
Efficient Processing of Expressive Node-Selecting
Queries on XML Data in Secondary Storage: A Tree

Automata-based Approach

Christoph Koch

Laboratory for Foundations of Computer Science
University of Edinburgh
Edinburgh EH9 3JZ, UK
koch@dbai.tuwien.ac.at

Abstract

We propose a new, highly scalable and effi-
cient technique for evaluating node-selecting
queries on XML trees which is based on re-
cent advances in the theory of tree automata.

Our query processing techniques require only
two linear passes over the XML data on disk,
and their main memory requirements are in
principle independent of the size of the data.
The overall running time is O(m + n), where
m only depends on the query and n is the size
of the data. The query language supported
is very expressive and captures exactly all
node-selecting queries answerable with only a
bounded amount of memory (thus, all queries
that can be answered by any form of finite-
state system on XML trees). Visiting each
tree node only twice is optimal, and current
automata-based approaches to answering path
queries on XML streams, which work using
one linear scan of the stream, are consider-
ably less expressive.

These technical results – which give rise to
expressive query engines that deal more ef-
ficiently with large amounts of data in sec-
ondary storage – are complemented with an
experimental evaluation of our work.

1 Introduction

A main reason for the real-world success of databases
is that the data management research community has
always focussed on providing utility (including expres-
sive query languages) while above all keeping required

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed for
direct commercial advantage, the VLDB copyright notice and
the title of the publication and its date appear, and notice is
given that copying is by permission of the Very Large Data Base
Endowment. To copy otherwise, or to republish, requires a fee
and/or special permission from the Endowment.

Proceedings of the 29th VLDB Conference,
Berlin, Germany, 2003

computational resources such as processing time and
main memory small. Main memory consumption is
of particular importance to scalability, since the avail-
able main memory is fixed on a given machine and sec-
ondary storage as a back-up is comparably very slow.

XML documents can be naturally viewed as trees,
and for most practical queries, this model is sufficient.
Trees have very desirable computational properties,
which distinguish them from the setting of relational
databases. The theory community has developed an
impressive body of work on processing trees, some of
the most remarkable automata-theoretical. (See [15]
for a survey of some of this work and its application
to the theory of semistructured data and XML.) Tree
automata can do many important tasks – including
query processing by selecting nodes – while only con-
suming a bounded amount of memory1 fixed with the
automaton. Tree automata thus seem to be of obvious
practical relevance to query processing. Now, why are
tree automata not used for query processing in prac-
tice? It can be argued that they are.

Recently, finite word automata, in conjunction with
a stack maintaining states for the nodes that consti-
tute the path from the root to the current node, be-
came a standard way of matching simple path queries
on streaming XML (see e.g. [12]). The use of automata
is a natural consequence of the need to bound the
amount of memory required to process queries, which
is essential in the context of streams because the size
of the stream must be assumed to be extremely large,
or even infinite.

Closer observation suggests that such automata
should be best viewed as sequential-processing imple-
mentations of deterministic top-down tree automata.
(Indeed, formally, how if at all could a real word au-
tomaton work on a tree?) Surprisingly, this viewpoint
does not seem to have been taken in the data man-
agement literature before, even though it provides a
source of inspiration for more expressive query lan-

1A cautionary note is in order here: Automata on trees usu-
ally assume a highly parallel model of computation in which
essentially no memory is required. A top-down automaton run
on a binary tree on a sequential computer can be effected using
only a stack of working memory bounded by the depth of the
tree.

guages that can be dealt with cheaply by automata.
There are intrinsic limitations to the expressiveness

of queries handled by any form of automaton that pro-
cesses a tree in the streaming fashion, by one linear
scan from the start to the end. Data stream pro-
cessors can basically only read each data item once,
and cannot go back to a previously-read data item
later. They cannot look forward in the stream to de-
cide whether the node at the current position should
be part of the query result, and equally cannot select
past nodes on the basis of new information collected
while reading the stream. As a consequence, node-
selecting query languages for streams are restricted to
very simple path queries.

The task of boolean queries [12, 3] is to decide to
either accept or reject an entire XML document on
the grounds of its contents, rather than selecting nodes
in it. When it comes to such queries, the situation
is slightly better (e.g., documents can be selected if
they match queries of certain XPath fragments with
conditions). Still, it is known that deterministic top-
down tree automata are strictly less expressive than
deterministic bottom-up tree automata [4]. However,
a bottom-up traversal of the tree arriving in a stream
can only be effected using substantial amounts of main
memory depending on the branching factor of the tree.
(XML trees tend to be shallow but wide.)

Node-selecting queries are as important outside the
context of streams as they are there. In general,
greater expressive power is required than what the
streaming query language fragments can provide. Un-
fortunately, current techniques trade in expressiveness
against query evaluation cost very dearly. As pointed
out in [10], current systems for evaluating XPath 1
queries require each node to be visited an exponential
number of times at worst (exponential in the size of
the query). However, it is possible to improve this
to a polynomial time worst-case bound [10]. For cer-
tain fragments of XPath that are still strictly larger
than those supported by the stream processors, lin-
ear and quadratic bounds in terms of query size are
known [10, 11]. Thus, even the best currently known
algorithms have to read each part of the tree a pos-
sibly very large number of times into main memory,
depending on the query.

1.1 Aim

For query processors that have to deal with very large
amounts of data (that can only be held in secondary
storage) to be truly scalable, a query evaluation tech-
nique should

1. read each node of the XML tree only a very small
number of times (constant if possible),

2. not need to jump back and forth on disk inten-
sively2, and

3. be able to cope with a fixed-size memory buffer for
the data, or a stack bounded by the depth of the
XML tree.

2 Even though this is essential for good query evaluation
performance, it does not seem to have been considered enough
in previous work on XML query processing.

The most desirable setting would be one in which
only a constant number of linear scans3 of the data
on disk is required. This pays off considerably even
if a database system with a good buffer manager is
available, because (paged) sequential reading makes
optimal use of the disk throughput.

1.2 Contributions

We present a novel technique that – surprisingly – has
exactly these properties, and which works for a large
and elegant class of queries which we discuss in more
detail in Section 1.3. It is based on the notion of se-
lecting tree automata (STA) recently proposed4 in [8].
STAs only require a single nondeterministic bottom-up
traversal of the tree to compute the result of a node-
selecting query. Thus, STAs provide distinctive new
capabilities for query evaluation.

The node selection criterion of STAs is slightly in-
volved, and requires us to make the computation de-
terministic in practice. In this paper, we achieve this
by translating the nondeterministic query evaluation
of an STA into a two-phase technique in which we first
have a run of a deterministic bottom-up tree automa-
ton followed by a deterministic top-down tree automa-
ton (very similar to those used on streaming XML)
that runs on the tree of state assignments on nodes
made by the bottom-up automaton. Thus, two traver-
sals of the tree are required in total. The first pass
streams state information to the disk , which the sec-
ond pass reads. Free (temporary) disk space of size of
the order of the size of the data is required for query
evaluation, but apart from the space required to hold
the two automata, only a stack bounded by the depth
of the XML tree is required in main memory.

We also propose a new storage model for (XML)
tree databases that allows to effect both top-down and
bottom-up traversals with automata by just one lin-
ear scan each (forward for top-down and backward for
bottom-up traversal).

Two scans are optimal, and any method that only
needs to access each node once must be strictly less
expressive. As we argue in Section 1.3, the additional
expressive power is indeed important.

