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Abstract

Tree Pattern Queries (TPQ), Branching Path
Queries (BPQ), and Core XPath (CXPath)
are subclasses of the XML query language
XPath, TPQ ⊂ BPQ ⊂ CXPath ⊂ XPath.
Let TPQ = TPQ+ ⊂ BPQ+ ⊂ CXPath+ ⊂
XPath+ denote the corresponding subclasses,
consisting of queries that do not involve the
boolean negation operator not in their pred-
icates. Simulation and bisimulation are two
different binary relations on graph vertices
that have previously been studied in con-
nection with some of these classes. For in-
stance, TPQ queries can be minimized using
simulation. Most relevantly, for an XML doc-
ument, its bisimulation quotient is the small-
est index that covers (i.e., can be used to an-
swer) all BPQ queries. Our results are as fol-
lows:

• A CXPath+ query can be evaluated on
an XML document by computing the
simulation of the query tree by the doc-
ument graph.

• For an XML document, its simulation
quotient is the smallest covering index
for BPQ+. This, together with the
previously-known result stated above,
leads to the following: For BPQ cover-
ing indexes of XML documents,
Bisimulation − Simulation = Negation.
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• For an XML document, its simulation
quotient, with the idref edges ignored
throughout, is the smallest covering in-
dex for TPQ.

For any XML document, its simulation quo-
tient is never larger than its bisimulation quo-
tient; in some instances, it is exponentially
smaller. Our last two results show that disal-
lowing negation in the queries could substan-
tially reduce the size of the smallest covering
index.

1 Introduction

We consider a model of XML documents in which we
ignore comments, processing instructions and names-
paces. Attributes other than id and idref will be
treated as subelements. Then, an XML document can
be represented as a tree along with a set of idref
edges (see [1]); each tree edge denotes an element–
subelement relationship.

The Query Classes

XML query languages such as XPath [3] and XQuery
[6] allow for navigation in an XML document,
to locate desired elements. XPath provides thir-
teen different axes (directions) for navigation. In
our model, we will not consider the attribute
and namespace axes. The remaining eleven axes
self, child, descendant, descendant-or-self,
parent, ancestor, ancestor-or-self,
preceding, preceding-sibling, following,
and following-sibling, will be abbreviated by their
initials (first 2 letters in the case of parent axis)
s, c, d, ds, pa, a, as, p, ps, f and fs, respectively. In
addition, we consider two more axes (for a total of 13
axes): The idref and ridref axes (abbreviated as ir
and rir) correspond to navigating a single idref edge
in the forward and backward directions, respectively.
In XPath, the ir axis is available through the core
library function id. The rir axis is not explicitly



available in XPath, but it can be partly emulated
using the node identity operator == available in
XPath 2.0 [3].

Gottlob et al. [7] defined a fragment of XPath,
called Core XPath (CXPath), that corresponds to the
logical core of XPath. CXPath does not contain arith-
metic and string operations, but otherwise has the full
navigational power of XPath. We let CXPath consist
of queries involving the thirteen axes, and predicates
involving them and the three boolean operators and,
or and not. CXPath queries ignore the values (PC-
DATA) of atomic elements. Kaushik et al. [9] defined
a subclass of CXPath called Branching Path Queries
(BPQ). BPQ consists of those CXPath queries that
ignore the order of sibling elements in the input doc-
ument: It allows nine axes, excluding the four order
respecting axes p, ps, f, fs.

Amer-Yahia et al. [2] defined a subclass of BPQ
called Tree Pattern Queries (TPQ). TPQ queries in-
volve only the four axes s, c, d, ds, and predicates in-
volving them and the boolean operator and; in par-
ticular, they do not involve idref edges. We have
TPQ ⊂ BPQ ⊂ CXPath ⊂ XPath.

For any class C of queries, let C+ denote the sub-
class of C consisting of those queries that do not in-
volve the boolean operator not in their predicates.
Note that TPQ = TPQ+ ⊂ BPQ+ ⊂ CXPath+ ⊂
XPath+.

