
From Tree Patterns to Generalized Tree Patterns: On

Efficient Evaluation of XQuery

Zhimin Chen1 H.V. Jagadish2 Laks V. S. Lakshmanan1

Stelios Paparizos2

1 Univ. of British Columbia, {zmchen, laks}@cs.ubc.ca
2 Univ. of Michigan, {jag, spapariz}@eecs.umich.edu

Abstract

XQuery is the de facto standard XML query lan-
guage, and it is important to have efficient query
evaluation techniques available for it. A core op-
eration in the evaluation of XQuery is the finding
of matches for specified tree patterns, and there
has been much work towards algorithms for find-
ing such matches efficiently. Multiple XPath ex-
pressions can be evaluated by computing one or
more tree pattern matches.

However, relatively little has been done on effi-
cient evaluation of XQuery queries as a whole.
In this paper, we argue that there is much more
to XQuery evaluation than a tree pattern match.
We propose a structure called generalized tree pat-

tern (GTP) for concise representation of a whole
XQuery expression. Evaluating the query reduces
to finding matches for its GTP. Using this idea
we develop efficient evaluation plans for XQuery
expressions, possibly involving join, quantifiers,
grouping, aggregation, and nesting.

XML data often conforms to a schema. We show

that using relevant constraints from the schema,

one can optimize queries significantly, and give

algorithms for automatically inferring GTP sim-

plifications given a schema. Finally, we show,

through a detailed set of experiments using the

TIMBER XML database system, that plans via

GTPs (with or without schema knowledge) sig-

nificantly outperform plans based on navigation

and straightforward plans obtained directly from

the query.

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed for
direct commercial advantage, the VLDB copyright notice and
the title of the publication and its date appear, and notice is
given that copying is by permission of the Very Large Data Base
Endowment. To copy otherwise, or to republish, requires a fee
and/or special permission from the Endowment.

Proceedings of the 29th VLDB Conference,

Berlin, Germany, 2003

$p.tag = person &

$l.tag = profile &
$g.tag = age &
$g.content > 25 &

$s.tag = state &

$s.content != ‘MI’

$p.tag = person &
$w.tag = watches &
$t.tag = watch

$p

$l

$g

$s

(a)

$p

$w

$t
(b)

Figure 1: Two Example Tree Pattern Queries: (a) P1

and (b) P4. Single (double) edge represents parent-child

(ancestor-descendant) relationship.

1 Introduction

XQuery is the current de facto standard XML query
language. Several XQuery implementation efforts have
been reported around the world. A key construct in
most XML query models is the so-called tree pattern
(query) (TP(Q)), which is a tree T with nodes labeled
by variables, together with a boolean formula F speci-
fying constraints on the nodes and their properties, in-
cluding their tags, attributes, and contents. The tree
consists of two kinds of edges – parent-child (pc) and
ancestor-descendant (ad) edges. Fig. 1(a)-(b) shows
example TPQs; in (b), we call node $w an ad-child of
$p, and a pc-parent of $t.

The semantics of a TPQ P = (T, F) is captured by
the notion of a pattern match – a mapping from the
pattern nodes to nodes in an XML database such that
the formula associated with the pattern as well as the
structural relationships among pattern nodes is satis-
fied. The TPQ in Fig. 1(a) (against the auction.xml
document of the XMark benchmark [24]) matches per-
son nodes that have a state subelement with value
6= ‘MI’ and a profile with age > 25. The state node
may be any descendant of the person node.

Viewed as a query, the answer to a TPQ is the set of
all node bindings corresponding to valid matches. The
central importance of TPQs to XML query evaluation
is evident from the flurry of recent research on efficient
evaluation of TPQs [26, 2, 7].

While XQuery expression evaluation includes the
matching of tree patterns, and hence can include TPQ
evaluation as a component, there is much more to

FOR $p IN document("auction.xml")//person, $l IN $p/profile
WHERE $l/age > 25 AND $p/state != ‘MI’
RETURN <result>{$p//watches/watch}{$l/interest} </result>

(a)

$p.tag = person & $s.tag = state &

$s.content != ‘MI’

$l.tag = profile & $i.tag = interest &
$w.tag = watches & $t.tag = watch &
$g.tag = age & $g.content > 25 &

$t

$p

$s $w $l

ig

(0)

(0)

(1)

(1)

(0)

(0) (2)
(b)

Figure 2: An Example XQuery query and correspond-
ing Generalized Tree Pattern Query. Solid (dotted)
edges = compulsory (optional) relationship. Group
numbers of nodes in parentheses.
XQuery than simply TPQ. In particular, the possi-
bility of quantification in conditions (e.g., EVERY),
the possibility of optional elements in a return clause,
and the many different forms of return results that can
be constructed using just slightly differing XQuery ex-
pressions, all involve much more than merely obtaining
variable bindings from TPQ evaluation. To facilitate
an efficient evaluation of XQuery queries, we propose
the notion of a generalized tree pattern (GTP). Intu-
itively, a GTP provides an abstraction of the work
that needs to be done toward query evaluation, and
provides clues for doing this work while making as
few passes over the input data as possible. As a pre-
view, Fig. 2(b) shows a sample query (against the auc-
tion.xml document of the XMark benchmark [24]) as
well as the associated (rather simple in this case) GTP.
The GTP has solid and dotted edges. Solid edges
represent mandatory relationships (pc or ad) just like
edges of a TPQ. Dotted edges denote optional relation-
ships: e.g., $i optionally may be a child of $l, and $w
optionally may be a descendant of $p. The GTP can
be informally understood as follows: (1) Find matches
for all nodes connected to the root by only solid edges.
(2) Next, find matches to the remaining nodes (whose
path to the GTP root involves one or more dotted
edges), if they exist.
We will show later that GTPs can be used to answer
queries involving quantifiers, grouping, aggregation,
and nesting. More complex examples of a GTP ap-
pear in Fig. 7 and 8.

We make the following contributions in this paper.
• We propose the notion of a generalized tree pat-

tern (Section 3).

• We show GTPs contain enough information for
evaluating XQuery expressions. Specifically, we
give an algorithm for translating an XQuery ex-
pression conforming to the grammar in Fig. 9 into
a GTP (Section 3.4).

• We present a physical algebra for query evalua-
tion, appropriate for a native implementation of
XQuery. We give an algorithm that translates a
GTP into an equivalent expression in our physical
algebra (Sections 4.1, 4.1.1).

$g.tag = tax_group_root &
$r.tag = tax_prod_root &

$b.tag = tax_group_basis &
$gr.tag = tax_group_subroot &

$p.pedigree = $p2.pedigree

$p.tag = $p1.tag = $p2.tag = person &
$w1.tag = watches &
$t1.tag = watch &

$r1.tag = tax_prod_root &
$b1.tag = tax_group_basis &
$p3.tag = $p4.tag = person &
$gr1.tag = tax_group_subroot &

$p.pedigree = $p3.pedigree &
$l4.tag = profile & $i4.tag = interest &

$l.pedigree = l4.pedigree &

 pattern P5>
<conditions associated with

����

���� ����

����

	�	

��

��

����

��

����

����

�� ����

���� ��

���

!�!"

#�#$

%�%&

$r

gp

$gr

$p1

$w1

$t1

$b

$p2

(a)

(b)

$g1

$gr1

$p4

$r1

$r

$b1

$p3

$l

$l4

$i4

copy
of

pattern

tree P5

Figure 3: Two TPQs: (a) P6; (b) P8.

