables it builds in a consistent way?

Our goal in this paper is to investigate the opportu-
nities and challenges presented by the introduction of a
multi-way streaming join operator. The rest of the pa-
per is organized as follows: Section 2 explains how the
previously proposed symmetric binary hash join can be
extended to yield the MJoin algorithm, while Section 3
gives our experimental study of the algorithm. Section 4
discusses related work, while Section 5 presents our con-
clusions and identifies future directions. Finally, for the
interested reader, Appendix A presents a rate-based cost
model for the proposed operator.

2 Algorithm Description

The basic idea of the MJoin algorithm is simple: gener-
alize the symmetric binary hash join and the XJoin [11]
algorithms to work for more than two inputs. However,
it turns out that the details are somewhat tricky. The is-
sue is that the algorithm must be ready to accept a new
tuple on any input stream at any time; upon such an ar-
rival, it must probe the other hash tables and generate
a result as soon as possible; and finally, it must ensure
that each result tuple is generated exactly once. These
goals are rendered even more complex when some of the
inputs overflow the space allocated for their hash tables
and tuples must be spooled to disk for later processing.
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2.1 The Basic Algorithm

Generalizing the symmetric binary hash join to work
for more than two inputs is straightforward. The algo-
rithm first creates as many hash tables as there are in-
puts. When a new tuple arrives at an input, it is inserted
into the corresponding hash table and used to probe the
remaining hash tables. This generates every possible re-
sult tuple that can be produced by joining the new arrival
with the memory resident tuples of the other relations.
Not all hash tables will be probed for every arrival, as the
sequence of probes stops whenever a probe of a hash ta-
ble finds no matches (since in this case it cannot produce
answer tuples.) Figure 3 shows this sequence, where
each probe operation is annotated with the probability
of its taking place, which is equal to the selectivity of
the previous predicate in the sequence (theσ∗ factors in
the figure. Note that, in general, theσ∗ factors may be a
function of time.) For instance, for the second probe op-
eration to execute, the first one has to produce matches.
The sequence is organized in such a way so that the most
selective predicates are evaluated first and it is different
for each input. This ensures that the smallest number of
temporary tuples is generated.

2.2 Choosing a Probing Sequence

Choosing the correct probing sequence is an important
parameter when “setting up” an MJoin operator. To give
a brief overview of how this can be easily achieved, con-
sider the case of a query being executed overm inputs.
Furthermore, let us assume that the selectivity factors be-
tween the joins remain constant throughout query exe-
cution. As we mentioned, a simple heuristic of choos-
ing the best probing sequence is to evaluate the least se-
lective join first. In that respect, all we need to do is
sort the selectivity factors for each input and that will
give us the optimal probing sequence for that particu-
lar source. We can sort them − 1 factors for theith

input in (m − 1) log m− 1 steps. Given that we will
do this for allm inputs this results in a complexity of
O(m(m − 1) log m− 1). We further examine the im-
pact of the probing sequence on the MJoin output rate in
Section 3.3.

2.3 Re-computation of Intermediate Results

Because the MJoin operator does not store partial tuples
generated by prefixes of probing sequences, it is possible

that an MJoin will recompute results that are computed
only once in a tree of binary operators. For example,
consider a three-way join query between streamsS1, S2

andS3. Assume that at some point in time there have
beenn1 tuples received fromS1, n2 from S2 and n3

from S3. Furthermore, assume that a new tuple arrives
from S1 matching withσ12n2 tuples fromS2 but with
no tuples fromS3. The partial result set ofσ12n2 result
tuples matching with theS1 arrival are discarded. Then a
new tuple arrives fromS3 which matches with the exist-
ing partial result set. Clearly, whenever such a situation
arises, intermediate results have to be re-computed.

This presents a problematic situation for MJoin, par-
ticularly in the presence of inflating join predicates, i.e.,
predicates for which a joining tuple from one stream
joins with multiple tuples from the other streams. In
such cases it may be better to materialize the intermedi-
ate result set, in other words, to break a single MJoin into
smaller MJoins or, in the limit, to break it into a tree of
binary joins. This introduces an interesting optimization
problem which we consider later in this paper.

In our experiments we did not observe cases in which
the recomputation made the MJoin produce results more
slowly than a tree of binary operators. This is due to
a number of factors: (i) a good choice of a probing se-
quence will minimize the effect; (ii) probing a hash table
for matches is less intensive a CPU operation than in-
serting a tuple into a hash table; (iii) there are significant
memory savings by not storing temporary matches; (iv)
queries over streams will most probably contain window
predicates, which tends to reduce the number of tuples
with which other tuples join, which means that the risk of
recomputation is lessened; (v) highly selective join pred-
icates are common (for example, key-foreign key joins),
which also lessens the risk of recomputation.

For the interested reader, in the appendix, (A.2) we
present a cost model by which one can decide whether
a multi-join query should be decomposed into multiple
MJoin’s given the selectivity factors of the predicates.

2.4 Handling Memory Overflow

We now turn to consider how to handle the case where
the inputs may be too large to buffer entirely in memory.
Before discussing how to deal with this issue with the
MJoin, we review how memory overflow is dealt with in
the binary XJoin.