Our approach fulfills the three desiderata of Sec-
tion 1.1. Moreover, the running time is O(m + n),
where m is a function only depending on the size of the
query and n is the size of the data. As soon as the two
automata for the query have been computed, query
evaluation time is linear in the size of the data, with
a very small constant, and independent of the query.
As already for the restricted case of previous work on
automata on streams, the size of our automata can be
large, and they are best computed lazily [12].

Our techniques for constructing the automata are
based on the observation that the set of all states an
STA can possibly be in at a given node (as mentioned,
STAs are nondeterministic) can be represented as a
single residual propositional logic program (i.e., Horn
formula), and that such programs are usually very

3That is, the consecutive reading of the data from the start
to the end, as it is a given in stream processing.

4Independently and earlier, Frank Neven proposed the equiv-
alent notion of nondeterministic query automata in his unpub-
lished PhD thesis [14].

small. The development of scalable query processing
techniques based on this observation is the main tech-
nical contribution of this paper.

Our techniques have been implemented in a high-
performance query engine called Arb (motivated by
the latin word for “tree”). As our experiments demon-
strate, Arb scales very well and leads to extremely
competitive performance for expressive queries on tree
data in secondary storage.

No other similarly expressive framework for eval-
uating node-selecting queries with these properties is
presently known. Previous automata-theoretic work
does not constitute an exception to this observation.
In particular, the query automata of [16], the only pre-
vious automata-theoretic formalism with the expres-
sive power of STAs, may require to move up and down
the tree an unbounded number of times.

It was independently observed in [17] that boolean
attribute grammars on ranked trees (a formalism that
captures the unary MSO queries) can be evaluated in
just two passes of the data. The main difference to
this work lies in our automata construction based on
residual logic programs which – as we show in our ex-
periments – scales to practical queries. Moreover, we
consider XML and thus unranked trees in this paper.

1.3 Expressiveness of Queries: Scope

The class of queries handled by our framework is the
one of all unary (i.e., node-selecting) queries definable
in monadic second-order logic (MSO) over trees. MSO
is a very well-studied language with beautiful theoret-
ical properties (see [18, 7] for surveys) and considered
to be highly expressive, at least from a popular view-
point (cf. [16, 9]). MSO on trees captures the class
of all queries computable using a bounded amount of
memory. We will not need to introduce it in detail;
a simpler but equivalently expressive query language,
TMNF, will be used in the technical sections of this
paper. Since MSO is more widely known, we will con-
tinue to speak of the MSO-definable rather than the
TMNF-definable queries.

We introduce MSO abstractly, and try to give an
intuition of its expressive power. Let us consider some
queries definable in MSO.

1. MSO subsumes the XPath fragments usually con-
sidered in the streaming XML context, and much
larger ones that support all XPath axes (includ-
ing the upward axes such as “ancestor” and the
sideways axes such as “following”) and branching
through paths combined using “and”, “or”, and
“not” in conditions5.

2. Let the XML document’s text be included in the
tree as one node for each character . Then,

Select all nodes labeled “gene” that have
a child labeled “sequence” whose text
contains a substring matching the regu-
lar expression ACCGT(GA(C|G)ATT)∗.

5This fragment has been called Core XPath in [10]. The
best algorithm known so far for evaluating Core XPath queries
takes time linear in the size of the data and linear in the size of
the queries, where each position in the tree has to be “visited”
a linear number of times. The results in this paper improve
greatly on this.

is expressible in MSO. Just as we can apply such
regular expressions on sets of sibling (character)
nodes, they can be applied to paths in the tree.
Indeed, all regular path queries [2] (on trees) are ex-
pressible in MSO. This generalizes to the so-called
caterpillar expressions [5, 9], regular expressions
over the alphabet of all the input relations that de-
scribe the tree. These allow for “recursive” walking
in the tree – up, down, and sideways – and the
checking of local conditions along the way. Exam-
ples will be provided at a later point in the paper.

3. Counting modulo a constant, as employed in the
example query below, is expressible in MSO:

Select all nodes labeled “publication”
whose subtrees6 contain an even num-
ber of nodes labeled “page” and a unique
node labeled “abstract” which contains
at most 100 whitespace-separated words
of text.

4. Moreover, the selection of nodes based on universal
properties, such as conformance of their subtrees
with a DTD, can also be expressed.

These are only a few examples of expressible
queries. The features discussed above can of course
be combined to obtain further MSO-definable queries.

One application of the flexibility gained from this
high expressiveness is in parallel query processing:
Tree automata (working on binary trees) naturally ad-
mit parallel processing, but XML trees are usually very
wide, and need to be translated into (somewhat) bal-
anced binary trees first. As shown in [8], MSO is ex-
pressive enough to make this transformation transpar-
ent. (All queries can still be answered in the modified
tree model.) A case study related to this issue is part
of our experiments.

1.4 Structure

The structure of the paper is as follows. Section 2 con-
tains initial definitions related to binary trees, which
we need for our notions of tree automata to work on,
and the TMNF language. In Section 3, we introduce
the main definitions relating to tree automata that are
used throughout the paper, including STAs. Section 4
contains our main results, defining the two-pass query
evaluation algorithm on the basis of tree automata.
We present our model of storing binary trees on disk
in Section 5 and our experiments in Section 6. We
conclude with Section 7.

2 Preliminaries

2.1 XML Documents as Binary Trees

XML documents are commonly thought of as node-
labeled ordered trees. In practice, XML documents
contain information beyond the tree structure, such
as text, attributes, and comments. It is not difficult
to model these features as part of the tree (assuming

6By a node’s subtree, we mean the part of the tree “below”
it, including itself as the root node.

�
��	
@

@@R
�

��	
@

@@R
@

@@R

?
�

��	
@

@@R

������

HHHHHj

(b)

v1

v2

v3

v5

v6v4

v1

v5v4

v3
v2

(a)

v6

Figure 1: An unranked tree (a) and its corresponding
binary tree version (b).

labels beyond the XML node tags to denote text char-
acters etc.). As in the second MSO example above, we
assume text strings to be represented as sibling nodes,
one node for each character, ordered as in the text
string.

XML trees are also unranked : each node may have
an unlimited number of children. One straightforward
way to interpret unranked trees as binary trees is to
model the first child of a node in the unranked tree as
the left child in the binary tree, and the right neigh-
boring sibling in the unranked tree as the second child
in the binary tree. (See Figure 1 for an example.) Of-
ten, no actual translation is necessary to obtain such
a binary tree; XML data models such as DOM are
naturally strikingly similar to this model.

Let σ be a set of labeling symbols on tree nodes,
such as XML tags or ASCII characters. In the follow-
ing, we model each binary tree T as a database con-
sisting of unary relations V T, RootT, HasFirstChildT,
HasSecondChildT and Label[l]T for each label l ∈ σ,

and binary relations FirstChildT, and SecondChildT.
As we will only deal with a single tree throughout
the paper, we will subsequently omit the superscript
T. Here, V is the set of nodes in T, Root is the
singleton set containing the root node, HasFirstChild
and HasSecondChild denote the sets of nodes that
have a first child and a second child, respectively, and
v ∈ Label[l] iff node v is labeled l. 〈v, w〉 ∈ FirstChild
iff w is the first child of v and 〈v, w〉 ∈ SecondChild iff
w is the second child of v.