• When schema information is available, we show
how it can be exploited to remove redundant parts
of the GTP, and to eliminate unnecessary opera-
tors in the physical query plan (Section 5).

We consider alternative evaluation strategies and
show with a thorough experimental study that plans
generated by using GTPs and then translating them
into physical algebraic expressions far outperform al-
ternative evaluation strategies in most cases (Sec-
tion 6). We also demonstrate the savings obtained
by incorporation of schema knowledge in query opti-
mization. In Section 7, we discuss related work, and
conclude the paper in Section 8.

2 Motivation

In this section, we motivate GTPs by illustrating that
straightforward approaches to evaluating queries can
lead to very inefficient plans.

Example 1 (Straightforward is Inefficient)
Consider again the query given in Fig. 2(a). This is
one of the simplest queries involving minimal features
from XQuery, and indeed the simplest query discussed
in this paper. This query cannot be computed using
a single TPQ: the most obvious candidate is the TPQ
obtained from Fig. 2(b) by turning dotted edges into
solid ones. However, such a tree will produce, in each
match result, a person element and precisely one watch
subelement (and a profile element with precisely one
interest subelement). A person with no watch subele-
ments will not even appear in the output (because the
match fails on the watch subelement). A person with
two watches appears twice in two separate results, once
with each watch sub-element. (What XQuery would
produce instead is the person appearing once, with
both watch subelements, in the result).

Consider instead a TPQ with only the solid edges
in Fig. 2(b). The match results will produce exactly
the correct set of bindings for the nodes in the pattern
(person, profile, etc.). However, we now have addi-
tional work to do to incoroporate the watch, inter-
est, etc. optional sub-elements. For each match re-
sult, we could navigationally find these sub-elements.

SELECT_P1;{}

DUP−ELIM_P3; {$p,$l}

PROJECT_P2; {$p,$l}

GROUP−BY_P5; $p;$t

SELECT_P4;{}

SELECT_P7;{}

GROUP−BY_P7; ($p,$l);$i

auction.xml

LOJ_P6

LOJ_P8

Figure 4: TAX operator tree for the query of Fig. 2(a).
LOJ = left outer-join.

However, this can become quite expensive, particu-
larly since return clauses in XQuery expressions can
often express quite complex relationships to the bound
variables. Previous research [26, 2] has shown that
set-oriented structural join (tree pattern match) com-
putations are most often substantially more efficient
than navigational approaches. Our own experiments
(reported in Section 6) also corroborate this.

Yet, a third possibility is to find the correct set of
bindings using the solid edge TPQ as in the preceding
paragraph, but then use set-oriented manipulation to
populate the remaining optional (and possibly repeat-
ing) nodes in the pattern. Doing so requires a sequence
of multiple TPQ matches, and grouping of partial an-
swers to construct each result tree with multiple watch
elements under person and multiple interest elements
under profile. A schematic description of this proce-
dure is shown in Fig. 4, using operators in the TAX
algebra [12].1 While the details of this algebra are
orthogonal to this paper, it is sufficient to note: (i)
the operators have a flavor similar to relational alge-
bra but they make use of TPQs and pattern match
to access nodes of interest in trees, and (ii) the physi-
cal plan corresponding to Fig. 4 is quite complex and
inefficient. E.g., similar tree patterns are repeatedly
matched. [14] gives a full explanation of all the steps
required. To sum, a correct set-oriented evaluation
of XQuery is possible, but can get quite complicated
even for simple XQueries. (We will quantify the per-
formance cost of this complication in Section 6.)

The GTP of Fig. 2(b), for this simple example, is
interpreted to produce as match results precisely the
set of answers XQuery semantics would expect.

3 Generalized Tree Patterns

In this section, we introduce generalized tree pat-
terns (GTP), define their semantics in terms of pattern
match, and show how to represent XQuery expressions
as GTPs. For expository reasons, we first define the
most basic type of GTP and then extend its features
as we consider more complex fragments of XQuery.

Definition 1 [Basic GTPs] A basic generalized tree
pattern is a pair G = (T, F) where T is a tree and

1The TPQs used in Fig. 4, including P6 and P8 from Fig. 3,
are explained in Section 6.1, BASE.

∧ ⊥ 1 0

⊥ ⊥ 1 0
1 1 1 0
0 0 0 0

∨ ⊥ 1 0

⊥ ⊥ 1 0
1 1 1 1
0 0 1 0

¬ ⊥ 1 0

⊥ 0 1

Figure 5: Extension to handle ‘undefined’ truth value.
F is a boolean formula such that: (i) each node of
T is labeled by a distinct variable and has an asso-
ciated group number; (ii) each edge of T has a pair
of associated labels 〈x, m〉, where x ∈ {pc, ad} spec-
ifies the axis (parent-child and ancestor-descendant,
respectively) and m ∈ {mandatory , optional} specifies
the edge status; and (iii) F is a boolean combination
of predicates applicable to nodes. 2

Fig. 2(b) is an example of a (basic) GTP. Rather
than edge labels, we use solid (dotted) edges for
mandatory (optional) relationship and single (double)
edges for pc (ad) relationship.

We call each maximal set of nodes in a GTP con-
nected to each other by paths not involving dotted
edges a group. Groups are disjoint, so that each node
in a GTP is member of exactly one group. We ar-
bitrarily number groups, but use the convention that
the the group containing the for clause variables (in-
cluding the GTP root) is group 0. In Fig. 2(b) group
numbers are shown in parantheses next to each node.

Let G = (T, F) be a GTP and C a collection of
trees. A pattern match of G into C is a partial mapping
h : G→C such that:

• h is defined on all group 0 nodes.

• if h is defined on a node in a group, then it is
necessarily defined on all nodes in that group.

• h preserves the structural relationships in G, i.e.,
whenever h is defined on nodes u, v and there is
a pc (ad) edge (u, v) in G, then h(v) is a child
(descendant) of h(u).

• h satisfies the boolean formula F .

Observe that h is partial matching: elements con-
nected by optional edges may not be mapped. Yet,
we may want the mapping as a whole to be valid in
the sense of satisfying the formula F . To this end, we
extend boolean connectives to handle the ‘undefined’
truth value, denoted ⊥.3 Fig. 5 shows the required
extension. In a nutshell, the extension treats ⊥ as an
identity for both ∧ and ∨ and as its own complement
for ¬.

In determining whether a pattern match satisfies
the formula F , we set each condition depending on a
node not mapped by h to ⊥ and use the extensions to
connectives in Fig. 5 to evaluate F . Iff it evaluates to
true, we say h satisfies F . The optional status of edges
is accounted for by allowing groups (other than 0) to
be not mapped at all, while still satisfying F . As an

2Additionally, each node corresponding to a FOR variable,
also has a number indicating its order in the FOR clause, a
detail suppressed for brevity.

3It turns out standard 3-valued logics like that of Kleene do
not work for our purposes.

h1: $p−>2, $s−>4, $l−>13,
 $w−>9, $t−>10, $g−>16,

 $i−>14

h4: $p−>35, $s−>37, $l−>42,
$g−>43, $i−>45

 $w−>24, $t−>25, $g−>31
h2: $p−>19, $s−>21, $l−>30,

 $w−>24, $t−>26, $g−>31
h3: $p−>19, $s−>21, $l−>30,

address

site

person person person

address addresswatches
profile

interest

age

watches

age city
city

profile

age

interest

"V
ict

ori
a""B

C"

watch
watch

"M
on

tre
al"

watch

people

state
state

state

profile

""N
Y"

"32
"

""3
0" "Q
C"

"26
"

Figure 6: (a) Sample XML data. (b) Pattern matches
of GTP of Fig. 2(b).

example, consider a pattern match h that maps only
nodes $p, $s, $l, $g, $i in Fig. 2(b) and satisfies only
conditions depending on these nodes. Setting all other
conditions to ⊥, it is easy to check h does indeed satisfy
the formula in Fig. 2(b). We call a pattern match of a
GTP valid if it satisfies the boolean formula associated
with the GTP.