The XJoin, like the Hybrid Hash Join, partitions each
of its inputs using some hash function. Each partition
has an in-memory portion, and a disk-resident portion.
Initially, the disk resident portions are empty. The XJoin
has three phases:

1. The memory-to-memory phase.If a tuple t arrives
on an input stream and there is room in the in-
memory portion of the partition to whicht hashes,
t is inserted into the hash table for its stream and
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Figure 4: Disk-to-memory operation of MJoin

probed into the in-memory portion of the corre-
sponding partition of the other stream. If the in-
memory portion of the stream to whicht hashes is
full, then it is flushed to disk (adding to the disk-
resident portion of this partition.)

2. The disk-to-memory phase.If both of the input
streams block, the XJoin takes advantage of this
“idle” time to process some of the disk-resident
tuples. In more detail, XJoin reads (part of) the
disk-resident portion of some partition into mem-
ory, then probes it into the in-memory portion of
the corresponding partition. In this way the XJoin
can continue to generate results while the inputs are
blocked. If one of the inputs becomes unblocked,
the XJoin reverts to the memory-to-memory phase.
The generalization of this phase for MJoin is pre-
sented in Figure 4.

3. The disk-to-disk phase.After both input streams
are exhausted, the XJoin “cleans up” with a disk-to-
disk phase, producing all tuples that may have been
missed by previous memory-to-memory or disk-to-
memory phases. It does this in a way similar to the
hybrid hash join: it picks a partition of one of the
inputs, builds an in-memory hash table on the (for-
merly) disk resident portion of this partition, then
reads the disk-resident portion of the corresponding
partition from the other input, probing the hash ta-
ble and generating results. Dealing with this third
phase in the context of the MJoin and in particu-
lar how memory is redistributed when the clean-up
phase is executed, is depicted in Figure 5.

The XJoin must take some care to ensure that no result
tuple is generated twice; it does so through the use of
timestamps.

The same three-phase approach used by XJoin will
work for MJoin. However, because of the multi-way na-
ture of MJoin, there are some subtleties with MJoin that
do not arise for XJoin. These arise both in the handling of
memory overflow and in the use of timestamps to avoid
redundantly generating answer tuples. We consider each
in turn.
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Figure 5: Disk-to-disk memory redistribution and opera-
tion of MJoin

2.5 Memory Overflow in MJoin

Although XJoin’s three phase approach to handling
memory overflow works for MJoin, with MJoin, in the
presence of multiple relations overflowing the output rate
may suffer. In fact, maximizing the output rate for MJoin
appears to be a very challenging and intriguing prob-
lem. It is a function of the input rates of the streams, the
join selectivities between the streams, and how MJoin
decides to spill the various inputs to disk in the case of
memory overflow. To gain some insight into the prob-
lem, we consider an important aspect of this problem in
a simplified scenario. We explore this problem further in
Section 3.5.

We emphasize that our primary goal is to maximize
the output rate during the memory-to-memory phase of
the MJoin. As with the binary XJoin, in MJoin, the disk-
to-memory phase is intended to allow the system to gen-
erate outputs while its inputs are blocked, while the disk-
to-disk phase is intended to generate any final answers
after the inputs have terminated. Interestingly, for the
MJoin, how we handle memory overflow determines the
output rate of the memory-to-memory phase.

Consider an MJoinR1 ./ R2 . . . ./ Rk, where each
of theRi arrives at the same rate. Suppose that the join
selectivities between the streams are all equal to the same
constantσ, and that at timet the number of tuples that
have arrived on each stream isnt. Then a new input tu-
ple on any stream can be expected to producenk−1

t σk−1

output tuples.
Now suppose that available memory has been ex-

ceeded, and that we have spilled an equal fractionf of
all of the streams to disk. Then the expected output of a
new arrival will be reduced by a factorfk−1, since only
a fractionf of thent arrived tuples from each stream is
available for probing, and the expected output would be
fk−1nk−1

t σk−1.
The preceding analysis assumes that all tuples are

spilled to disk randomly, without considering the values
in their join attributes. It is interesting to ask if the output
rate can be increased by smarter ways of spilling to disk.
Suppose now that the join is a star join so that the join



predicate is of the formR1.A1 = R2.A2 = ... = Rk.Ak.
Then consider the following modification of the basic
MJoin. We partition each of the relations intop parti-
tions by hashing on their join attribute. When it comes
time to spill some portion ofRi to disk, instead of doing
so blindly, we always spill from a coordinated set of par-
titions. That is, if we spill tuples from partition 3 from
R1 to disk, for all the other streams we also spill tuples
from partition 3 to disk, only going on to another parti-
tion after all partition 3 tuples have been flushed. We call
this approach “coordinated flushing.”

Using coordinated flushing, when a new tuple arrives
on any input stream, if it falls into an in-memory parti-
tion, it is immediately probed in the in-memory partitions
of the other streams; if it falls into a disk resident parti-
tion, then it is added to an output buffer for that partition
and not probed in the other streams’.

With this modification, we have that the expected
number of result tuples generated by a new arrival is ei-
ther zero (if it falls into an on-disk partition, which will
occur with probability1−f ), ornk−1

t σk−1 (if it falls into
an in-memory partition, which will occur with probabil-
ity f .) To see the second term, consider the case when we
are probing into the in-memory partition of some stream
Ri. We have in totalnt tuples that have arrived on that
stream; if we probe the current tuplet into any of the on
disk partitions, it will not produce any tuples (since they
are in different partitions), so the fact that these tuples
are on disk does not affect the output rate.