2.2 Tree-Marking Normal Form (TMNF)

As mentioned, we do not directly use MSO as the
query language of our framework, but a simpler for-
malism with the same expressive power, TMNF (tree-
marking normal form) [9, 8]. TMNF is the compu-
tationally cheapest and structurally simplest language
known that has the full expressive power of MSO over
trees. TMNF has good computational properties,
and is still powerful enough to formulate most practi-
cal queries very easily and concisely. TMNF programs
can be evaluated in linear time in the size of the query
and in linear time in the size of the data.

TMNF is to be understood as an internal formalism,
to which queries in other languages such as XPath or
special-purpose query languages from bio-informatics

or linguistics can be efficiently translated and then
evaluated as TMNF.

One way to view TMNF queries is as a very re-
stricted form of datalog programs (with linear, rather
than EXPTIME-complete query complexity as for dat-
alog [1]). For this reason we will speak of TMNF pro-
grams rather than queries in this paper.

Below, we assume some familiarity with the data-
log language (i.e., logic programming without function
symbols), and refer to [1, 6] for detailed surveys.

A datalog program is called monadic if all its IDB
predicates (that is, predicates that appear in rule heads
somewhere in the program) are unary. A monadic
datalog program of schema σ may use as EDB pred-
icates (that is, input predicates) the relation names
from Section 2.1, and a predicate −U for each of the
unary relation names U discussed there. −U denotes
the complement of the set of nodes that U stands for.
Occasionally, when it is clear that we use the spe-
cific binary tree model discussed above, we refer to
SecondChild as NextSibling, −HasFirstChild as Leaf,
and −HasSecondChild as LastSibling.

We only use monadic datalog programs with a re-
stricted syntax described next. In a TMNF program,
each rule is an instance of one of the four rule tem-
plates (with “types” 1 to 4)

P (x) ← U(x). (1)

P (x) ← P0(x0) ∧ B(x0, x). (2)

P (x0) ← P0(x) ∧B(x0, x). (3)

P (x) ← P1(x) ∧ P2(x). (4)

where P, P0, P1, P2 are IDB predicates and U, B are
EDB predicates.

A program P can be seen as a node-selecting query
by distinguishing one IDB predicate, calling it the
query predicate. The query defined by P maps a tree
T to the set of all vertices v such that P derives over
T that v is in the goal predicate. Clearly, by distin-
guishing multiple IDB predicates, TMNF can compute
several node-selecting queries together in one program.

Proposition 2.1 ([9]) TMNF captures the unary
MSO queries over trees.

Because of the simple structure of TMNF rules, we
can (and will) use the following variable-free syntax,
in which rules of type (1) are written as P :- U;,
rules of type (2) as P :- P0.B;, rules of type (3) as
P :- P0.invB;, and rules of type (4) as P :- P1,
P2; This is syntax accepted by the Arb system.

The following example program may seem to be far
off from XPath processing, but gives a good intuition
of query evaluation in TMNF.

Example 2.2 The program shown below assigns the
predicate “Even” to precisely those nodes whose sub-
tree contains an even number of leaves labeled “a”.
The remaining nodes obtain the predicate “Odd”. In-
tuitively, this is done by traversing the tree bottom-up,
starting at the leaves, which are annotated “Even” or
“Odd” first.

Even :- Leaf, -Label[a];
Odd :- Leaf, Label[a];

As auxiliary predicates we have “SFREven” and
“SFROdd”, attributed to node v if the sum of occur-
rences of “a” at leaves in the subtrees of v itself and
its right siblings is even, respectively odd. These pred-
icates are computed on a set of siblings that all either
have predicate “Even” or “Odd” from the right, start-
ing at the rightmost, last sibling (“SFR” = “siblings
from right”).

SFREven :- Even, LastSibling;
SFROdd :- Odd, LastSibling;

In order to be able to move leftward through the lists
of siblings, we define additional auxiliary predicates
FSEven and FSOdd (“following sibling has predicate
Even/Odd”) that are assigned to nodes whose imme-
diate right neighbor has predicate SFREven/SFROdd.

FSEven :- SFREven.invNextSibling;
FSOdd :- SFROdd.invNextSibling;
SFREven :- FSEven, Even;
SFROdd :- FSEven, Odd;
SFROdd :- FSOdd, Even;
SFREven :- FSOdd, Odd;

Whenever we arrive at a leftmost sibling (deriving ei-
ther the predicate SFREven or SFROdd for it), we can
push the information up to the parent:

Even :- SFREven.invFirstChild;
Odd :- SFROdd.invFirstChild;

Again, it must be emphasized that TMNF is mainly
an internal language. A linear-time translation from a
large XPath fragment to TMNF is given in [8].

However, as a convenient shortcut that is also sup-
ported in the query language of the Arb system, in
rules of the form Q :- P.R;, R can be an arbitrary
regular expression over our unary and binary input
relations and their inverses (a caterpillar expression).
The meaning of such rules is obvious. For instance,

Q :- P.FirstChild.NextSibling*.Label[a];

assigns the predicate Q to all nodes that have label
“a” and are children of nodes with predicate P. Pro-
grams containing caterpillar expressions can be trans-
lated into strict TMNF in linear time [9].

3 Tree Automata

In this section, we introduce tree automata (e.g., [4]),
which are a natural and elegant model of computation
on trees. Tree automata are not really more difficult
than their cousins on words. However, there are top-
down and bottom-up flavors to such automata. We
discuss the case of binary trees only, but all results
and techniques extend immediately to trees of higher
(fixed) rank. Moreover, as pointed out in Section 2,
binary trees offer all the generality we need.

Definition 3.1 A non-deterministic (bottom-up) tree
automaton is a tuple A = (Q, Σ, F, δ), where

• Q is a finite set of states,

• Σ is the alphabet, a finite set of labeling symbols,

• F ⊆ Q is the set of accepting states, and

• δ :
(

(Q ∪ {⊥}) × (Q ∪ {⊥}) × Σ)
)

→ 2Q is the
transition function.

The special symbol ⊥ is used as a “pseudo-state” for
non-existent children.

A run of a bottom-up tree automaton A on tree T
is a mapping ρ : V T → Q s.t. for each node v ∈ V T,

• If v is a leaf, ρ(v) ∈ δ
(

⊥,⊥, Σ(v)
)

.

• If v has a left child v1 but no right child,

ρ(v) ∈ δ
(

ρ(v1),⊥, Σ(v)
)

.

• If v has a right child v2 but no left child,

ρ(v) ∈ δ
(

⊥, ρ(v2), Σ(v)
)

.

• If v has both a left child v1 and right child v2,

ρ(v) ∈ δ
(

ρ(v1), ρ(v2), Σ(v)
)

.

where Σ(v) ∈ Σ denotes the label of node v of tree T.
The run ρ is called accepting if ρ(rootT) ∈ F . The

automaton A accepts T if there is an accepting run for
A on T.

Deterministic bottom-up tree automata only differ
from this in that the transition function is of the form

δ :
(

(Q ∪ {⊥})× (Q ∪ {⊥})× Σ)
)

→ Q,

i.e. maps to one state rather than a set of states.
Therefore, there is exactly one run on each tree.

So far, our automata can only decide boolean
queries . To be able to define unary queries, we need
to enhance tree automata by an additional mechanism
for selecting nodes.