Query Evaluation and Indexing

For an XML document D, an index DI is obtained
by merging “equivalent” nodes into a single node. For
example, for D in Figures 1a and 2a, an index is shown
in Figures 1b and 2b, respectively. For a node n in DI ,
let extent(n) be the set of nodes of D that were merged
together to create node n. For example, in Figure 1b,
the extent of the node labeled b is {2, 7}.

We say that a query Q distinguishes between two
nodes in D, if exactly one of the two nodes is in the
result of evaluating Q on D. An index in which these
two nodes are in the same extent can not be used to
evaluate Q on D. An index DI is a covering index
for a class C of queries, if the following holds: No
query in C can distinguish between two nodes of D
that are in the same extent in DI . A covering index
DI can be used to evaluate the queries in C, without
looking at D, as follows: First evaluate the query on
DI ; for each node n of DI that is in the result, output
extent(n). Since DI is smaller than D, this would be
faster compared to evaluating the query directly on D.

We study the evaluation of CXPath queries, and
covering indexes for subclasses of CXPath. An XPath
query is absolute if its navigation in an XML docu-
ment starts from the root; otherwise it is relative. It
is easily seen that, for relative queries, the smallest
covering index is D itself. Of the results discussed be-
low, the results pertaining to indexing apply only to
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Figure 1: (a). An XML Document D. (b). Its Bisim-
ulation Quotient.

absolute queries; the results pertaining to query eval-
uation apply to both absolute and relative queries.

First, let us consider covering indexes for CXPath+

or CXPath. For any node n in an XML docu-
ment D, we can construct an absolute query Q ∈
CXPath+ that distinguishes n from all the other
nodes, as follows. Consider the tree path (no idref
edges) in D from the root to node n. For each
node in this path, other than the root, count the
number of its siblings to the left and to the right
(i.e., preceding and following siblings, respectively);
the query Q would enforce exactly this count require-
ment. For example, for D in Figure 1a, the query
Q = /c :: ∗/c :: ∗[fs :: ∗]/c :: ∗[ps :: ∗] distinguishes
node 5 from all the other nodes (To enforce the require-
ment that a node has two preceding siblings, we would
use the predicate [ps :: ∗[ps :: ∗]]). Consequently, for
any D, the smallest covering index for CXPath+ or
CXPath is D itself.

Now, let us consider some nontrivial results. Sim-
ulation and bisimulation [10, 13] are two different bi-
nary relations on graph vertices. They provide two dif-
ferent notions of dominance/equivalence between the
vertices, and have been studied in process equivalence
[10, 13, 8] and in graph models for data. In particu-
lar, Buneman et al. [5] (also see [1]) used simulation
to define a schema for semistructured data. Simula-
tion and bisimulation have also been studied in con-
nection with query minimization and with indexing of
documents. Ramanan [14] showed that TPQ queries,
without wildcard ∗ for node types, can be minimized
using simulation. Milo and Suciu [11] showed that, for
a semistructured document, its (backward) simulation
and bisimulation quotients are two covering indexes for
linear path queries (paths starting from the root; no
branching); if the document is a tree, simulation and
bisimulation coincide, and the corresponding quotient
is the smallest covering index for linear path queries.

Kaushik et al. [9] showed that, for an XML docu-
ment (possibly containing idref edges), its (forward
and backward) bisimulation quotient is the smallest
covering index for BPQ.



Example 1.1. To illustrate the result of Kaushik et
al. in a simple setting, consider the document in Figure
1a, without any idref edges. The following nodes are
bisimilar: (2, 7), (3, 5, 8) and (4, 6, 9); the bisimulation
quotient is shown in Figure 1b. By Kaushik et al.’s
result, no BPQ query can distinguish between nodes 2
and 7; between 3, 5 and 8; or between 4, 6 and 9.