Using this simple analysis, we see that the number of
tuples generated in response to a new arrival using co-
ordinated flushing isfnk−1

t σk−1 tuples. This is in con-
trast to the no overflow case, in which a new arrival is
expected to generatenk−1

t σk−1 tuples; and the random
flushing case, in which the arrival is expected to generate
fk−1nk−1

t σk−1 tuples.
It is interesting to consider the special case ofk = 2,

the binary join for which XJoin was proposed. There
we get the initially perplexing result that with random
flushing, the expect number of tuples produced due to
an arrival would befntσ; with coordinated flushing,
the expected number would befntσ, exactly the same
number. On further thought this makes sense; with ran-
dom spilling, there is a 100% chance a new tuple will
be probed into the other stream’s table, where it will find
a fractionf of the table in memory; with coordinated
flushing, there is anf percent chance it fall into an in-
memory partition, in which case it will probe the (same)
in-memory partition of the other table, and the fact that
other partitions of the other table have been flushed to
disk is irrelevant.

Coordinated flushing over all inputs of the join is pos-
sible only with “star joins”, since the relations being
flushed in a coordinated fashion must have the same join
attribute. We think this kind of join may be common
in streaming applications; for example, often we need
to join multiple streams on the time attribute. The gen-

eral MJoin algorithm, though, is applicable regardless of
whether the query under evaluation is a star join or not.
The reason for this is that random spilling can always be
used throughout the execution of the algorithm.

2.6 Redundant Tuple Detection

As was mentioned in Section 2.4, during the disk-to-
memory and disk-to-disk stages there is a possibility that
output tuples can be generated multiple times. We call
these tuples redundant tuples and in this section we show
how to avoid them. There are only two ways in which
a tuple and all its matches render a result redundant: (i)
if they were present in the memory-resident portions of
the hash tables at the same time, or (ii) the tuple was
flushed to disk and used to probe the memory-resident
hash table portions while its matches were still in mem-
ory. Notice, however, the universal qualification of the
above clause: a tuple andall its matches. Even if a single
pair of matches is not a duplicate, the partial join result
is a new one and it should be propagated.

The way MJoin eliminates duplicates is based on
time-stamps. Each tuple is assigned two time-stamps:
one for its arrival into the system and one for its departure
from main memory. Additionally, a separate log is kept
for each partition of each table, keeping track of when the
partition was used for a disk-to-memory probing stage,
as well as the latest disk-resident tuple time-stamp for
that partition. Deciding whether a candidate result has
already been propagated or not is a matter of evaluating
two conditions. Assuming a tupleTi from input i being
scanned and a matchTj being tested, thenTi ./ Tj has
been propagated in the following cases:

1. arrival(Ti) > arrival(Tj) and
arrival(Ti) < departure(Tj), which means thatTi ar-
rived whileTj was in memory.

2. latest(partition(Ti)) > arrival(Tj) and
probe(partition(Ti)) > arrival(Tj) and
probe(partition(Ti)) < departure(Tj), which means
thatTj has already been probed by a previous disk-
to-memory join ofTi’s partition.

This check is performed in a single direction during the
second stage, while it is carried out in both directions
during the third stage. Moreover, for an overall join re-
sult (i.e.,./i=1...n (Ti)) to be propagated, the test has to
be passed by all possible pairs of tuples. At first glance
this may seem as an expensive operation, however, it can
be shown that the number of checks is equal to the num-
ber used in a binary execution tree employing XJoin as
the evaluation algorithm.

2.7 A Concrete Example

To present the algorithm more concretely, we will use the
example of Figure 6: a three-way join betweenS1, S2

andS3. We assume that there is one partition per stream,



while each stream has been allocated a buffer capable of
holding two tuples; each tuple is represented by its value
in the join attribute. Each tuple is annotated with the in-
terval for which it is/was memory-resident1, while each
disk-resident partition is annotated with the last time it
was used to perform a probe of the in-memory hash ta-
bles. (A value of “-1” means the partition has never been
used to probe.)
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Figure 6: An MJoin scenario

Next, assume two tuples fromS3 arrive; the first one
with a value off and the second one with a value of
b, as is the case in Figure 7. Thef tuple is given the
timestamp 15, inserted intoS3’s hash table and used to
probe the other hash tables for matches. The execu-
tion engine should define the order in which it probes
the hash tables, before execution begins. If we assume
the probing sequence is{S1, S2} in our example, no
temporary result tuples will be generated. Had the se-
quence been{S2, S1}, the temporary tuple{f14, f15}
would have been generated. The second arrival, with a
value ofb, is given the timestamp 16 and it has the fol-
lowing effects: (a) the tuple is inserted intoS3’s hash ta-
ble, causing the table to overflow, and (b) the value of the
tuple’s join attribute is used to probe the rest of the hash
tables, producing a single result tuple. Figure 8 shows
the results of both operations. (Afterf15 has been han-
dled as well.)

d10
b13

b8
f14

x12
f15

c1-9
d5-9

d3-7
f4-7

z2-11
w6-11

memory

disk

S1 S2 S3
-1 -1 -1

b

Figure 7: A new arrival fromS3

Next, let us assume that one more tuple has arrived
from the third stream with a value ofd, obtaining the
timestamp 17. At this point, the inputs block, so the al-

1A single number denotes a tuple that has not been flushed to disk
yet.
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Figure 8: The new arrival fromS3 in Figure 7 results
in additional overflow tuples reaching the disk and an
output tuple being generated

gorithm moves on to its disk-to-memory stage, choosing
to useS2’s disk-resident portion. It probesS1’s andS3’s
memory-resident hash table portions, outputting one re-
sult tuple, as shown in Figure 9.
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d10,d3-7,d17 output tuple

scanned
partition

Figure 9: An example of disk-to-memory operation;S2

is used for probing.