Fig. 6 shows a sample XML document (in tree form)
and the set of valid pattern matches of the GTP of
Fig. 2(b) against it. Note that h2, h3 are not defined
on group 2, while h4 is not defined on group 1. Also,
matches h2 and h3 belong to the same logical group
since they are identical except on pattern node $t.

3.1 Join Queries

A join query clearly warrants one GTP per document
mentioned in the query. However, we need to evaluate
these GTPs in sync, in the sense that there are parts
in different GTPs that must both be mapped or not
at all. Fig. 8 shows a (nested) query involving join
and a corresponding GTP. It is discussed at length in
Section 3.3. The appendix gives another example.

3.2 Grouping, Aggregation, and Quantifiers

Conventional value aggregation in itself does not raise
any special issues for GTP construction. Structural
aggregation, whereby collections are grouped together
to form new groups, is naturally handled via nested
queries, discussed in Section 3.3. So we next focus
just on quantifiers.

Basic GTPs can already handle SOME quantifier,
since an XQuery expression with SOME can be rewrit-
ten as an one without it. Handling EVERY quantifier
requires an extension to GTPs.

Definition 2 [Universal GTPs] A universal GTP
is a GTP G = (T, F) such that some solid edges may
be labeled ‘EVERY’. We require that: (i) a node with
an incident EVERY edge is reachable from the GTP
root by a path containing only solid edges (some of
which may be EVERY edges), (ii) the GTP includes a
pair of formulas associated with an EVERY edge, say
FL and FR, that are boolean combinations of pred-
icates applicable to nodes, including structural ones,

FOR $o IN document("auction.xml")//open auction
WHERE EVERY $b in $o/bidder SATISFIES $b/increase > 100
RETURN <result> {$o} </result>

(a)

$i.content > 100.

F_L = pc($o,$b) & $b.tag = bidder
F_R: pc($b,$i) & $i.tag = interest &

$o.tag = open_auction

$o

$b

$i

EVERY:

(0)

(1)

(2)

(b)

Figure 7: An example universal query and correspond-
ing universal GTP.
and (iii) nodes mentioned in FL should be in a sepa-
rate group by themselves.

Example 2 (Universal GTP) Fig. 7 shows a query
with universal quantifier and a corresponding universal
GTP. The GTP codifies the condition that for every
bidder $b that is a subelement of the open auction ele-
ment $o, there is an increase subelement of the bidder
with value > 100.

The formula associated with the EVERY edge rep-
resents the constraint ∀$b : [FL → ∃$i : (FR)], for the
above example, ∀$b : [$b.tag = bidder & pc($o, $b) →
∃$i : ($i.tag = interest & pc($b, $i) & $i.content >
100)].

3.3 Nested Queries

We use a simple device of a hierarchical group num-
bering scheme to capture the dependence between a
block and the corresponding outer block in the query.

Example 3 (Nested Query) Consider the nested
query in Fig. 8(a). Corresponding to the outer
for/where clause, we create a tree with root $p (per-
son) and one solid pc-child $g (age). They are both
in group 0. We process the inner FLWR statement
binding $a. Accordingly, we generate a tree with root
$t (closed auction) with a solid pc-child $b (buyer).
Put these nodes in group 1.0, indicating they are in
the next group after group 0, but correspond to the
for/where part of the nested query. Finally, we pro-
cess the return statement and the nested query there.
For the for/where part, we create a tree with root $e
(europe) with a solid pc-child $t2 (item), both be-
ing in group 1.1.0. We also create a dotted pc-child
$i (itemref) for $t, corresponding to the join con-
dition $t/itemref/@item=$t2/@id in the correspond-
ing where clause. Since it’s part of the for clause
above, we assign this node the same group num-
ber 1.1.0. The only return argument of this inner-
most query is $t2/name, suggesting a dotted pc-child
$n2 (name) for node $t2, which we add and put in
group 1.1.1. We also create a dotted pc-child $i
(itemref) for $t, corresponding to the join condition
$t/itemref/@item=$t2/@id in the inner where. Fi-
nally, exiting to the outer return statement, we see the
expressions $p/name/text() and $a. The first of these
suggests a dotted pc-child $n (name) for $p, which we
add and put in group 2. The second of these, $a, corre-
sponds to the sequence of european item names bound

FOR $p IN document("auction.xml")//person
LET $a :=

FOR $t IN document("auction.xml")//closed auction
WHERE $p/@id=$t/buyer/@person
RETURN <item>

{FOR $t2 IN document("auction.xml")//europe/item
WHERE $t/itemref/@item=$t2/@id
RETURN {$t2/name}}
</item>

WHERE $p//age>25
RETURN <person name=$p/name/text()> $a </person>

(a)

$g
(0)

$n1
(2) (1.0)

$b
(1.1.0)

$i

tp
(0) (1.0)

$n2
(1.1.1)

$t2
(1.1.0)

$e
(1.1.0) $p.tag=person & $g.tag=age &

$n1.tag=$n2.tag=name & $b.tag=buyer &
$t.tag=closed_auction & $i.tag=itemref &
$t2.tag=item & $g.conetent>25

Join Condition

$p.id=$b.person & $i.item=$t2.id

(b)

Figure 8: An Example query with nesting & join and
corresponding GTP.

to it by the LET statement, and as such is covered by
the node $n2. The GTP we just constructed is shown
in Fig. 8(b).

In general, we can only match a group (e.g., 1.1.0)
after its “parent” group (1.0) is matched. As usual,
either all nodes in a given group must be matched
or none at all. For this example, the sequence
in which matches should be determined for differ-
ent groups is concisely captured by the expression
0[2][1.0[1.1.0[1.1.1]]], where [G] means the groups men-
tioned in G are matched optionally.

3.4 Translating XQuery to GTP

Putting the above ideas together, we obtain Algorithm
GTP for translating an XQuery query into a corre-
sponding GTP. While most of function-free XQuery
can be handled by this algorithm, we restrict our expo-
sition here to the simplified, yet substantially expres-
sive, fragment of XQuery, captured by the grammar in
Fig. 9.
FLWR ::= ForClause LetClause WhereClause ReturnClause.
ForClause ::= FOR $fv1 IN E1, ..., $fvn IN En.
LetClause ::= LET $lv1 := E1, ..., $lvn := En.
WhereClause ::= WHERE ϕ(E1, ..., En).
ReturnClause ::= RETURN {E1}...{En}.
Ei ::= FLWR | XPATH.

Figure 9: Grammar for XQuery Fragment.

The algorithm has a global parsing environment
ENV for bookkeeping the information collected from
parsing, including, e.g., variable name-pattern node
association, GTP-XML document source association,
etc. It also uses a helper function buildTPQ(xp), where
xp is an (extended)4 XPath expression, that builds a
part of GTP from the xp. If xp starts with the built-in
document function, a new GTP is added to ENV ; if
xp starts with a variable, the pattern node associated
with that variable is looked up and the new part re-
sulting from xp starts from it. The function examines

4XQuery allows XPath expressions extended with variables.