We point out that if we allow the node iden-
tity operator == for BPQ queries, then Kaushik et
al.’s result does not hold: The bisimulation quotient
of an XML document is no longer a covering in-
dex for the resulting class of queries. For example,
in Figure 1a, nodes 3, 5 and 8 are bisimilar. But
the query /d ::c[not s :: ∗ == pa :: ∗/c :: ∗] (in abbre-
viated form, //c[not .== ../∗]) can distinguish nodes
3 and 5 from node 8. ◦

For an XML document, if its bisimulation quotient
is small, then a BPQ query can be evaluated faster by
using this index. Kaushik et al. showed that, for many
XML documents, the bisimulation quotient is about
the same size as the document itself; this is because
the bisimulation condition is quite onerous, and only
a few pairs of nodes would turn out to be bisimilar.
Hence this index is unlikely to offer much speedup in
evaluating a BPQ query. So, they considered restrict-
ing the class of queries as follows, in order to obtain
smaller covering indexes.

• Indexing only certain element types. This corre-
sponds to replacing all the other element types in
the document by ∗, before computing the index.

• Indexing only certain idref edges, namely, those
between specified source and destination node
types. The remaining idref edges are dropped
from the document before computing the index.

• Indexing only paths of specified lengths.

Using these restrictions, they were able to obtain
smaller covering indexes for the restricted classes of
queries. These covering indexes could be used to speed
up the evaluation of the restricted classes of queries.
The speed up depends on the size of the covering index,
compared to the size of the original XML document.

In this paper, we determine the smallest covering in-
dexes for two subclasses of BPQ, namely, BPQ+ and
TPQ. BPQ+ is an important subclass, since most real
life XPath queries do not involve negation; as an anec-
dotal evidence, most of the example queries considered
by Kaushik et al. do not involve negation. Amer-Yahia
et al. [2] argued that many real life queries are TPQ
queries. Our results are as follows:

• A CXPath+ query can be evaluated on an XML
document by computing the simulation of the
query tree by the document graph (Section 4).
This result leads to an O(|Q||D|) time algorithm
for evaluating CXPath+ queries; it is also used
to prove our main result.
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Figure 2: (a). An XML Document D. (b). Its Simu-
lation Quotient.

• Our main result: For an XML document, its (for-
ward and backward) simulation quotient is the
smallest covering index for BPQ+ (Section 6).

• The simulation quotient (of an XML document),
with the idref edges ignored throughout, is the
smallest covering index for TPQ (Section 7).

Unlike the result of Kaushik et al., our three results
above hold if we add the node identity operator ==
to CXPath+, BPQ+ and TPQ, respectively. But due
to lack of space, we will not discuss this further.

In general, bisimulation is a refinement of simu-
lation: If two nodes are bisimilar, then they are also
similar. So, for any XML document, its simulation
quotient is never larger than its bisimulation quotient;
in some instances, it is exponentially smaller (see Sec-
tion 5). Our main result shows that disallowing nega-
tion in the queries could substantially reduce the size
of the smallest covering index.

Example 1.2. We illustrate our main result in a sim-
ple setting (no idref edges). First, consider the doc-
ument in Figure 1a. Earlier, we saw its bisimulation
quotient in Figure 1b. For this document, simulation
is same as bisimulation. No BPQ query, and hence no
BPQ+ query, can distinguish between similar nodes.

Next, consider the document D in Figure 2a. No
two nodes are bisimilar; the bisimulation quotient is
D itself. But the following pairs of nodes are sim-
ilar: (2, 7), (5, 8) and (6, 9). The simulation quo-
tient is shown in Figure 2b; as per our main result,
this is a covering index for BPQ+. The BPQ query
//b [c [not d]] distinguishes between nodes 2 and 7; any
BPQ query that distinguishes between these two nodes
(or between nodes 5 and 8; or between 6 and 9) must
involve negation. ◦

Sections 2, 3 and 5 contain the preliminary defini-
tions and notations we need. In Section 2, we describe
the classes of queries we study, and show that any
CXPath query can be represented as a query tree. In
Section 3, we define the simulation relation on the ver-
tices of ordinary graphs. In Section 5, we define the



simulation and bisimulation relations on an XML doc-
ument, and also define their quotients. We explain the
difference between the two relations, and show that,
in some instances, the simulation quotient is exponen-
tially smaller. Our three results are proved in Sections
4, 6 and 7. In Section 8, we present our conclusions.