Finally, assume all streams send theirend-of-stream
message afterd17’s arrival. This causes the algorithm
to revert to its final clean-up stage and perform a three-
way disk-to-disk join. Notice that there are two possi-
ble result tuples withd values. Only one of them, how-
ever, should be propagated to the output, that one being
{d5−9, d3−7, d17} since the other one,{d10, d3−7, d17},
has already been generated during the second stage.

3 Experiments

In this section we will present our experimental results
from a prototype implementation of MJoin.

3.1 Experimental Setup

Our goal was to measure the performance improvement
we would obtain in comparison to other algorithms de-
signed to work over streaming sources. To do so, we de-
veloped a stand-alone prototype of the algorithm in Java.
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The queries we used were for the most part variants of
the Wisconsin Benchmark’sJoinABPrimequery [3], ex-
tended to handle multiple sources.

IBM’s jikes compiler was used for byte-code gener-
ation, which was executed using SUN’sHotSpotvirtual
machine. All experiments were conducted on a 1GHz
Intel Pentium Processor with 1GB of physical mem-
ory, running RedHat Linux 7.2. To simulate streaming
sources, we assigned an arrival rate to each input and
then inserted, between arrivals, random delays following
a Poisson distribution with the given arrival rate as its
mean2. As a rule, we used the slowest stream’s inter-
arrival rate as the operator’s blocking threshold. The
joins in Section 3.2 were key-to-key joins so that the
choice of probing sequence was not important. For in-
stance, considering three streamsR, S andT the where-
clause of the query would be:

where R.unique1 = S.unique1 and
S.unique1 = T.unique1

We turn to consider inflating joins, in which the probing
sequence does matter, in Section 3.3.

3.2 Resilience to Fluctuations in Input Rate

In the experiments of this section we used a three-way-
join query between streamsS1, S2 andS3 and organized
it in the three ways presented in Figure 10. The input
cardinalities were 100,000 tuples for streamsS1 andS2

and 200,000 tuples for streamS3; we also allocated a
memory buffer less than the inputs’ sizes. More impor-
tantly, we did not keep a constant mean arrival rate for
all inputs; in particular, we varied the input rate ofS3 so
that it started off fast, slowed down towards the middle of
the query and gained speed again in the last third of ex-
ecution. The objective of this experiment was to verify
MJoin’s resilience to input rate fluctuations. The results
are presented in Figure 11.

As exhibited in the performance results, MJoin had a
higher output rate in comparison to the other two plans.
An equally interesting point, however, is the switch-
ing between performances of the two non-MJoin plans.
While the fluctuating stream was fast, the plan that kept
it at the top of the execution plan was faster than the one

2A Poisson arrival process means that the inter-arrival process fol-
lows an exponential distribution with a mean equal to the inverse of the
Poisson process’s mean.
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Figure 11: Performance for fluctuating input rate

keeping it at the bottom. Once the stream slowed down,
the output rates were reversed, and when the stream re-
turned to its initial rate, the original relative performance
again appeared. This validates our intuition that while it
is impossible to pick a single tree of binary operators that
is always optimal when input rates vary, MJoin is stable
and dominates throughout.

3.3 Inflating Joins and the Impact of the Probing Se-
quence

Our previous experiments dealt with selective joins,
more specifically key-to-key joins. In such a scenario,
the probing sequence is not significant. In an inflating
join scenario, however, as was mentioned in Section 2.1,
it is important for the probing sequence to be declared
in such a way that the most selective predicate in evalu-
ated first. In that case, the smallest number of temporary
results is generated. To show the detrimental effects of
the wrong probing sequence, we generated a three-way-
join query in the style of the one presented in Section 3.2
but modified it in the following way:S1 and S3 both
had an input cardinality of 10,000, whileS2 an input car-
dinality of 15,000. Moreover, instead of joining on the
unique1 attribute of the relation, we joined on one with
cardinality 1,000. (For instance, each tuple ofS1 joins
with 1,000 tuples ofS2 so their join produces 150,000
results.) Finally, there is no fluctuation in the streams’
incoming rates. The mean inter-arrival delay forS1 and
S2 is set to 20 millisecondss, while the mean inter-arrival



Plan shape Hashes Moves Comparisons

Deep (XJoin) 185,000 185,000 1,500,000
MJoin, correct se-
quence

35,000 35,000 1,656,727

MJoin, wrong se-
quence

35,000 35,000 2,004,639

Table 1: Increase in the number of operations due to the
wrong probing sequence

delay forS3 is set to 5 millisecondss.
We employed two MJoin plans and a deep binary join

plan. For one of the MJoin plans we had the correct prob-
ing sequence (from most selective to least selective pred-
icate) while for the other we declared the sequence in the
worst possible way for the MJoin operator, i.e., instead of
evaluating the most selective predicate first for all inputs,
we evaluated the least selective predicate first. In the
query at hand, the two 10,000 tuple streams would first
probe the 15,000 tuple stream, producing a larger num-
ber of temporary result tuples. The XJoin plan used for
comparison evaluated the most selective predicate first.