Algorithm GTP
Input: a FLWR expression Exp, a context group number g
Output: a GTP or GTPs with a join formula
if (g’s last level != 0)

let g = g + ”.0”;
foreach ("For $fv in E") do

parse(E,g);
let ng = g;
foreach ("Let $lv := E") do{

let ng = ng + 1;
parse(E,ng);

}
/* processing WhereClause */
foreach predicate p in φ do {

if (p is "every EL satisfies ER"){
let ng = ng + 1;
parse(EL,ng);
let FL be the formula associated

with the pattern resulted from EL;
let ng = ng + 1;
parse(ER,ng);
let FR be the formula associated with

the pattern resulted from ER;
} else {

foreach Ei as p’s argument do
parse(Ei,g);

add p to GTP’s formula or the join formula;

if (p is "count($n′)>c" && c >= 0){
g′=group($n′);

if (g is the prefix of g′)

set the group number of all nodes in g′ to g;
}
if (p refers to max(/min/avg/sum)($n′) and $n

&& group($n)==g){
g′=group($n′);

if (g is the prefix of g′)

set the group number of all nodes in g′ to g;
} } }

/* processing ReturnClause */
foreach "{Ei}" do {

let ng = ng + 1;
parse(E,ng);

}
end Algorithm
procedure parse
Input: FLWR expression or XPath expression E,

context group number g
Output: Part of GTP resulting from E
if (E is FLWR expression)

GTP(E,g);
else buildTPQ(E);
end procedure

Figure 10: Algorithm GTP
each location step in xp, creates a new edge and a new
node, annotates the edge as pc(or ad, cp, da) as appro-
priate, according to the axis of the location step and
adds a predicate about the node’s tag and/or its prop-
erties. It returns the distinguished node of xp. Any
filter expressions in xp are handled in a way similar to
the where clause is, except they are simpler.

Group numbers produced for GTP nodes are strings
of numbers. The algorithm accepts a group number as
its parameter, which is initialized to the empty string
when invoking the algorithm for the first time. We use
the shorthand g + ”.x” for appending the number “x”
to the string g, and g+1 for adding 1 to the rightmost
number in the string g.

4 Translating GTP Into an Evaluation
Plan

The main motivation behind GTP is that it provides
a basis for efficient implementation. This is achieved

by: (i) avoiding repeated matching of similar tree pat-
terns and (ii) postponing the materialization of nodes
as much as possible. We first discuss a physical alge-
bra for XML, each of whose operators is likely to be
available as an access method in any XML database.

4.1 Physical Algebra

Every physical algebra operator maps one or more se-
quences of trees to one sequence of trees. Except where
there is an explicit sorting order specified for the out-
put, we retain in the output sequence the order of the
input sequence, captured by means of order of node
id’s.
Index Scan:(ISp(S)) : For each input tree in S, out-
put each node satisfying the specified predicate p using
an index.
Filter: Fp(S) : Given a sequence of trees S, output
only the trees satisfying the filter predicate p. Order
is preserved.
Sort: Sb(S) : Sort the input sequence of trees S based
on the sorting basis b. The output order sequence re-
flects the sorting procedure (e.g., by value or by node
id order of specified node).
Value Join: Jp(S1, S2) : Perform a value-based com-
parison on the two input sequences of trees via the join
predicate p, using nested loops or sort-merge join. The
output sequence order is based on the left S1 input se-
quence order. Variants include left-outer join with its
standard meaning.
Structural Join: SJr(S1, S2): The input tree se-
quences S1, S2 must be sorted based on the node id
of the desired structural relationship. The operator
joins S1 and S2 based on the structural relationship
r between them (ad or pc) for each pair. The output
is sorted by S1 or S2 as needed. . Variations include:
the Outer Structural Join (OSJ) where all of S1 is in-
cluded in the output, Semi Structural Join (SSJ) where
only S1 is retained in the output, Structural Anti-Join
(ASJ) where the two inputs are joined based on one
not being the ad/pc-relative of the other, and combi-
nations.
Group By: Gb(S) : Assumes the input is sorted on
the grouping basis b. Group trees based on the group-
ing basis b. Create output trees containing dummy
nodes for grouping root, sub-root and basis and the
corresponding grouped trees. Order is retained.
Merge: M(S1, . . . , Sn) : The Sj ’s are assumed to have
the same cardinality, say k. Perform a “näıve” n-way
merge of the input tree sequences. For each 1 ≤ i ≤ k,
merge tree i from each input under an artificial root
and produce an output tree. Order is preserved.

While the majority of the physical algebra operators
are what one would expect, (including structural joins,
which are known to be important for XML query pro-
cessing), the Merge operator is worth a special men-
tion. It is very simple in terms of what it does, but
critical to our ability to stitch together multiple groups
of optional return elements.

4.1.1 Translating GTP to Physical Plans

The Evaluation algorithm translates GTP into a phys-
ical plan. The plan is a DAG, in which each node is a
physical operator or is an input document. To match
EVERY edges in the GTP to structural anti-join, it
converts them into “forbidden” edges using the trans-
formation ∀$x : [FL→∃$y : FR] ≡ ¬∃$x : [FL&¬∃$y :
FR]. It also ignores the issue of value join order, as-
suming it can borrow such techniques from the rela-
tional domain.

The algorithm uses a helper function
findOrder(SJs, $n), where SJs is a list of structural
joins, $n is a pattern node and may be optional. The
function rearranges the order of SJs such that execut-
ing SJs in the order of SJs1, ..., SJsn is the optimal
order. After executing the SJs, if $n is present, the
returned witness trees are in the ascending order of
$n’s node id. The helper function getGroupBasis(g)
takes a group number g as its parameter and returns
an appropriate nested sequence of pattern nodes that
are related to the for variables in all the 0 groups that
are prefix to g. (Abusing terminology, we say group
g is a prefix to group g′ provided g ends with 0 and
after excluding the 0 at its end, it is a prefix to g′.) For
instance, assume that $n01 and $n02 are the nodes re-
lated to fv1 and fv2 in group 0, respectively, and $n11

is the node related to the only fv in group 1.0, then
getGroupBasis(1.1) returns < $n01, $n02, < $n11 >>.
The helper function getGroupEvalOrder(G) returns
the evaluation order of the groups in a GTP G. Ba-
sically, the order it returns is the alphabetical or-
der of the group number, except that in the pres-
ence of a forbidden edge, the group under the for-
bidden edge is evaluated before the group above the
forbidden edge. The algorithm also prepares the input
stream for a pattern node $n from the XML docu-
ment using a tag index scan operator, or a value index
scan operator if there is such value index and there
is a predicate p($n, c) in the formula. In such case,
there may be a sorting operator following the value
index scan. For instance, if a node has a constraint
$n.tag = age&$n.content > 40, the plan to fetch the
data is Filtercontent>25(IStag=age(TagIndex)) if there
is no value index on age, or
Sort(IScontent>25(V alueIndexonage)) otherwise.

Each intermediate result of an operator in the plan
has a record about what pattern nodes are bound in
the output after executing the operator, whether the
output of operator is duplicate free, and whether, if
any, the output maintains a sorting order on some
nodes’ node id’s. The output of some operators, e.g.,
SJ (structural join) or S (sort), maintain some node id
order, while some, e.g., V J (value-based join), do not.
The algorithm keeps track of all the output structure
record of every operator when it is added to the plan,
but the bookkeeping details are suppressed here.

The algorithm generates the plan by following the

S

person
IS

profile

profile

interest

watches

watch

person//watches

person/profile

state

content != ‘MI’

age

content > 25

IS

IS

OSJ

S

OSJ

S

IS

SJ

SSJ

F

IS

SSJ

IS F

IS

watches/watch profile/interest

SSJ: structural semi−join.
SJ: structural join.