2 Queries and Query Trees

An XML document is represented as a graph D =
(N,E, Eref ), where N is a set of nodes, E is a set
of tree edges, and Eref is a set of idref edges be-
tween the nodes; the subgraph T = (N,E) without
the idref edges is a tree (see [1]). In conformance
with the XPath data model [3], the root of D or T ,
denoted by root(D) or root(T ), is a node in N that
does not correspond to any element in the document;
it has the unique element type /. Its unique child node
corresponds to the root element of the document. Each
node n ∈ N − {root(D)} corresponds to an XML el-
ement, and is labeled by its element type (tag name)
τ(n) from a finite alphabet Σ. Each tree edge denotes
an element–subelement relationship. When we talk of
child, descendant, parent, ancestor and sibling rela-
tionships between the nodes in N , we only consider
tree edges; i.e., these relationships hold in T , without
regard to Eref . The children of a node are ordered
from left to right, and represent the content (i.e., list
of subelements) of that element. Atomic elements (i.e.,
those without subelements) correspond to the leaves of
the tree; CXPath queries ignore the values (PCDATA)
of these elements.

A context node set (cns) is a set of nodes in an XML
document; i.e., it is a subset of N . A CXPath query
starts with an initial cns, and computes a new cns
which is the result of the query. An absolute CXPath
query is of the form /ls1/ls2/..., where ls stands
for a location step; the first / indicates that the nav-
igation starts at root(D); i.e., the initial cns consists
only of root(D). A relative CXPath query is of the
form ls1/ls2/..., where the navigation starts from
some initial cns (to be specified). Starting from some
cns ({root(D)} for an absolute query), the location
steps are applied from left to right, to compute the
result of the query. Each location step is of the form
axis::node-test[predicate1][predicate2].... It
consists of an axis identifier (one of thirteen mentioned
earlier), a node test, and zero or more predicates. We
consider two kinds of node tests: Particular type in Σ,
and wildcard ∗; they match nodes of the specified type,
and nodes of all types, respectively. Starting from a
previous cns, a location step identifies a new cns: For
each node in the previous cns, the axis identifies a new
set of possible nodes, which are then filtered based on
the node test and the predicates; the nodes that pass
the tests are added to the new cns. The result of a
query is the cns resulting from the last location step.

Each predicate is either a boolean combination of

predicates, or is a CXPath query. A predicate that is a
CXPath query q is true if the result of q is nonempty
(i.e., contains at least one node).

The class CXPath of queries is defined by the follow-
ing grammar, where axis denotes one of the thirteen
axes discussed earlier, and nt ∈ Σ∪{∗} denotes a node
test.
<cxpquery> ::= <acxpquery> | <rcxpquery>

(absolute or relative)
<acxpquery> ::= /<rcxpquery>
<rcxpquery> ::= <location step>

| <location step>/<rcxpquery>
<location step> ::= axis :: nt <predicates>
<predicates> ::= ε | [<predicate> ] <predicates>
<predicate> ::= <predicate> and <predicate>

| <predicate> or <predicate>
| not <predicate> | <rcxpquery>

BPQ is the subclass of CXPath,
where axis ∈ {s, c, d, ds, pa, a, as, ir, rir}. TPQ is
the subclass of BPQ, where axis ∈ {s, c, d, ds}, and
the boolean operators or and not are not allowed.

A CXPath query Q can be represented by an un-
ordered query tree tree(Q) = (V,A), where V is a set
of vertices, and A is a set of arcs. Each vertex v ∈ V
has a type τ(v), and a boolean operator bool(v) asso-
ciated with it. τ(v) ∈ Σ∪{/, ∗} is the element type of
v; / denotes the root type, and ∗ denotes ‘any’ type.
Bool(v) ∈ {and, or, not}. Each arc r ∈ A has an axis
axis(r) associated with it; axis(r) is one of the thir-
teen axes we discussed earlier.