We instrumented the code in such a way that would al-
low us to count the number of operations (hashes, moves,
comparisons) each operator would perform. The number
of extra comparisons between the MJoin employing the
correct probing sequence and the MJoin employing the
wrong probing sequence is shown in Table 1 while the
performance results are presented in Figure 12.

As we see from the performance results, the number
of extra comparisons performed due to the wrong prob-
ing sequence are almost 25% of the number of expected
comparisons. In fact, after some point these extra com-
parisons make the MJoin perform worse than the XJoin
plan. Another important conclusion shown in Table 1
stems from the comparison of operations between the
XJoin and the MJoin plans. Although the XJoin plan
performs fewer key comparisons, it also performs much
more hash and move operations. Clearly, this means that
choosing the correct probing sequence for the MJoin op-
erator is crucial.

3.4 Window Joins

When we move from traditional joins over remote
sources to consider joins over infinite streams of data, it
makes sense to consider window-based joins, i.e., joins
that only pair tuples within a bounded time interval of
each other. This is because without some sort of window
on which tuples can join, in the limit, infinite streams will
require infinite memory. To simulate a window-based
join scenario, we created a three-way join query, over
three relations, each relation containing one million tu-
ples. Moreover, we imposed two window predicates over
the query, with each predicate having a horizon of ten
thousand tuples, i.e., the predicate would only be evalu-
ated over tuples appearing within 10,000 tuples of each
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Figure 12: Performance decrease by using the wrong
probing sequence

other. The shapes of the three plans we used were sim-
ilar to the plans of Figure 10; however, each input con-
tained 1,000,000 tuples, streamsS1 andS2 had a 3 mil-
lisecond mean inter-arrival delay, while streamS3 had
a mean inter-arrival delay of 1 millisecond. The experi-
mental results are shown in Figure 133. As in all previous
experiments, the MJoin plan is faster. This was expected
for one simple reason: by choosing an MJoin evaluation
plan for a window of 10,000 tuples, we are able to keep
all computation within memory limits, and MJoin has
been optimized for in-memory, streaming behavior.
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Figure 13: Window join performance

3.5 Coordinated Flushing

In this experiment we wanted to test MJoin’s ability to
handle memory overflow scenarios, as well as to maxi-
mize the output rate by employing the technique of coor-
dinated flushing, introduced in Section 2.5. To do so, we
generated a six-way join query. The inputs were divided
in two triplets, each triplet materializing the result of a

3The “Fluctuating Stream High” plan of Figure 10 corresponds to
the “Fast High” plan of Figure 13, while the “Fluctuating Stream Low”
plan to the “Fast Low” plan.



Stream Tuples Delay Attribute Cardinality

S1 10,000 1 unique1 10,000
S2 100,000 5 tenk6 10,000

unique14 100,000
S3 100,000 5 tenk6 10,000
S4 10,000 1 unique1 10,000
S5 100,000 5 tenk6 10,000

unique14 100,000
S6 100,000 5 tenk5 10,000

Table 2: Input parameters for the memory overflow sce-
nario. “Delay” is measured in milliseconds.

star-join. The two star-join result sets where then joined
on a different attribute. To present it more concretely, as-
sumingS1 to S6 are the inputs, the where-clause of the
query we ran was the following:

where S1.unique1 = S2.tenk6 and
S1.unique1 = S3.tenk6 and
S4.unique1 = S5.tenk6 and
S4.unique1 = S6.tenk6 and
S2.unique14 = S5.unique14

We created three execution plans for the same query.
For the first plan, which is shown in Figure 14, we used
two MJoins to generate the results of the two star-joins,
and then a third MJoin to join these results. The second
plan was the same MJoin setup, only employing coor-
dinated flushing to handle memory overflow. The third
plan was set up as a binary plan using XJoin. We then
streamed the inputs into the system, using the input rates
shown in Table 2 (which also shows the input sizes and
attribute cardinalities) while the results are shown in Fig-
ure 15.

S6S1 S3 S4S2 S5

S2.unique14 = S5.unique14

S1.unique1 = S2.tenk6 and
S1.unique1 = S3.tenk6

S4.unique1 = S5.tenk6 and
S4.unique1 = S6.tenk6

Figure 14: The MJoin used in the memory overflow sce-
nario

The effect of coordinated flushing is evident in the
plot of Figure 15 since by keeping more tuples with a
higher probability of joining in memory the output rate
is maximized. There are certain “jumps” in the output
curve for the coordinated MJoin and these jumps appear
to be regular. These jumps arise from an artifact of how
we have implemented coordinated flushing. What hap-
pens is that when an input overflows, one of its parti-
tions is spilled to disk. Since we spill the entire partition
to disk, at least temporarily this input has fewer tuples
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Figure 15: Performance during memory overflow and
improvements obtained by employing coordinated flush-
ing

in memory than before, so the output rate drops. Even-
tually, however, the in-memory partitions grow so that
there are again more tuples in memory, and the output
rate rises again. The last part of the curve in which the
output rate is substantially decreased is due to the fact
that a higher percentage of the output has already been
generated, due to coordinated flushing, so the operator
simply waits for the rest of the output to be produced in
its clean-up phase.