Definition 3.2 ([8]) A selecting tree automaton
(STA) is a tuple A = (Q, Σ, F, δ, S), where (Q, Σ, F, δ)
is a nondeterministic bottom-up tree automaton and
S ⊆ Q is a set of selecting states. The unary query
defined by an STA A maps every tree T to the set

A(T) =
{

v ∈ V T | ρ(v) ∈ S for every accepting run
ρ of A on T

}

.

In other words, we select the node v ∈ V T if and
only if every accepting run of A on T is in a selecting
state at vertex v.

Even though – at least when judging from their con-
cise definition – STAs are quite simple, they are sur-
prisingly expressive: The node-selecting queries defin-
able using STAs are precisely those definable in MSO.

Proposition 3.3 ([8]) STAs capture the unary MSO
queries on trees.

We will only use a very weak form of determinis-
tic top-down tree automaton B = (QB, ΣB, sB, δB1 , δB2)
with individual transition functions δk : QB × ΣB →
QB for the two children (k ∈ {1, 2}) and without an
acceptance condition (i.e., all states of QB are final
states). s ∈ QB is the start state assigned to the root

node, ρB(RootT) = s. The sole purpose of such an
automaton B is to annotate the tree nodes with states
via its run ρB : V T → QB, whose definition is obvious.

4 Two-Phase Query Evaluation

The main issue about STAs is their nondeterministic
nature. There are possibly many alternative runs, and
the node-selection criterion is such that a node v is in
the query result if and only if v is in a selecting state
for all of the accepting runs.

By a single bottom-up run through tree T, we can
compute the set of states reachable in some run for ev-
ery node of T. This “powerset” construction, in which
sets of states in a nondeterministic automaton become
states in a deterministic automaton, comes close to
making STAs deterministic, because in the standard
translation from TMNF to STA proposed in [8], all
states are final states (F = Q), and thus all possible
runs are accepting. However, the reachable states do
not yet represent the solution7, because there may be
states from which the root node cannot be reached.

To deal with this, we proceed in two phases. First,
we compute the reachable states on each node in a
bottom-up run, and then return in a top-down run
to prune them. In the second phase, we also apply
the selection criterion of the automaton and compute
those predicates that occur in all remaining states.

The two phases can be easily modeled as determinis-
tic tree automata. The bottom-up phase is done using
a deterministic bottom-up tree automaton

A = (QA, ΣA, FA = QA, δA)

with QA ⊆ 22IDB(P)

and ΣA = 2σ, i.e. the alphabet
is the set of subsets of the schema σ. The (unique)
run ρA of A assigns to each node the set of reachable
states of the corresponding STA.

The top-down phase consists of a run of a determin-
istic top-down tree automaton

B = (QB, ΣB, sB, δB1 , δB2).

s.t. ΣB = QA, QB = 2IDB(P), and sB =
⋂

ρA(RootT).
The state assignments ρB(v) made by the run ρB :

V T → 2IDB(P) of top-down automaton B on each node
v of the tree T labeled using ρA : V T → QA will be
precisely the set of IDB predicates assigned to v in the
evaluation result P(T) of TMNF program P on T.

Theorem 4.1 P ∈ ρB(v)⇔ P (v) ∈ P(T).

In this section, our primary goal is to provide good
algorithms for computing the transition functions of
these two automata; we will assign more readable
names to them as follows:

δA = ComputeReachableStates

δBk = ComputeTruePredsk (k ∈ {1, 2})

These are the two8 main procedures that we will
develop throughout this section.

7Meaning, for node v, the predicates occurring in state ρ(v)
for all runs ρ of the STA.

8ComputeTruePredsk can of course be defined as a single
procedure that takes k as an argument.

The main claim to the practical relevance of this
approach follows from the surprising fact that sets of
reachable states – rather than single states themselves
– can be represented very concisely as propositional
logic programs (a.k.a. propositional Horn formulae).

4.1 Propositional Logic Programs

For lack of space, we have to refer to any logics text-
book for definitions on propositional logic programs.

Let P be a (propositional logic) program. By
LTUR(P), we denote the residual program obtained
as follows.

1. We compute the set M of all propositional predi-
cates derivable from P , i.e. which follow from facts
(rules with empty body) in P using rules in P .

2. We drop all rules of P whose heads are true (i.e., in
M) or which contain an EDB predicate in the body
that is not in M .

3. We remove all body predicates of remaining rules
that are true (i.e., in M).

4. We insert each IDB predicate p ∈ M as a new fact
p←.

LTUR(P) can be computed in time O(|P|) using Mi-
noux’ linear-time unit resolution algorithm [13]9.

Definition 4.2 Let P be a TMNF program with
IDB(P) = {X1, . . . , X`} and where σ consists of the
unary EDB predicates in P . By PropLocal(P), we de-
note the propositional program in the propositional
predicates σ ∪ {Xi, X

1
i , X2

i | 1 ≤ i ≤ `}10 with the
following propositional Horn clauses (rules):

1. If Xi :- R; is a rule of P then Xi ← R is a clause
of PropLocal(P).

2. If Xi :- Xj, Xk; is a rule of P then Xi ← Xj ∧Xk

is a clause of PropLocal(P).

3. If Xi :- Xj.invFirstChild; is a rule of P then
Xi ← X1

j is a clause of PropLocal(P).

4. If Xi :- Xj.invSecondChild; is a rule of P then
Xi ← X2

j is a clause of PropLocal(P).

5. If Xi :- Xj.FirstChild; is a rule of P then
X1

i ← Xj is a clause of PropLocal(P).

6. If Xi :- Xj.SecondChild; is a rule of P then X2
i ←

Xj is a clause of PropLocal(P).

Given a TMNF program P , local rules denotes the
rules in PropLocal(P) obtained using the bullet points
(1) and (2) of Definition 4.2, left rules denotes those
produced using (3) and (5), right rules those obtained
from (4) and (6), downward rules1 those using (5), and
downward rules2 those using (6). By “left-child” and
“right-child” predicates, we denote those with “1” and
“2” as superscript, respectively, and by “local” predi-
cates those without a superscript.

9Only (1) is covered in [13], but (2)-(4) is straightforward.
10Relation names are considered as propositional predicates.

Example 4.3 We start a running example used
throughout this section. For the TMNF program P

P1 :- Root;

P2 :- P1.FirstChild;

P3 :- P2.FirstChild;

P4 :- P3, Leaf;

P5 :- P4.invFirstChild;

Q :- P5.invFirstChild;

we have

PropLocal(P) = {P1 ← Root; P 1
2 ← P1;

P 1
3 ← P2; P4 ← P3 ∧ Leaf;

P5 ← P 1
4 ; Q← P 1

5 }.

local rules = {P1 ← Root; P4 ← P3 ∧ Leaf; },

left rules = {P 1
2 ← P1; P 1

3 ← P2;

P5 ← P 1
4 ; Q← P 1

5 },

right rules = ∅,

downward rules1 = {P 1
2 ← P1; P 1

3 ← P2; },

downward rules2 = ∅.

In what follows, we will exclusively deal with propo-
sitional programs. That is, whenever we speak of a
program, we will always refer to a propositional one.

We need the following auxiliary definitions.
PredsAsRules(S) translates a set of predicates S =
{X1, . . . , Xn} into a set of rules {X1 ←; . . . Xn ←}.
TruePreds(P) computes the set of predicates already
known to be true in P , i.e. those predicates X for
which X ←; is a rule in P .