For a CXPath query Q, let us see how to con-
struct tree(Q). Let the primary part of Q, denoted by
primary(Q), be the query obtained from Q by drop-
ping all the predicates from Q. We first construct a
linear path trunk(Q) that corresponds to primary(Q).
The root vertex v0 does not correspond to any loca-
tion step in Q; if Q is an absolute query, τ(v0) = /;
else τ(v0) = ∗. For i ≥ 1, the ith arc ri and its desti-
nation vertex vi correspond to the ith location step
lsi in primary(Q). Let lsi = axisi :: nti; then
axis(ri) = axisi and τ(vi) = nti. For all vertices
vi ∈ trunk(Q), bool(vi) = and. The last vertex on
trunk(Q) generates the output of Q; this vertex is
called the output vertex of Q, denoted by opv(Q), and
is marked with a $ sign in the figures.

Now, let us see how to add the predicates to
trunk(Q), to construct tree(Q). For each predicate
attached to lsi in Q, there is an arc r from vi, with
destination vertex v; axis(r) = s and v is the root of
tree(predicate). Tree(predicate) is constructed re-
cursively, as follows. First, τ(v) = ∗. If predicate
is the boolop ∈ {and, or, not} of predicate(s), then
bool(v) = boolop; there is one arc (with axis s) from v
for each operand, and the construction proceeds recur-
sively for each operand, from the destination vertex of
the corresponding arc. Else, predicate is a relative
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CXPath query, and the construction proceeds recur-
sively from v.

Example 2.1. For the CXPath query Q =
/d :: a[c :: b and not ps :: c]/fs :: ∗[c :: a or d :: b],
tree(Q) is shown in Figure 3. The vertices are num-
bered in the order they were created using the proce-
dure described above. Trunk(Q) consists of vertices 0,
1 and 2, and the two arcs between them (correspond-
ing to the two location steps in primary(Q)). For
each vertex v, the pair (τ(v), bool(v)) is shown next
to v. We follow the convention that if bool(v) is not
specified, then it should be taken to be and. For each
arc r, axis(r) is shown next to it. ◦

It is easily seen that, in general, |tree(Q)| is linear
in |Q|. From now onwards, we will not distinguish
between Q and tree(Q); by Q we will mean tree(Q).

From now onwards, to minimize confusion, we will
use the terms nodes and edges while referring to com-
ponents of the document graph D or tree T ; we will
use the terms vertices and arcs while referring to the
corresponding components of Q. Note that, while Q
consists of arcs with thirteen different axes, T (resp.
D) consists of only one (resp. two) kind(s) of edges;
also, while some vertices in Q might have the wildcard
type (∗), all the nodes in T and D (except root(D))
have types from Σ.

3 The Simulation Relation
for Ordinary Graphs

In this section, we consider the simulation relation be-
tween two ordinary directed graphs: The graphs con-
tain only one kind of arcs (directed, unlabeled), and
only one kind of vertex label (type τ). Consider two
directed graphs G1 = (V1, A1) and G2 = (V2, A2); for
i = 1, 2, Vi is the set of vertices and Ai is the set of
arcs of Gi. Let Σ be a finite alphabet of vertex la-
bels. Each vertex v in V1 or V2 has a type τ(v) ∈ Σ
associated with it.

Simulation [10] (also see [1]) is a binary relation
between the vertex sets V1 and V2. It provides one
possible notion of dominance/equivalence between the
vertices of the two graphs. For a vertex v, let post(v)
denote the set of vertices to which there is an arc from
v. Forward simulation (abbreviated as Fsimulation)
of G1 by G2 is the largest binary relation �Fs⊆ V1×V2

such that the following holds: If v1 �Fs v2, then

• Preserve vertex types: τ(v1) = τ(v2).

• Preserve outgoing arcs: For each v′1 ∈ post(v1),
there exists v′2 ∈ post(v2) such that v′1 �Fs v′2.