3.6 On the Need for Optimization

The next set of experiments we conducted had to do with
investigating and proving that even with an operator like
MJoin, the need for optimization of join-trees still ex-
ists. To do so, we experimented with a six-way join
query and five plans for that query. Four of those five
plans are shown in Figure 16, where each input is an-
notated with its size in tuples and its inter-arrival delay.
In Figure 16, two binary join plans and two MJoin plans
but with smaller (i.e., fewer input streams) MJoin opera-
tors are shown. The fifth, not depicted, plan was a single
MJoin operator. Execution of these plans, along with the
single MJoin plan, yields the performance shown in Fig-
ure 17. Though the single MJoin operator is faster in the
beginning, its performance degrades over time, while, as
time goes by, even the bushy binary plan overtakes it.

Our initial explanation of MJoin’s performance degra-
dation had to do with its per-input cost (as this is modeled
in Appendix A.) To further follow our intuition, we mea-
sured the actual cost in clock ticks of the various param-
eters appearing in MJoin’s cost expression, by accessing
the processor’s hardware counters. These measurements
are presented in Table 3.

We then focused on the denominator of Equation 2,
which is the operator’s per-time-unit cost. Performing
the computation yields that, roughly, the per-time-unit
cost is1.52 · 10−3 seconds. Looking at the streams’ in-
put rates, as shown in Figure 16, it is easy to see that this
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Operation Cost (clock ticks) Cost (seconds)

hash 175.008 1.75 · 10−7

move 426.518 4.27 · 10−7

comp 49.133 4.91 · 10−8

Table 3: Cost of various operations as measured by the
processor’s hardware counters. We were using a 1GHz
processor; one clock tick is equal to10−9 seconds.

time is greater than the fastest stream’s inter-arrival rate
(10−3 seconds for the 300,000 tuple stream.) This trans-
lates into a backlog of tuples being created for that par-
ticular stream; as far as this stream is concerned the CPU
is too slow to handle its rate. As time goes by, this back-
log starts to dominate the stream’s input rate, degrading
MJoin’s performance. This problem does not occur in
the case of the other plans, which use multiple opera-
tors, hence are not sensitive to the total number of input
streams in the join.

The results show that the plans with multiple small
MJoin operators can outperform both the single large
MJoin operator and the plans built up with only binary
operators. It is interesting to note that the single MJoin
operator, while not the best plan overall, dominates in the
first stages of the query execution. Clearly, this presents
a great opportunity (or challenge, depending upon your
perspective!) for query optimization: ideally, the opti-

mizer needs to know how many result tuples it should op-
timize for, then it needs to choose a plan that distributes
the join over the optimal number of MJoin operators of
with the right number of inputs. Cost formulas like the
ones presented in the appendix can assist the optimizer
in this task.

4 Related Work

Join algorithms have been extensively studied in the con-
text of relational database systems, with [5] being the
seminal paper on hash-based join algorithms. Also re-
lated to our work are Bloom filters [4] and bit-map join
indices [10] as ways of efficiently computing joins with
the aid of pre-computation. Additionally, and closer re-
lated, are the techniques of hash teams [6] and general-
ized hash teams [8], in which the objective is to minimize
the number of performed operations in hash-based eval-
uation plans by sharing computation and hash table stor-
age space. Again, none of this previous work considered
the issue of maximizing the output rate in the presence
of varying and unpredictable input rates.

The most relevant remaining work deals with sym-
metric algorithms and adaptive query execution. The first
algorithm to explicitly take into account the streaming
nature of its inputs was the Symmetric Hash Join [14].
XJoin [11] extends this work by providing an efficient
way to spill overflowing inputs to disk and later join
them to produce the final output, while in [7] the authors
present a way of adapting symmetric hash join into hy-
brid hash join whenever inputs become too large to fit in
memory. To the best of our knowledge none of the pre-
vious work on streaming join algorithms considers the
possibility of moving beyond binary operators to multi-
way join operators.

Evaluating queries over streaming inputs has been
studied in the context of query scrambling [12] and adap-
tive query execution [1, 7]. In the former approach, an
execution plan is monitored so that whenever a blocked
input is detected the operator(s) using that input are pre-
empted and other, non-blocked, operators are run in-
stead. Adaptive execution frameworks employ similar
performance monitoring as their decision strategy but in-
stead of giving precedence to certain operators, they dy-
namically alter the plan in a way that is believed to over-



come any performance bottlenecks. Our multi-way join
operator addresses a similar problem, but without requir-
ing any explicit monitoring or dynamic plan modifica-
tion. Of course, we do not claim our approach abolishes
the need for adaptive execution, since many queries can-
not be reduced to a single multi-way join operator; rather,
we claim that the introduction of a multi-input join op-
erator reduces the burden placed on an adaptive frame-
work. The MJoin approach is similar in some respects to
SteMs [9]. The idea behind a SteM is to push state infor-
mation from the operator to the source. We differ from
that approach in two aspects; a SteM is essentially a first-
class operator in the query plan. As such, it introduces
additional dataflow logic [1] in the execution plan. Addi-
tionally, SteMs try to address the more general problem
of sharing computation between sources (SteMs can be
shared), which is something we do not deal with in the
context of a single algorithm.