IS: tag index scan.

OSJ: outer structural join.
S: sort.

F: filter.

BIND FOR/WHERE VARIABLES.

G G

M

RETURN
ARGUMENT #2.

ARGUMENT
#1.

RETURN

M: merge.

person, profile

person, profile person, profile

person, profile

 SJ

Figure 11: Physical Plan from the GTP of Fig. 2(b).

following stages for each group: (1) compute struc-
tural joins; (2) filter based on the evaluable predicates
dependent on the contents of more than two pattern
nodes if needed; (a predicate is evaluable when all its
dependent pattern nodes are bound or the aggrega-
tions have been computed) (3) compute value joins if
needed; (4) compute aggregation, if needed; (5) filter
based on the predicates dependent on the aggregation
value, if needed; (6) compute value joins based on ag-
gregation values, if needed; (7) group the return argu-
ment, if there is any. Sorting and Duplicate Elimina-
tion are added between the stages if needed. Specifi-
cally, duplicate elimination is needed in stages 4 and
7.

Example 4 (Translating GTP into a plan)
When the above algorithm is applied to the GTP in
Fig. 2 we obtain the plan shown in Fig. 11. In this
plan, we first do an appropriate sequence of structural
joins to find matches for group 0 nodes in the GTP.
Two important points to note here are: (1) We rely on
a techniques such as [11] to find an optimal order of
structural joins, (2) We use structural semi-joins where
appropriate so a need for explicit projection and du-
plicate elimination is avoided [1]. As an example, the
structural join between person and state elements is
done as a structural semi-join, so even if there are mul-
tiple state elements below a person, with value != ‘MI’,
that person would be retained only once. In Fig. 11,
bottom, we can see the plan for obtaining the said wit-
ness trees. The left operand of the SJ node computes
persons with a state != ‘MI’ while the right operand
computes profiles with age > 25. The SJ operator
computes (person, profile) pairs satisfying a pc rela-
tionship.

Second, we make use of selection conditions in the
where clause to restrict generation of bindings for re-
turn arguments. E.g., for the first return argument,
it is sufficient to find watch subelements for those
person elements $p satisfying $p//state != ‘MI’ and
$p/profile/age > 25. This is depicted in Fig. 11 by
forking the result of the SJ node above to the two
(independent) subplans computing the two return ar-
guments.

Third, rather than compute bindings for the

for/where variables and for each return argument sep-
arately and combine them with left-outer-join, we use
an outer version of structural join. E.g., the left-outer
structural join between person and watches under the
ad relationship finds all person elements without de-
scendant watches as well as (person, watches) ad pairs.

The output (person, profile) pairs of the SJ node
needs to be sorted by profile (node id) before it can be
used for outer structural join with interest. Finally, the
sequences from the subplans for the two arguments are
both sorted by person node id so they can be merged
to form the output sequence.

4.2 Efficient Implementation

In relational databases, conjunctions of selection con-
ditions are often evaluated through intersection of rid
sets, obtained from indices, without accessing the ac-
tual data. However, for the most part, query evalu-
ation does process the actual data in the evaluation
pipeline. In the case of XML trees, it is possible to
encode the tree structure so that quite complex op-
erations can be performed without accessing the ac-
tual data itself. On the flip side, the actual data it-
self is a well-circumscribed tuple in the case of a re-
lational database. But for an XML element, we may
be interested in the attributes of this element itself
or in its child sub-elements. As such, it is important
to distinguish between identification of a tree node
(XML element), by means of a node identifier, and
access to data associated with this node. This en-
ables us to work with intermediate results that are
only partially materialized, and delay data material-
ization (thus avoiding the cost) until necessary.

Given a heterogeneous set of trees, TPQs use tree
pattern matches to identify nodes of interest. In an
algebraic expression, it is frequently the case that mul-
tiple operators use exactly the same tree pattern. It
is computationally profligate to re-evaluate the tree
pattern each time for each operator. Instead, we per-
mit the results of a tree pattern evaluation to persist,
and thus share with many of the subsequent operators.
Pattern tree reuse is akin to common sub-expression
elimination. Sometimes, subsequent operators may
not use the exact same pattern tree, but rather may
use a variation of it. In our implementation we can ap-
ply additional conditions to the node-structures known
to satisfy the original tree pattern match, as well as
extend the tree to include new branches.

XML queries must maintain document ordering.
Hence when a join is specified in the query, a nested
loops algorithm must be used in order to maintain or-
der. In our implementation we assign node ids based
on the document order of each node. If in the doc-
ument element A precedes B, then node A will have
a lower node id5. This technique allows us to sort
any sequence of trees based on the node id of the root

5The same holds for element A containing B

Algorithm planGen
Input: GTP G
Output: a physical plan to evaluate G
let GRPs=getGroupEvalOrder(G);
foreach group g in GRPs do {

let GB=getGroupBasis(g);
let SJs=the set of structural joins (edges) in g;
if (g ends with 0)

let $n=the node related to fv1 in g;
findOrder(SJs,$n);
foreach sj in SJs do{

if (one input stream of sj depends on a node in other
group) set sj to structural outer join;

if (one input stream will not be used further)
project out the unused node and turn sj

to structural semi-join, if possible; }
let C={p | p is a predicate in GTP’s formula and

p refers to a node in g and p is evaluable and
p has not been evaluated }

add Filter to the plan, which takes the formula from C as its
argument and the output of SJs as input stream;

while (∃ predicate p in the join formula and
p refers to a node in g and p is evaluable
and p has not been evaluated){
let JC=the set of such ps that depend on the same two
inputs; add V J to the plan, which takes the formula

from JC as its argument;
if (∃p ∈ JC && p refers to a node in other group){

set V J to outer join;
make the output of preceding step be V J’s right input
stream; } }

let AG={agg($n) | $n in g and agg($n) in GTP’s formula}
add Groupby to the plan, which takes GB and appropiate

aggregations as its argument;
let AC={p | p is a predicate in GTP’s formula and

p refers to a node in AG and p is evaluable and
p has not been evaluated }

add Filter to the plan, which takes the formula from AC as its
argument and the output of preceding step as input stream;

while (∃ predicate p in the join formula and
p refers to a node in AG and p is evaluable
and p has not been evaluated){
let AJC=the set of such ps that depends on the same two
input; add V J to the plan, which takes the formula

from AJC as its argument to the plan;
if (∃p ∈ JC && p refers to a node in other group){

set V J to outer join;
make the output of preceding step V J’s right input
stream; } }

if (g has a return argument)
add Groupby to the plan, which takes GB as its argument;

if (g is the last group in its hierarchy)
add Merge operator to the plan; }

end of Algorithm

Figure 12: Algorithm planGen

and re-establish document order. Sorting on node id
is cheap, as all the information needed is already in
memory. Hence for our joins we use a sort-merge-sort
algorithm. We sort the two input sequences based on
their join values, merge them and then sort the out-
put based on the node id of the first sequence. This
achieves better performance and scalability without
sacrificing document ordering.

5 Schema-Aware Optimization

XML, with its optional and repeated elements and ir-
regular structure, poses a great challenge for efficient
query processing. In the absence of schema knowledge,
we must anticipate all these possibilities for every el-
ement! Often XML documents conform to a DTD or
XML schema, knowledge of which can benefit in two
ways: (i) at a logical level, we can simplify the GTP by
eliminating nodes, thus reducing the number of struc-

tural joins required; (ii) we can eliminate additional
operators (e.g., sorting, duplicate elimination, etc.) in
the generated physical plan.