Let k ∈ {1, 2}. PushDownk(P) assumes that each
predicate appearing in P is local and adds the su-
perscript k to each of them. Given a set of predi-
cates S, Predsk(S) outputs those with superscript k.
Given a set of predicates S that all have superscript k,
PushUpFromk removes these superscripts.

Given a program P , ContractProgram(P) is com-
puted as follows. We unfold two rules r1 and r2 if
head(r2) ∈ body(r1) and head(r2) has a superscript
(1 or 2). (Unfolding means to replace head(r2) in
body(r1) by body(r2), creating a new rule). This is
done until no new rules can be computed. Then, all
rules containing a predicate with superscript 1 or 2 are
removed. The rules that remain are all local.

Even in the theoretical worst case, there are “only”
exponentially many different rules, because a rule body
is a subset of a fixed set of predicates. Our concise de-
scription conceals that better implementations of the
ContractProgram procedure are possible. In the im-
portant case that the bodies of all rules contain at most
one IDB predicate, the computation required is very
similar to the transitive closure of a binary relation
from the result of which some tuples are removed.

Example 4.4 The propositional program

{P0 ← P1 ∧ P2; P1 ← P 1
3 ; P2 ← P 1

4 ;

P 1
3 ← P 1

5 ; P 1
4 ← P 1

5 ∧ P 1
6 ; P 1

5 ← P7;

P 1
6 ← P7 ∧ P8; P8 ← P 2

9 ∧ P 2
10; P 2

9 ← P11; }

procedure ComputeReachableStates(
Program* P 1

res, Program* P 2
res, SetOfPreds labels)

returns Program
begin

Program P := local rules ∪ PredsAsRules(labels);

if (P 1
res
6= ⊥) then

P := P ∪ left rules ∪ PushDown1(P
1
res

);

if (P 2
res
6= ⊥) then

P := P ∪ right rules ∪ PushDown2(P
2
res

);

P := LTUR(P);

if ((P 1
res 6= ⊥) or (P 2

res 6= ⊥)) then
P := ContractProgram(P);

return P ;
end.

Figure 2: The ComputeReachableStates algorithm.

contracts to {P0 ← P1∧P2; P1 ← P7; P2 ← P7∧P8; }.

4.2 The Bottom-up Phase

Figure 2 presents the ComputeReachableStates proce-
dure, which computes the transitions of our determin-
istic bottom-up automaton A. Sets of reachable states
for a node n are represented as (propositional) residual
programs that contain all the restrictions on subsets of
IDB(P) inferable using the information in the subtree
below n.11

Example 4.5 Consider the three-node tree obtained
from the XML document

〈a〉 〈a〉 〈a/〉 〈/a〉 〈/a〉

Let v0 be the root node, v1 its child, and v2 the child
of v1, the single leaf. We have

ΣA(v0) = {Root,HasFirstChild,−HasSecondChild, a},

ΣA(v1) = {HasFirstChild,−HasSecondChild, a},

ΣA(v2) = {−HasFirstChild,−HasSecondChild, a}.

We re-use the program PropLocal(P) of Exam-
ple 4.3. Through the procedure ComputeReach-
ableStates of Figure 2, we obtain the residual programs

ρA(v2) = {P4 ← P3},

ρA(v1) = {P5 ← P2},

ρA(v0) = {P1 ←; Q←}.

Note that, for instance, the state ρA(v2) of our
deterministic bottom-up tree automaton A encodes
2|IDB(P)|−2 ∗ (22 − 1) = 48 STA states (all possible
truth assignments to the six IDB predicates are pos-
sible, except those where P4 is false and P3 is true at
the same time).

11Note that the residual programs returned by LTUR are by
its definition guaranteed not to contain EDB predicates.

procedure ComputeTruePreds(
SetOfPreds parent preds,
Program Pres, k ∈ {1, 2})

returns SetOfPreds
begin

Program P := downward rulesk ∪
PredsAsRules(parent preds) ∪
PushDownk(Pres);

SetOfPreds S := TruePreds(LTUR(P));

return PushUpFromk(Predsk(S));
end.

Figure 3: The ComputeTruePreds algorithm.

To illustrate the procedure of Figure 2, we compute
ρA(v1) using the steps described there as

ComputeReachableStates({P4 ← P3},⊥,

{HasFirstChild,−HasSecondChild, a}).

Initially, program P is set to

local rules ∪ PredsAsRules(labels) =

{P1 ← Root; P4 ← P3 ∧ Leaf; } ∪

{HasFirstChild ←; −HasSecondChild←; a←}.

Since there is a first child with residual program P 1
res

= {P4 ← P3}, we add

left rules ∪ PushDownLeft({P4 ← P3}) =

{P 1
2 ← P1; P 1

3 ← P2; P5 ← P 1
4 ; Q← P 1

5 }

∪ {P 1
4 ← P 1

3 }

to P . Next, we compute LTUR(P), which results in

{P 1
2 ← P1; P 1

3 ← P2; P5 ← P 1
4 ; Q← P 1

5 ; P 1
4 ← P 1

3 ;

HasFirstChild ←; HasSecondChild ←; a←}

After removing the EDB predicate rules, in Contract-
Program, the only unfolding of this program that we
can make to obtain a rule over exclusively local pred-
icates is of P5 ← P 1

4 ; P 1
4 ← P 1

3 ; P 1
3 ← P2 into

P5 ← P2. Thus, ρA(v1) = {P5 ← P2}.

4.3 The Top-down Phase

As the ComputeReachableStates procedure on a given
node v uses all the information available below v, when
reaching the root, all the information in the tree has
been used to obtain the set of reachable STA states
for v, represented as a residual program P . Thus,
TruePreds(P) constitutes the solution of the TMNF
program restricted to the root node (the minimum
fixpoint semantics that we usually attribute to logic
programs – including those in TMNF – corresponds
nicely to the selection criterion of STAs, which is to se-
lect those predicates that are in the state assignments
of all runs on the node).

Using the procedure ComputeTruePreds of Fig-
ure 3, we can now compute the minimum fixpoint resp.
true predicates on the nodes below by a top-down run.

Algorithm 4.6 (Two-phase query evaluation)
Input: A binary node-labeled tree T and a TMNF
program P .
Output: P(T) as the true predicates for each node.

1. Compute12 the run ρA of bottom-up automaton A,
whose transition function can be obtained lazily us-
ing the ComputeReachableStates procedure, on T
starting at the leaves whose (nonexistent) children
have residual program ⊥.

2. On reaching the root, extract the true predicates
from its residual program as TruePreds(ρA(Root))
(this amounts to computing the set of predicates
true in all states).

3. Beginning with the true predicates of the root node
as the start state sB, compute the run ρB of the top-
down tree automaton B on T, which assigns the set
of true predicates to each node.

The transitions of δBk (k ∈ {1, 2}) are computed
lazily using ComputeTruePreds(S, Pres, k).

The correctness proof for this algorithm is not dif-
ficult, but is beyond the scope of this paper.