5 Conclusions and Future Work
Join algorithms have been extensively explored in the re-
search literature, and at many points during the history
of our community one might have concluded that there
was nothing more to be discovered about them. How-
ever, at least to date, this has always been false — the
recent flurry of interest in streaming and/or adaptive join
algorithms is one counterexample.

In this paper we continue this investigation into
streaming and adaptive join algorithms, but with a new
twist: by considering multi-way (beyond binary) sym-
metric join operators. We have shown that in many cases
a multi-way join operator can produce its output in a
streaming fashion and at a faster rate than any tree of
binary join operators. The introduction of a multi-way
join operator has also introduced interesting issues with
respect to how to handle memory overflow and how to
choose a probing sequence within the join. In future
work we plan to explore the optimization problem of how
to best to split a very large multi-way join into a set of
smaller multi-way joins.

AcknowledgementsThis work was supported by NSF
grant ITR 0086002 and in part by an NCR graduate fel-
lowship.

References
[1] R. Avnur and J. M. Hellerstein. Eddies: Continuously adaptive

query processing. InSIGMOD Conference, 2000.

[2] D. Bertsekas and R. Gallager.Data Networks. Prentice Hall,
1991.

[3] D. Bitton and C. Turbyfill. A retrospective on the Wisconsin
Benchmark. InReadings in Database Systems, 1988.

[4] B. H. Bloom. Space/time trade-offs in hash coding with allowable
errors.CACM, 13(7):422–426, 1970.

[5] D. J. DeWitt, R. H. Katz, F. Olken, L. D. Shapiro, M. Stonebraker,
and D. A. Wood. Implementation techniques for main memory
database systems. InProceedings of SIGMOD’84, pages 1–8.
ACM Press, 1984.

Notation Description

hash Cost of hashing a key
move Cost of moving an object in memory
comp Cost of comparing two keys in memory

ri The input rate of theith stream
σk Selectivity factor of join predicatek

Table 4: Cost variables and notation used for modeling

[6] G. Graefe, R. Bunker, and S. Cooper. Hash joins and hash teams
in Microsoft SQL server. InVLDB Conference, 1998.

[7] Z. G. Ives, D. Florescu, M. Friedman, A. Y. Levy, and D. S. Weld.
An adaptive query execution system for data integration. InSIG-
MOD Conference, 1999.

[8] A. Kemper, D. Kossmann, and C. Wiesner. Generalised hash
teams for join and group-by. InVLDB Conference, 1999.

[9] S. Madden, M. A. Shah, J. M. Hellerstein, and V. Raman. Con-
tinuously adaptive continuous queries over streams. InSIGMOD
Conference, 2002.

[10] P. E. O’Neil and G. Graefe. Multi-table joins through bitmapped
join indices.SIGMOD Record, 24(3):8–11, 1995.

[11] T. Urhan and M. J. Franklin. XJoin: A reactively-scheduled
pipelined join operator. IEEE Data Engineering Bulletin,
23(2):27–33, 2000.

[12] T. Urhan, M. J. Franklin, and L. Amsaleg. Cost based query
scrambling for initial delays. InSIGMOD Conference, 1998.

[13] S. D. Viglas and J. F. Naughton. Rate-based query optimiza-
tion for streaming information sources. InSIGMOD Conference,
2002.

[14] A. N. Wilschut and P. M. G. Apers. Pipelining in query exe-
cution. InConference on Databases, Parallel Architectures and
their Applications, 1991.

A Cost Expressions for MJoin
In this appendix we present a cost model for MJoin op-
erators. Such a cost model is essential if optimizers are
to be able to make good decisions about when and how
to employ MJoin operators; it is also useful in explaining
some of our experimental results in Section 3.6.

A.1 Rate-based Cost Expressions

The purpose of this section is to extract an output rate
estimator for MJoin in the fashion of [13]. We will focus
on the first stage of the algorithm, since this is the one in
which MJoin exhibits streaming behavior. Our cost ex-
pressions will make use of the cost variables and notation
presented in Table 4.

The output rate of any process is the number of trans-
mitted entities over the time needed to make the trans-
mission [2], i.e.:

Output rate=
Number of outputs transmitted

Time needed to make the transmission
(1)

In our approach, we assume then inputs have rates equal
to r1, r2, . . . , rn tuples/second respectively. As a first
step we will concentrate on the numerator in Equation 1
and we will first make a discrete time approximation of



the output rate, before generalizing to continuous time.
Over the first second, the operator will receiver1 tuples
from the first stream,r2 from the second one, and so on.
The Cartesian product of these tuples and, hence, the to-
tal size of the input that the operator will filter, will then
be equal toC(1) =

∏n
i=1 ri. Assumingk join predicates

in the query with each join predicate having a selectivity
of fk the total number of tuples transmitted for arrivals
during the first second will beT (1) =

∏k
j=1 σj ·

∏n
i=1 ri.