5.1 Logical Optimization

We have identified several types of simplifications of a
GTP based on schema information. We discuss just
two of these types here. The examples readily gener-
alize.

(1) Internal node elimination: Suppose there
are three nodes in a “chain” corresponding to tags
a, b, c in a GTP, where b is an ad-child of a and
is an ad-parent of c, and b has no other children,
has no other local predicates, and does not corre-
spond to a return argument. Then we can remove
b from the GTP and make c an ad-child of a, if the
schema implies every path from an a to a c passes
through a b. The resulting ad edge ($a→$b) is solid
iff each of the edges ($a→$b) and ($b→$c) is. E.g.,
for book//publisher//address, suppose the schema
implies all address subelements under book must be
subelements of publisher. Then we can remove pub-
lisher from the GTP. We call this type of schema con-
straint an avoidance constraint since it says b cannot
be avoided on a path from a to c. Variations include
situations where one or more of the edges could be
pc. (2) Identifying two nodes with the same
tag: E.g., for the query for $b in ...//book, $r
in ...//review where $b/title = $r/title
return <x> {$b/title} {$b/year}< /x>, the cor-
responding GTP would have two nodes correspond-
ing to title, one in the for-group and the other in the
group for return argument 1. The latter can be elimi-
nated and the former can be treated as a return node
in addition to its role in the for group, provided the
schema says every book has at most one title child. In
general, (pc or ad, and solid or dotted) two or more
children with tag b of a node of tag a can be identified
if the schema implies no node of tag a has more than
one child (or descendant) of tag b. In an actual XML
database system, the choice of which rewrite rule to
use should be a cost-based decision.
5.2 Physical Optimization

We have identified three important sources of physical
optimization. All examples below refer to Fig. 11. (1)
Elimination of sorting: Suppose we want to per-
form, say an ancestor-descendant structural join on
two input streams ordered respectively by person and
profile node id’s. The algorithm can create the output
in either person order or profile order, but in general,
not in both. If we choose the former order, it can be
used for processing of return argument 1, without fur-
ther resorting. But for argument 2, where we need to
match profiles with child interests, we need to resort
the previous output by profile node id’s. However, if
the schema implies no person can have person descen-
dants, then the output of the strucrual join ordered

by person node id will also be in profile node id or-
der. Conversely, if the schema implies no profile can
have profile descendants, then the output ordered by
profile order will also be in person order. (2) Elimi-
nation of group-by: In general, for each return ar-
gument, we must group together all elements associ-
ated with a given match for the for variables, e.g.,
for watch and interest in Fig. 11. But if the schema
says each profile has at most one interest subelement,
then the grouping on the second return argument can
be eliminated. For elimination of group-by on the
first, the schema needs to imply each person has at
most one watches descendant and each watches has at
most one watch child. (3) Elimination of dupli-
cate elimination: In general, for each return argu-
ment connected to a for variable by a path of length
2 or more and containing only ad edges, we poten-
tially need a duplicate elimination. E.g., this would
be the case for watch element (node $t), if the corre-
sponding expression was $p//watches//watch instead
of $p//watches/watch. Then $t is connected to the
for variable $p by the all ad-path ($p→$w→$t). If
watches can have watches descendants, then for a given
person node, a descendant watch node may be gener-
ated multiple times, warranting duplicate elimination.
However, if the schema implies watches cannot have
watches descendants, this is unnecessary. For this op-
timization, we need that for each intermediate node x
(i.e., excluding the endpoints) on the all ad-path, the
schema implies t cannot have t descendants, where t
is the tag of x.

5.3 Constraint Inference

We have identified the following kinds of constraints as
relevant to GTP simplification: child and descendant
constraints and avoidance constraints. They do not ex-
haust all possibilities but are simple and fundamental.
We have developed efficient algorithms for inferring
these constraints from a schema specification, such
as DTD or XML schema (see [16]). Our algorithms
make use of the abstraction of regular tree grammars
as structural abstractions of schemas and work off this
representation. For brevity, we omit the details. We
can show our algorithms are complete and are polyno-
mial time in the size of the regular tree grammar.

5.3.1 GTP Simplification

In this section, we give an algorithm for simplifying a
GTP given a set of child, descendant, and avoidance
constraints.

The pruneGTP (G) algorithm simplifies the GTP
G based on the child/descendant constraints and
avoidance constraints, typically precomputed from the
schema specification. It applies the constraints in the
following order, whenever possible: (1) detect empti-
ness of (sub)queries, (2) identify nodes with same tag,
(3) eliminate redundant leaves, and (4) eliminate re-

dundant internal nodes. For brevity, we only show
steps (2)-(4) in the algorithm presented.

algorithm pruneGTP
Inputs: GTP G < T, F >
Output: a simplified G
while (∃$n1, $n2 in G s.t. $n1.tag = x&$n2.tag = x ∈ F) {

if ($n1 and $n2 are siblings && both hold the proper
(child/decendant) identified constraint with their parent)
unify($n1,$n2);

if ($n1’s parent is $n2’s ancestor (or vice versa) && the
descendant identified constraint with $n1’s parent holds)
unify($n1,$n2); }

while (∃$n s.t. $n is a leaf of G and $n.tag = x is
the only predicate about $n in F and $n is not related
to any fv or lv or return argument and y ↓1/+ x
where y is $n’s parent’s tag) {
delete $n from G; }

while (exists$na , $nband$nc in G s.t. $na is
$nb’s parent and $nb is $nc’s parent and $nb.tag = b
is the only predicate about $nb and the appropriate avoidance
constraint among $na, $nb and $nc holds) {
delete $nb; }

end of algorithm

procedure unify
Inputs: two pattern nodes $n1 and $n2, GTP G < T, F >
Outputs: G simplified by combining $n1 and $n2 together
let g1=$n1’s group, g2=$n2’s group;
make all $n1’s decendants be $n2’s decendants;
replace $n1 with $n2 in F ;
relate to $n2 all fvs, lvs and return arguments related to $n1;
set the group number of all nodes in g1 and g2 to min(g1, g2);
delete $n1;
end of procedure

Figure 13: Algorithm pruneGTP

We can show the following result on our GTP sim-
plification algorithm:

Theorem 1 (Optimality) Let C be a set of child
and descendant constraints (resp., avoidance con-
straints). Let G be a GTP. Then there is a unique
GTP Hmin equivalent to G under the presence of C,
that has the smallest size among all equivalent GTPs,
over databases satisfying C. The GTP simplification
algorithm will correctly simplify G to Hmin and in time
polynomial in the size of G.

When C consists of both descendant and avoidance
constraints, the minimal equivalent GTP is no longer
unique. To see this, consider a simple TPQ (which
is a GTP!) P corresponding to the XPath expression
t1[.//t2//t3]. Suppose C consists of the descendant
constraint “every t2 has one or more descendant t3’s”
and the avoidance constraint “every t3 that is a de-
scendant of a t1 is a descendant of a t2, itself a descen-
dant of the t1”. Then P is equivalent to each of the
TPQs P1 = t1[.//t2] and P2 = t1[.//t3], but not
to t1. Both P1 and P2 are minimal. In this case, the
simplified GTP found by our algorithm would be P1,
since descendant constraints are applied before avoid-
ance constraints. At this time, it is open whether there
are smaller GTPs, equivalent to the given GTP un-
der both descendant and avoidance constraints, than
found by the algorithm.