Example 4.7 We continue where we stopped in Ex-
ample 4.5. In the top-down traversal using the Com-
puteTruePreds procedure of Figure 3, we obtain as
precise state descriptions

1. {P1, Q} for v0, because this is the set of predicates
true in all reachable states and all the information
in the tree constraining the states at the root node
has been deployed,

2. {P2, P5} for v1, because on descending from v0,
ComputeTruePreds({P1, Q}, {P5 ← P2}, 1) has

P = {P 1
2 ← P1; P 1

3 ← P2; P1 ←; Q←; P 1
5 ← P 1

2 },

which simplifies to

LTUR(P) = {P1 ←; Q←; P 1
2 ←; P 1

5 ←; P 1
3 ← P2},

thus S = {P1, Q, P 1
2 , P 1

5 }, Preds1(S) = {P 1
2 , P 1

5 },
PushUpFrom1({P 1

2 , P 1
5 }) = {P2, P5}, and

3. {P3, P4} for v2, analogously.

5 The Arb Storage Model

An essential requirement posed by our algorithms is
that it must be possible to process the data tree (that
is, the tree consisting of both element and character
nodes.) both top-down and bottom-up, and to access
it as a binary tree as described in Section 2. Now,
such traversals can be effected with a linear scan of an
XML document only if an auxiliary stack is available
that can grow to sizes that depend on the maximum

12Since the run of A may be very large and B needs to process
it, we write it to the disk. In our implementation, we write the
pointer to the internal data structure of the residual program
ρA(v) for each node v, in the order we visit the nodes. Our
temporary file thus consumes four bytes per node.

number of children a node may have (which may be
huge), apart from the depth of the tree. In order to
be scalable, this has to be avoided.

Another reason for an internal storage model is that
the data must be accessed twice for each run of the
query processor. The storage model we propose below
allows to do both top-down and bottom-up traversals
faster than parsing runs on the XML document and
takes main memory proportional to the depth of the
XML tree at most for these operations.

The model for storing binary trees on disk used by
Arb is as follows. Each node v is stored as a fixed-size
field of k bytes on disk in which the two highest bits
denote whether v has a first and/or a second child and
the remaining 8∗k−2 bits are used to hold an integer
denoting the label of v. The nodes are stored in the
database in pre-order, where n recursively precedes all
of the nodes in its subtree, and the nodes in the subtree
of the first child (if it exists) precede all of the nodes
in the subtree of the second child (if it exists). This
order can be produced by a simple top-down traversal
and is analogous to document order in XML (cf. [19]).
For example, the tree of Figure 1 (b) is represented as

l2

1

l3 l4

0

l5

0

l6

1 0

l1

0 1 1 10 0 0

where the li denote the labels of the nodes vi.
In our implementation, by default, k = 2, and the

tree can therefore contain 214 = 16, 384 different la-
bels. The indexes 0 to 255 are reserved for text char-
acters13. For each label that is not a text character, we
store its name in a separate (“.lab”) file. The name of a
label with index i ≥ 256 is the (i−255)th (whitespace-
separated) entry in the .lab file.

We create such .arb databases in two passes. In a
first pass, we make a SAX parsing run through the
XML document to count the total number n of nodes
and write the SAX events to a file. Then we create
a new file – the .arb database – and start writing it
backwards, beginning at an offset of k ∗n bytes, while
reading our SAX events file backward. In this single
backward pass, we can transform the document into a
binary tree (as described in Section 2) and only require
a stack of memory proportional to the depth of the
XML tree (rather than the depth of the binary tree-
version of, which may be extremely right-deep) to do
it. We also write the .lab file with the label names
(mostly tag names).

Proposition 5.1 Let T be an XML tree and ARB(T)
be its .arb database. Then, its binary-tree version
B(T) can be traversed

• top-down by reading ARB(T) in one linear scan
from left to right with only a stack of size
O(depth(T)) and

• bottom-up by reading ARB(T) in one linear scan
from right to left with a stack of the same size.

13As mentioned above, in our model, text characters are
stored as part of the tree, rather than separately.

�
��	

A
AAU

@
@@R

�
��� ?

Q
Q

QQs

�
�

��+ ��	@@R

����
HHHj

��	@@R
A C G AT C G A G A G

T
CC

(a) (b)

Figure 4: Two trees representing sequence ACG-
TACG: “flat” (a) and “infix” (b).

A precise description of the required techniques for
database creation and the two forms of tree traversal
are beyond the scope of this paper, but are not difficult
to obtain given the description provided.

6 Experiments

In this section, we present some of our experiments
with the Arb system, a C++ implementation of our
techniques that strictly follows the algorithms de-
scribed. All experiments were carried out on a Dell
Inspiron 8100 laptop with 256 MB of RAM and a 1
GHz Pentium III processor running Linux.

6.1 Tree Databases

We first introduce the three XML databases used in
our experiments.

1. Penn Treebank, the linguistic database.

2. Swissprot, the protein database.

3. ACGT, a bogus DNA database consisting of a ran-
domly generated sequence of 225 − 1 = 33, 554, 431
symbols from the alphabet {A, C, G, T}. Two XML
versions of it were created,

• one with a root node with one child for each
symbol of the sequence, in the order of the
sequence from left to right (called ACGT-flat
in the following) and

• one in which a complete binary infix tree (of
depth 24) was generated, below a separate root
node (called ACGT-infix below).

To communicate the idea, we show two such trees
for sequence ACGTACG (i.e., of length 23 − 1) in
Figure 4. It is clear that almost complete infix trees
can be created for sequences of arbitrary length.

Figure 5 provides information on the creation of the
.arb databases. Columns (1) and (2) show the numbers
of element and character nodes inserted, respectively.
Note that our source XML documents contain no other
kinds of nodes (w.r.t. the DOM classification), such as
attribute or comment nodes. The number of tags is
shown in column (3). This number does not include
the ASCII characters used to label the character nodes.
Column (4) shows the overall time required for creat-
ing a .arb database from the XML file. Columns (5)
and (6) show the sizes of the files created, and (7) the
size required to hold the temporary .evt for holding
the sax events, to be processed backwards to compute
the .arb file. Note that (5) is always ((1) + (2)) ∗ 2, as
each node takes precisely two bytes, and (7) is twice
as much. (We use two bytes for each event and two
events – a “begin” and an “end” event for each node.)

elem nodes char nodes tags time .arb file size .lab file size .evt file size
unit # # # seconds bytes bytes bytes

column ref. (1) (2) (3) (4) (5) (6) (7)
Treebank 2,447,728 29,337,845 251 49.01 63,571,146 1,716 127,142,292

ACGT-infix 33,554,432 0 4 134.06 67,108,864 14 134,217,728
ACGT-flat 33,554,432 0 4 76.77 67,108,864 14 134,217,728

SWISSPROT 10,903,569 296,563,873 48 559.82 614,934,884 302 1,229,869,768

Figure 5: Statistics on .arb database creation.

6.2 Benchmark Queries

The experimental activities reported on here consist of
three basic threads:

1. Top-down regular path queries.

We used randomly generated regular path queries
on Treebank.

All regular expressions, in this experiment and
those below (i.e., the second and third) were always
of the form w1.w

∗
2 .w3, where the wi were sequences

of symbols over the alphabet {NP, V P, PP, S}14 of
length at least one. By the size of such a regu-
lar expression, we mean |w1| + |w2| + |w3|. An
example of a regular expression of length five is
S.VP.(NP.PP)∗.NP. Such queries were written as
(single-rule) programs in our extended syntax as

QUERY :- V.Label[S].R.Label[VP].
(R.Label[NP].R.Label[PP])*.
R.Label[NP];

where R is short for FirstChild.NextSibling*.