During the next second of execution each streami will
have received an additionalri tuples, a total of2 · ri for
each stream. The size of the Cartesian product is there-
fore C(2) =

∏n
i=1 2ri = 2n

∏
i=1 ri and the contribu-

tion of this input to the output will beT (2) =
∏k

j=1 σj ·
2n

∏n
i=1 ri. From this size, however, we have to discard

the inputs handled during the first second of execution
since these have been already propagated. After the first
second, the contribution of the next second to the out-
put becomesT (2) =

∏k
j=1 σj · 2n

∏n
i=1 ri − T (1) =

. . . =
∏k

j=1 σk ·
∏n

i=1 ri · (2n − 1). By induction, we
can prove that the number of transmitted outputs for any
time point t will be given by the expression:T (t) =∏k

j=1 σk ·
∏n

i=1 ri · (tn − (t− 1)n − . . .− 2n − 1) =∏k
j=1 σk ·

∏n
i=1 ri · (tn −

∑t−1
k=1 kn).

The next step in extracting the operator’s output rate
is calculating the denominator of Equation 1. For an ar-
rival in any given stream the following operations have
to be performed: (i) hash the tuple, (ii) move it into its
corresponding hash table, and (iii) probe the rest of the
hash tables for matches. Notice, however, that not ev-
ery tuple probes all hash tables. In a way resembling
pipelined execution, it goes to a next hash table only if
matches in the previous one exist, as depicted in Figure
3. In total, the cost per arrival will be equal tohash +
move + comp · (1 +

∏k−1
j=1 σk), where

∏k−1
j=1 σk is the

cost induced if all probes have to be performed4. Since
there will be

∑n
i=1 ri arrivals for a given second, that

makes the time needed to make the transmission equal
to

∑n
i=1 ri · (hash + move + comp · (1 +

∏k−1
j=1 σk)).

Substituting this last expression andT (t) into Equation 1
yields MJoin’s output rate (Equation 2). In Section 3.6
we saw how Equation 2 can identify cases where MJoin’s
performance might degrade.

ro(t) =

Qk
j=1 σk ·

Qn
i=1 ri ·

`
tn −

Pt−1
k=1 kn

´
Pn

i=1 ri ·
“
hash + move + comp ·

“
1 +

Qk−1
j=1 σk

””
(2)

A.2 MJoin Decomposition Cost Expressions

Consider the scenario of a multi-join query overm
streaming sources and the problem of deciding whether a
single MJoin operator needs to be broken in two smaller

4The product’s limit is set tok−1 instead ofk since one probe will
always take place.

MJoin operators, the first one operating overk input
streams, while the other operating overl input streams
(wherek + l = m). Suppose that we are dealing with
the situation of havingni tuples for streami. (This can
mean either that the total input size for streami is equal
to ni or that given the input rateri of streami, after time
t we expectni arrivals.)

It makes sense to decompose the single MJoin op-
eration if it is cheaper to store the intermediate results
from the k and l streams than it is to discard and re-
compute them. Assumingkσ predicates between the
first k sources andlσ predicates between the remainingl
sources, the the intermediate result size for thek streams
is

∏kσ

i=1 σi ·
∏k

i=1 ni, while the intermediate result size
for the l streams is

∏lσ
i=1 σi ·

∏l
i=1 ni. The cost of stor-

ing these two results sets is(
∏kσ

i=1 σi ·
∏k

i=1 ni

∏lσ
i=1 σi ·∏l

i=1 ni) · (hash + move). On the other hand, prob-
ing the hash tables of the firstk streams for matches
will bear a cost of

∏lσ
i=1 σi ·

∏l
i=1 ni · comp, that is

the number of expected tuples from thel streams times
the cost of a comparison. In a similar way, the cost of
probing the remainingl streams for matches is equal to∏kσ

i=1 σi ·
∏k

i=1 ni · comp. Overall, the cost of splitting
an MJoin ofm inputs into two MJoins ofk andl inputs
will be equal to the quantityS(k, l) given in Equation 3.

S(k, l) =

 
kσY
i=1

σi ·
kY

i=1

ni +

lσY
i=1

σi ·
lY

i=1

ni

!
·

(hash + move + comp) (3)

The number of times we discard the intermediate re-
sult set for each subset of inputs is equal to the number
of times a probe from the other subset does not produce
any matches. For the first subset ofk inputs this number
is equal to

∑lσ
i=1 (1− σi) ·

∏l
i=1 ni, that is, the probabil-

ity of either one(hence, the sum) of thelσ predicates on
the remainingl sourcesnotproducing matches, times the
number of expected tuples from thel streams. The cost
of discarding the intermediate result will then be equal
to

∑lσ
i=1 (1− σi) ·

∏l
i=1 ni · comp that is, the result size

multiplied by the cost of probing (an in-memory compar-
ison.) Using the same reasoning we can compute the cost
of discarding the intermediate result for the remainingl

inputs is equal to
∑kσ

i=1 (1− σi) ·
∏k

i=1 ni · comp. Over-
all, the cost of discarding the intermediate result sets is
equal to the quantityD(k, l) given in Equation 4.

D(k, l) =

 
lσX

i=1

(1 − σi) ·
lY

i=1

ni +

kσX
i=1

(1 − σi) ·
kY

i=1

ni

!
·comp

(4)

If D(k, l) > S(k, l) then it is better to decompose
the singlem-way MJoin into onek-way and onel-way
MJoin.