6 Experiments

In this section we present the results of experiments
demonstrating the value of the GTP. All the experi-
ments were executed using the TIMBER [13] native
XML database.

For our data set we used the XMark [24] generated
documents. Factor 1 produces an XML document that
occupies 479MB when stored in the database. Exper-
iments were executed on a PIII-M 866MHz machine
running Windows 2000 pro. TIMBER was set up to
use a 100MB buffer pool. All numbers reported are the
average of the combined user and system CPU times
over five executions6.

6.1 Navigational and Base Plans

NAV: To compare GTP we implemented a naviga-
tional algorithm. The algorithm traverses down a
path by recursively getting all children of a node and
checking them for a condition on content or name
before proceeding on the next iteration. We found
that the navigational approach is highly dependent
on the path size and on the number of children of
each node. The smaller the path and the lower
the number of children the better the algorithm be-
haves. For example, XMark query 5 (XM5) has a path
site/closed-auctions/closed-auction which corresponds
to 1/6/many elements. All of the closed-auction el-
ements have to be considered for this query (all of
many) by all algorithms. So this is one of the bet-
ter cases for a navigational plan.
BASE: Besides the navigational plan, we wanted to use
a straightforward tree pattern translation approach
that utilizes set-at-a-time processing. We call this
approach baseline plan. The XQuery query is first
translated into a sequence of TPQs by following the
schematic shown in Fig. 4, where each TPQ is rep-
resented by a TAX operator taking a tree pattern as
its argument. The TPQs in that figure are as follows.
P1 is the TPQ in Fig. 1(a), P2 is identical to P1, ex-
cept conditions on the content of node $s and $g are
dropped. P3 is P2 with $s and $n dropped, while P4

is the TPQ in Fig. 1(b). P5 is P4 with the double
edge from $p to $w replaced by a single edge, and P6

is shown in Fig. 3(a). P7 is the TPQ corresponding to
the path $p → $l → $i in Fig. 2(b), except the edge
from $l to $i is turned into a solid one and all condi-
tions on nodes other than $p, $l, $i are dropped. P8 is
also shown in Fig. 3(b). The baseline plan is obtained
from the TPQs by mapping each edge in each tree pat-
tern to a structural join and mapping each TAX op-
erator to a corresponding TIMBER physical algebra
operator. E.g., the TAX join operator mapped to the
value join operator in Section 4.1 (see also Section 4.2).
Unlike GTP, the baseline plan does not make use of

6The highest and the lowest values were removed and then
the average was computed

Qa: FOR $b IN document("auction.xml")/site
/open-auctions/open-auction

RETURN {$b/bidder/increase[./=39.00]/text()}
Qb: FOR $p IN document("auction.xml")/site/people/person

WHERE SOME $i IN $p/profile/interest
SATISFIES $i/@category="category28"

RETURN {$p/name/text()}
Qc: FOR $p IN document("auction.xml")/site/people/person

WHERE EVERY $i IN $p/profile/interest
SATISFIES $i/@category!="category28"

RETURN {$p/name/text()}

Figure 14: Queries Qa, Qb, Qc

tree pattern reuse.

6.2 Interesting Cases

We executed dozens of queries: those described in the
XMark benchmark [24] as well as our own. In our tests
we wanted to check the effect of path length, number of
return arguments, query selectivity and data material-
ization cost in general. We selected a few queries that
demonstrate the use of these factors. The XQueries
mentioned in this section (XM8, XM13 etc) are the
corresponding XMark queries. We had to create a few
queries, Fig. 14: Qb and Qc to demonstrate quantifi-
cation, since no XMark query does, and Qa to show a
query with with relatively long path and 1 argument
in the return clause.

We used an index on element tag name for all the
queries, which given a tag name, returns the node ids.
We used a value index, which given a content value,
returns the node ids, to check the condition on content
for queries XM5, XM20, Qa, Qb and Qc. Results are
summarized in Fig. 15 (ignore column SCH, which we
will discuss in Section 6.4).

GTP outperforms NAV and BASE for every query
tested, sometimes by one or two orders of magnitude.
All algorithms are affected by the path length. NAV is
affected the most, since it will have to do more costly
iterations to find the answer. GTP and BASE are both
affected by the increased cost of more structural joins,
but not as much as NAV.

Query selectivity does not affect all algorithms.
NAV will do the same number of iteration even if zero
results are produced. GTP and BASE are affected
by query selectivity in the form of paying for the extra
data materialization cost to produce the answer. So we
noticed that the speedup of GTP over NAV and over
BASE decreases if more results are to be produced.

The number of return arguments also affects the
algorithms. NAV is not affected much, as it has to do
the same number of iterations anyway. GTP is affected
in terms of data materialization costs and having to do
more sorts and groupings to get the final result. BASE
is affected the same way as GTP plus the extra cost of
having to do the new tree pattern matches. However,
the speedup of GTP over BASE increases, since GTP
does a tree pattern extension for every argument in
the return clause.

In general, data materialization cost affects both
GTP and BASE. NAV is not affected much since it

Tested Algorithm
Query NAV BASE GTP SCH Query Description
XM5 10.77 0.89 0.20 0.05 1 argument/return, short path, value index
Qa 77.93 8.92 0.47 0.08 1 argument/return, long path, value index
XM20 25.90 11.83 1.09 0.50 > 1 argument/return, med path, value index
Qb 42.46 23.41 0.39 0.37 > 1 arg/return, quantifier some, high selectivity, value index
Qc 42.52 25.63 1.09 1.05 > 1 arg/return, quantifier every, low selectivity, value index
XM13 50.45 1.90 0.50 0.48 > 1 arg/return, long path
XM19 128.10 70.03 29.49 28.12 > 1 arg/return, lots of generated results
XM8 108.92 111.45 15.66 15.07 > 1 argument/return, single value join, nested
XM9 159.11 180.32 20.50 18.82 > 1 argument/return, multi value join, nested

Figure 15: CPU timings (secs) for XMark factor 1. Algorithms used: NAV = Navigational plan, BASE = Base
plan, GTP = GTP algorithm, SCH = GTP with schema optimization. The queries are XMark XQueries (XM5,
XM20, . . .) and the queries (Qa, Qb, Qc) seen in figure 14.

XMark scale factor
Query 0.05 0.1 0.5 1 5
XM13 0.02 0.05 0.25 0.50 2.43
XM8 0.58 1.15 7.88 15.66 73.52

Figure 16: CPU timings (secs). Using GTP with no
optimization or value index.

has already paid the cost of getting all children.7 No-
tice that in queries with joins or with lots of results the
data materialization cost makes BASE perform poorly
and reduces the speedup of GTP over NAV. Note that
GTP is the only algorithm that could benefit from an
index on the join value and perform very well in queries
with joins. Unfortunately such an index was not avail-
able in our tests. So GTP performance speedup over
NAV decreases when data materialization cost is very
high. BASE sometimes performs even worse then NAV
on queries with joins BASE materializes data “early”
and then has to carry the penalty of this materializa-
tion in all the joins and tree pattern matches.

6.3 Scalability

We tested queries XM13 and XM8 for scalabil-
ity. We used XMark factors 0.05(24MB), 0.1(47MB),
0.5(239MB), 1(479MB) and 5(2387MB). XM13 is a
simple selection and XM8 is a nested FLWR query
that includes a join. As we can see in Fig. 16, GTP
scales linearly with the size of the database.