The point of this experiment was to assess the per-
formance of our approach on queries intuitively de-
riving predicates downwards. As we start with a
bottom-up automaton run, we have to deal with
much incomplete information.

2. Bottom-up regular path queries.

As above, we randomly generated regular expres-
sions over the alphabet {A, C, G, T} and with R =
invNextSibling. These regular expressions were
matched in the ACGT-flat database.

The main goal of this experiment is to provide a
yardstick for the next.

3. (Sideways) Caterpillar queries.

We matched the same regular expressions over al-
phabet {A, C, G, T}, now with

R = (FirstChild.SecondChild*.

-hasSecondChild |

-hasFirstChild.invFirstChild*.

invSecondChild)

in ACGT-infix. It can be verified that this cater-
pillar expression R “walks” our infix tree to always
find the symbol immediately previous to the one it
starts from in the sequence.

The queries needed to do this make almost full use
of the expressiveness provided in our formalism.
However, the queries do not have any branches.

14NP = noun phrase; VP = verb phrase, PP = prepositional
phrase; S = sentence.

The second and third classes of queries model the
same regular expressions on strings first represented
in sequence (ACGT-flat, where character nodes are
linked in a very long NextSibling list, and thus an
extremely right-deep tree) and second as a balanced
binary tree (ACGT-infix). This has an important ap-
plication. Since the automata-based model of compu-
tation on trees is intrinsically parallel (computations in
distinct subtrees are completely independent), it can
also be easily implemented on real parallel comput-
ers. A requirement for parallelization, however, is that
the binary trees are balanced. This is not the case in
ACGT-flat, but it is in ACGT-infix. However, the
need to translate regular expressions on words to our
balanced trees provides an interesting application of
the expressive power of our query language.

Our techniques provide an algorithm for parallel
regular expression matching which (assuming the reg-
ular expression fixed and the text string of length n)
runs in parallel time O(log n). It can be shown that
this time bound can be achieved with O(n) total work.
Using the terminology of parallel processing, this is
thus an optimal parallel algorithm.

Another binary tree model in which in practice also
XML (element node) trees tend to be well-balanced is
provided in [8]. A translation of queries to work trans-
parently on this model (by replacing relations repre-
senting the tree structure by appropriate caterpillar
expressions that simulate the given queries in the new
model) is also provided there. That tree model is sup-
ported in Arb as well, and can be activated as an op-
tion. Indeed, the database ACGT-infix.arb was created
from an XML document using this binary tree model.

6.3 Discussion

The information in Figure 6 reads as follows. Each row
represents averages for 25 randomly generated regular
path queries of length indicated in column (1). The
numbers of IDB predicates and numbers of rules in
the internal TMNF programs are shown in columns (2)
and (3) respectively. The times taken for the bottom-
up phase are presented in column (4), and the num-
bers of transitions computed lazily for the bottom-up
tree automaton are given in (5). Columns (6) and
(7) show the analogous running times and transition
counts for the top-down automaton. The overall times
taken from start to termination of Arb are given in (8).
(9) shows how many nodes were assigned the query
predicate, and thus selected by the query. (10) shows
the average maximum amount of main memory taken
by Arb during its running time.

As mentioned, all numbers are averages over 25
runs. Note that the same 25 regular expressions were
always used to create the ACGT-infix and ACGT-flat

Query Phase 1 (BU) Phase 2 (TD) Global characteristics
size |IDB| |P| time transitions time transitions time selected mem

sec. # sec. # sec. # kbytes
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

Treebank path queries.
5 14 21 11.31 15.3 7.89 40.3 19.20 8,136.5 1,653.5
6 17 25 11.27 16.2 7.86 47.0 19.13 7,599.8 1,655.5
7 20 29 11.29 16.8 7.86 54.6 19.15 2,625.1 1,657.5
8 23 33 11.31 18.0 7.85 54.6 19.17 7,241.8 1,659.5
9 26 37 12.08 17.4 10.43 61.2 22.53 616.8 1,660.8

10 29 41 11.42 18.4 10.82 67.0 22.26 508.7 1,662.9
11 32 45 11.36 18.1 10.89 63.8 22.27 437.8 1,666.6
12 35 49 11.36 18.6 10.79 64.2 22.17 2.2 1,668.0
13 38 53 11.38 18.6 10.79 62.1 22.19 347.6 1,671.8
14 41 57 11.35 18.4 10.86 64.8 22.23 2.1 1,672.6
15 44 61 11.38 19.0 10.83 62.2 22.23 7.2 1,682.6

ACGT-infix queries.
5 26 41 28.81 56,003.8 13.40 16,673.6 42.24 340,058.0 4,710.7
6 32 50 35.95 88,080.5 14.89 28,392.0 50.85 132,336.0 6,630.9
7 38 59 46.38 122,192.0 21.18 41,385.0 67.58 350,205.0 8,746.6
8 44 68 53.66 137,956.0 24.24 47,955.8 77.92 249,552.0 9,872.3
9 50 77 65.46 171,152.0 24.96 53,707.0 90.44 96,007.6 11,829.8

10 56 86 84.68 221,063.0 29.05 71,632.8 113.74 19,737.7 14,984.6
11 62 95 99.06 248,124.0 27.56 66,273.2 126.64 23,215.7 16,211.2
12 68 104 104.21 244,967.0 28.30 66,801.8 132.53 88,528.8 16,280.0
13 74 113 134.08 290,691.0 31.06 72,878.5 165.16 22,374.0 18,831.4
14 80 122 155.84 324,762.0 31.84 77,746.0 187.70 169,539.0 20,886.2
15 86 131 173.48 346,809.0 33.40 84,285.4 206.89 6,137.9 22,577.9

ACGT-flat queries.
5 10 13 13.99 63.3 9.51 40.2 23.53 340,058.0 1,643.4
6 12 15 14.15 83.6 9.30 52.1 23.48 132,336.0 1,648.8
7 14 17 12.48 104.4 8.85 63.2 21.36 350,205.0 1,652.5
8 16 19 11.69 118.9 8.77 73.8 20.50 249,552.0 1,654.1
9 18 21 11.73 138.6 8.73 84.4 20.54 96,007.6 1,660.2

10 20 23 11.67 154.3 8.77 94.4 20.47 19,737.7 1,662.6
11 22 25 11.66 168.2 8.58 101.0 20.27 23,215.7 1,667.8
12 24 27 11.64 179.8 8.68 108.4 20.35 88,528.8 1,671.2
13 26 29 19.29 187.5 14.59 113.9 33.96 22,374.0 1,673.1
14 28 31 19.58 193.8 14.53 118.7 34.14 169,539.0 1,677.3
15 30 33 19.51 205.9 14.54 127.0 34.09 6,137.9 1,681.3

Figure 6: Benchmark results. Each row represents the average of 25 random queries of the same size.

queries for each query size, thus the average numbers
of nodes selected (9) are – correctly – the same.

Note that in the times reported in Figure 6, the
top-down phase was fully executed and all true pred-
icates were computed for each node. The occurrences
of the query predicate were counted and reported in
column (9), but no XML output was produced in the
experiments reported . The reason for this is that the
output depends very much on the context in which the
query engine is used. For example, returning the sub-
trees of all nodes as XML may lead to a tree that is
quadratically larger that the input document, which is
infeasible given the sizes of our databases.