6.4 Schema-Aware Optimization

The column SCH in Fig. 15 shows the performance
of GTP after schema-aware optimization. We see
that schema knowledge can greatly enhance perfor-
mance in some cases, but helps very little in oth-
ers. Schema-aware optimization performs well when
(result) data materialization is not the dominating
cost. We also note that when the path is of the
form 1/1/1/few and schema optimization converts it
to 1//few then the benefit is again small. Schema-
aware optimization performs well when the path is
of the form many/many/many and is converted to
many//many. We present in Fig. 17 a comparison
between GTP and schema-aware plans, using queries

7In TIMBER, nodes are clustered with their children. So the
disk cost of getting all children id’s is almost the same as getting
all children id’s and their values.

0

0.2

0.4

0.6

0.8

1

1.2

XM5 Qa XM20

GTP

SCH

Figure 17: CPU timings (sec). Comparison of GTP
and GTP with schema optimization plans.

XM5, Qa, and XM20. It shows schema-aware op-
timization produces much faster executions in these
cases.

7 Related Work

There are three major approaches to XML data man-
agement and query evaluation. Galax [21] is a well-
known example of a navigation-based XQuery query
processing system. Relational approaches to XQuery
implementation include [10, 22, 8, 25, 20], while [3]
uses an object-relational approach. Some examples of
native approaches to XML query processing include
Natix [9], Tamino [19], and TIMBER [13].

Most previous work on native XQuery implementa-
tion has focused on efficient evaluation of XPath ex-
pressions via structural join [2] and holistic join [7],
and optimal ordering of structural joins for pattern
matching [11]. TIMBER [13] makes extensive use
of structural joins for pattern match, as does the .
Niagara system [17]. We are not aware of any pa-
pers focusing on optimization and plan generation for
XQuery queries as a whole for native systems. The
closest is the “dynamic intervals” paper [8], which is
based on translating queries into SQL. They make use
of the well-known interval encoding of trees and then
assign these intervals dynamically for intermediate re-
sults. A direct experimental comparison with their
approach is difficult since their tests were run on their
own homegrown XQuery processor, whereas our algo-
rithms were implemented and tested in the TIMBER
native XML system. Even though the computer on
which our tests were run is slower than reported by
[8], for an XMark factor of 1, for queries XM8, XM9,
XM13 for which we did not use any value indices like
them, we observed our response was 3-20 times faster.
This is admittedly an ad hoc comparison, but it does

give a general indication.
Recently, there has been much interest in optimiz-

ing (fragments of) XPath expressions by reasoning
with TPQs or variants thereof, possibly making use
of available schema knowledge [15, 23, 18]. GTPs en-
able similar logical optimization to be performed for
XQueries as a whole, with or without schema knowl-
edge.

8 Summary and Future Work

This paper has taken a significant step towards the
efficient evaluation of XQuery. We proposed a novel
structure called a generalized tree pattern that sum-
marizes all relevant information in an XQuery into a
pattern consisting of one or more trees. GTPs can
be used as a basis for physical plan generation and
also as a basis for logical and physical query optimiza-
tion, exploiting any available schema knowledge. We
demonstrated the effectiveness of GTPs with an ex-
tensive set of tests comparing GTP plans with plans
directly generated from XQuery as well as with alter-
nate navigational plans. In most cases, GTP plans
win by at least an order of magnitude. We intend to
implement GTP-based plan generation as an integral
part of the TIMBER system.

GTPs provide an elegant framework with which to
study query containment for XQuery, to our knowl-
edge for the first time. This is significant, since we
expect this will be applicable also for query answering
using (XQuery) views and for incremental view main-
tenance. We presented an algorithm for schema-based
simplification of GTPs and hence XQuery. More work
is needed to fully exploit all schema knowledge and
comprehensively calibrate its performance benefits.

Whereas our experimentation has been limited to
the TIMBER system, and hence can directly be ex-
trapolated only to native XML database systems, the
GTP concept is equally applicable to relational map-
pings of XML. A rigorous evaluation of the benefits
GTPs bring to relational XML systems remains part
of our future work.

References

[1] S. Al-Khalifa and H. V. Jagadish. Multi-level Op-
erator Combination in XML Query Processing. pp.
286–297, CIKM 2002.

[2] S. Al-Khalifa et al. Structural joins. A primitive for ef-
ficient XML query pattern matching. pp. ICDE 2002.

[3] K. Runapongsa and J.M. Patel. Storing and Querying
XML Data in Object-Relational DBMSs. pp. 266-285,
EDBT Workshop XMLDM 2002.

[4] A. Berglund et al. XML path language (XPath) 2.0.
http://www.w3.org/TR/xpath20/, Nov. 2002.

[5] P. V. Biron and A. Malhotra. XML schema
part 2: Datatypes. W3C Recommendation.
http://www.w3.org/TR/xmlschema-2/, May 2001.

[6] S. Boag et al. XQuery 1.0: An XML query language.
http://www.w3.org/TR/xquery, Nov. 2002.

[7] N. Bruno et al. Holistic twig joins: Optimal XML
pattern matching. pp. 310-321, SIGMOD 2002.

[8] D. DeHaan et al. A Comprehensive XQuery to SQL
Translation using Dynamic Interval Encoding, SIG-
MOD 2003. To appear.

[9] T. Fiebig et al. Anatomy of a native XML base man-
agement system. VLDB Journal, 11(4):292–314, 2002.

[10] D. Florescu and D. Kossman. Storing and querying
XML data using an RDMBS. IEEE Data Eng. Bull.,
22(3):27–34, 1999.

[11] Y. Wu et al. Structural Join Order Selection for XML
Query Optimization. ICDE 2003. To appear.

[12] H.V. Jagadish et al. TAX: A Tree Algebra for XML.
pp. 149-164, DBPL 2001.

[13] H. V. Jagadish et al. TIMBER: A native XML
database. VLDB Journal, 11(4):274–291, 2002.

[14] H.V. Jagadish et al. Implementing XQuery using
TAX. Tech. Report, U. Michigan. June 2003. In prepa-
ration.

[15] G. Miklau and D. Suciu. Containment and Equiva-
lence for an XPath Fragment. pp. 65-76, PODS 2002.

[16] M. Murata et al. Taxonomy of XML schema languages
using formal language theory. Extreme Markup Lan-
guages. Montreal, Canada, August 2001.

[17] J. Naughton et al. The Niagara Internet Query Sys-
tem. http://www.cs.wisc.edu/niagara/papers/ NIA-
GARAVLDB00.v4.pdf.

[18] F. Neven and T. Schwentick, XPath Containment in
the Presence of Disjunction, DTDs, and Variables. pp.
315-329, ICDT 2003.

[19] H. Schoning. Tamino - A DBMS designed for XML.
pp. 149-154, ICDE 2001.

[20] J. Shanmugasundaram et al. Relational databases for
querying XML documents: Limitations and opportu-
nities. pp. 302-314, VLDB 1999.

[21] J. Simeon et al. Galax, An open implementation of
XQuery. http://db.bell-labs.com/galax/.

[22] I. Tatarinov et al. Storing and querying ordered XML
using a relational database system. pp. 204-215, SIG-
MOD 2002.

[23] P.T. Wood. Containment for XPath Fragments under
DTD Constraints, pp. 300-314, ICDT 2003.

[24] XMark, an XML benchmark project.
http://www.xml-benchmark.org/.

[25] X. Zhang et al. Honey, I Shrunk the XQuery! –
An XML Algebra Optimization Approach. pp. 15-22,
WIDM 2002.

[26] C. Zhang et al. On supporting containment queries in
relational database management systems. SIGMOD
2001.