As the default behavior of Arb, the entire XML doc-
ument is returned with selected nodes marked up in
the usual XML fashion. This output can be produced
in the second (top-down traversal) phase of query pro-
cessing, and all information necessary for this is com-
puted within the times shown in in Figure 6.

As expected, the lazy computation of our automata
caused the processing of both phases to consist of a
warm-up phase in which most transitions were com-

puted, followed by a phase in which the query engine
had a simple task and was mainly waiting for the disk
to read and/or write files.

Our benchmarks show that the tree automata-based
approach to processing node-selecting queries on very
large trees is extremely competitive. We only need to
scan the database linearly twice and write and reread
temporary data in the same linear fashion. The main
memory requirements are very low. Apart from a stack
bounded by the maximum depth of the XML tree, we
only need to store the state descriptions and transi-
tion functions for the two automata15, which are both
computed lazily.

There are a few pleasant surprises. It was to be
expected that the queries on ACGT-flat would per-
form well, as they are bottom-up, so intuitively, the
initial bottom-up phase has to do little guesswork. In
the top-down queries on treebank, however, an STA

15In total, we use four hash tables to store and quickly access
the states and transitions of the two automata. ComputeReach-
ableStates and ComputeTruePreds are only invoked when tran-
sitions cannot be found in the hash tables.

would have to do much guess-work. Here it shows
how practically important our representations of sets
of reachable STA states as single residual programs
are: only very few such programs are required, and
the automata computed for top-down queries (on Tree-
bank) in our benchmarks end up being very small.

As expected, ACGT-infix queries are substantially
more complicated. Nevertheless, we can deal with
them surprisingly well. It is particularly remarkable
that even when hundreds of thousands of transitions
have to be computed, main memory consumption is
very low. Our residual programs indeed tend to be
amazingly small.

7 Conclusions and Future Work

Our experiments demonstrate the immediate practical
usefulness of our approach of using tree automata for
the evaluation of expressive node-selecting queries on
trees in secondary storage, but more experiments are
in place and under way.

Beyond this, which was the goal motivated in the
introduction, the approach has a number of interesting
properties that need to be further studied and possibly
exploited in the future.

• Tree automata-based query processing lends itself
to parallel query processing. As pointed out, this
application is in need of the expressive power of our
framework, as trees have to be restructured (bal-
anced) for parallel processing.

• Multiple query evaluation. TMNF programs can
evaluate several queries (each one defined by one
IDB predicate) in one program. It will be interest-
ing to study how well Arb handles multiple queries.

A further goal is the integration of Arb with in-
dex structures. Already now, precomputed informa-
tion can be made use of through predicates available
to our automata as part of the labeling information
(each node may have any set of input predicates as
label). In the future, we plan to work on ways of de-
tecting, given a query, which parts of the data tree can
be jumped over and do not have to be processed by
our automata.

Acknowledgments

The author is indebted to Wang-Chiew Tan for her
XML-ized version of Swissprot. The work was spon-
sored by Erwin Schrödinger grant J2169 of the Aus-
trian Research Fund (FWF).

References

[1] S. Abiteboul, R. Hull, and V. Vianu. Foundations of
Databases. Addison-Wesley, 1995.

[2] S. Abiteboul and V. Vianu. “Regular Path Queries
with Constraints”. In Proceedings of the 16th ACM
SIGACT-SIGMOD-SIGART Symposium on Princi-
ples of Database Systems (PODS’97), Tucson, AZ
USA, 1997.

[3] M. Altinel and M. Franklin. “Efficient Filtering of
XML Documents for Selective Dissemination of In-
formation”. In Proceedings of the 26th International

Conference on Very Large Data Bases (VLDB’00),
pages 53–64, Cairo, Egypt, 2000.

[4] A. Brüggemann-Klein, M. Murata, and D. Wood.
“Regular Tree and Regular Hedge Languages over
Non-ranked Alphabets: Version 1, April 3, 2001”.
Technical Report HKUST-TCSC-2001-05, Hong Kong
University of Science and Technology, Hong Kong
SAR, China, 2001.

[5] A. Brüggemann-Klein and D. Wood. “Caterpillars: A
Context Specification Technique”. Markup Languages,
2(1):81–106, 2000.

[6] S. Ceri, G. Gottlob, and L. Tanca. Logic Programming
and Databases. Springer-Verlag, Berlin, 1990.

[7] H.-D. Ebbinghaus and J. Flum. Finite Model Theory.
Springer-Verlag, 1999. Second edition.

[8] M. Frick, M. Grohe, and C. Koch. “Query Evaluation
on Compressed Trees”. In Proceedings of the 18th An-
nual IEEE Symposium on Logic in Computer Science
(LICS), Ottawa, Canada, June 2003.

[9] G. Gottlob and C. Koch. “Monadic Datalog and
the Expressive Power of Web Information Extrac-
tion Languages”, Nov. 2002. Journal version of
PODS’02 paper, submitted. Available as CoRR report
arXiv:cs.DB/0211020.

[10] G. Gottlob, C. Koch, and R. Pichler. “Efficient Algo-
rithms for Processing XPath Queries”. In Proceedings
of the 28th International Conference on Very Large
Data Bases (VLDB’02), Hong Kong, China, 2002.

[11] G. Gottlob, C. Koch, and R. Pichler. “XPath Query
Evaluation: Improving Time and Space Efficiency”.
In Proceedings of the 19th IEEE International Con-
ference on Data Engineering (ICDE’03), Bangalore,
India, Mar. 2003.

[12] T. J. Green, G. Miklau, M. Onizuka, and D. Su-
ciu. “Processing XML Streams with Deterministic
Automata”. In Proc. of the 9th International Con-
ference on Database Theory (ICDT’03), 2003.

[13] M. Minoux. “LTUR: A Simplified Linear-Time Unit
Resolution Algorithm for Horn Formulae and Com-
puter Implementation”. Information Processing Let-
ters, 29(1):1–12, 1988.

[14] F. Neven. “Design and Analysis of Query Languages
for Structured Documents – A Formal and Logical Ap-
proach”. PhD thesis, Limburgs Universitair Centrum,
1999.

[15] F. Neven. “Automata Theory for XML Researchers”.
SIGMOD Record, 31(3), Sept. 2002.

[16] F. Neven and T. Schwentick. “Query Automata on Fi-
nite Trees”. Theoretical Computer Science, 275:633–
674, 2002.

[17] F. Neven and J. van den Bussche. “Expressiveness
of Structured Document Query Languages Based on
Attribute Grammars”. J. ACM, 49(1):56–100, Jan.
2002.

[18] W. Thomas. “Automata on Infinite Objects”. In
J. van Leeuwen, editor, Handbook of Theoretical Com-
puter Science, volume 2, chapter 4, pages 133–192.
Elsevier Science Publishers B.V., 1990.

[19] World Wide Web Consortium. XML
Path Language (XPath) Recommendation.
http://www.w3c.org/TR/xpath/, Nov. 1999.

	Introduction
	Aim
	Contributions
	Expressiveness of Queries: Scope
	Structure

	Preliminaries
	XML Documents as Binary Trees
	Tree-Marking Normal Form (TMNF)

	Tree Automata
	Two-Phase Query Evaluation
	Propositional Logic Programs
	The Bottom-up Phase
	The Top-down Phase

	The Arb Storage Model
	Experiments
	Tree Databases
	Benchmark Queries
	Discussion

	Conclusions and Future Work