If v1 �Fs v2, we say that v1 is Fsimulated by v2; let
Fsim(v1) ⊆ V2 denote the set of all Fsimulators of v1.

Sometimes, we are interested in the Fsimulation of
a graph by itself. It is well-known that such Fsim-
ulation is reflexive and transitive, but it may not be
symmetric. Vertices v1 and v2 are Fsimilar, denoted
by v1 ≈Fs v2, if v1 �Fs v2 and v2 �Fs v1; Fsimilarity
is an equivalence relation.

Backward simulation (Bsimulation) and Bsimilar
(denoted by �Bs and ≈Bs) are analogous to Fsimu-
lation and Fsimilar, respectively; they deal with the
incoming arcs at a vertex, as opposed to Fsimulation
that deals with the outgoing arcs.

For trees, we can compute Fsimulation and Bsimu-
lation bottom-up and top-down, respectively.

Example 3.1. For the tree in Figure 2a, com-
puting Fsimulation bottom-up, we have Fsim(6) =
Fsim(9) = {6, 9}, Fsim(3) = {3, 5, 8}, Fsim(5) =
Fsim(8) = {5, 8}, Fsim(2) = Fsim(7) = {2, 7},
Fsim(1) = {1}, and Fsim(0) = {0}. So, the only non-
trivial relational pairs are 6 ≈Fs 9, 3 �Fs 5, 3 �Fs 8,
5 ≈Fs 8, and 2 ≈Fs 7.

Computing Bsimulation top-down, we have 2 ≈Bs

7, 3 ≈Bs 5 ≈Bs 8, and 6 ≈Bs 9. ◦
The forward and backward simulation

(FBsimulation) of G1 by G2 deals with both
the incoming and the outgoing arcs at a vertex. For
a vertex v, let pre(v) denote the set of vertices from
which there is an arc to v. FBsimulation is the
largest binary relation �FBs⊆ V1 × V2, such that the
following holds: If v1 �FBs v2, then

• Preserve vertex types: τ(v1) = τ(v2).

• Preserve outgoing arcs: For each v′1 ∈ post(v1),
there exists v′2 ∈ post(v2) such that v′1 �FBs v′2.

• Preserve incoming arcs: For each v′1 ∈ pre(v1),
there exists v′2 ∈ pre(v2) such that v′1 �FBs v′2.

For v1 ∈ V1, let FBsim(v1) ⊆ V2 denote the set of all
FBsimulators of v1. For FBsimulation of a graph by
itself, FBsimilar (denoted by ≈FBs) is analogous to
Fsimilar; it is an equivalence relation.

For trees, FBsimulation can be computed by first
computing Fsimulation bottom-up, and then using it
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in the computation of FBsimulation top-down. This is
explained further in Section 4. For the tree in Figure
2a, FBsimulation is identical to Fsimulation that we
saw in Example 3.1.

Bloom and Paige [4] and Henzinger et al. [8] pre-
sented an O(|G1||G2|) algorithm for computing the
Fsimulation relation between two graphs. Their al-
gorithm can be easily modified to compute the Bsimu-
lation and FBsimulation relations between two graphs,
without changing the runtime.

4 Query Evaluation thru Simulation

In this section, we extend the definition of simulation
(for ordinary graphs), to simulation of a CXPath+

query Q = (V,A) by a document D = (N,E, Eref ).
We then show that Q can be evaluated on D by com-
puting the FBsimulation of Q by D. This result is
used in Section 6, to prove our main result.

This result is also of independent interest, as it leads
to an O(|Q||D|) time in-memory algorithm for evalu-
ating Q on D; the constant factors in the O notation
are small. Previously, Gottlob et al. [7] presented an
O(|Q||D|)-time in-memory algorithm; their algorithm
is based on formal semantics, and does not involve
simulation. They also pointed out that three commer-
cially available XPath query engines (XALAN, XT and
Microsoft Internet Explorer 6) take exponential time
(O(|D||Q|) to evaluate a CXPath+ query.

For a vertex z in Q, let Qz denote the subtree of Q
consisting of z and all its descendants. For a node n in
D, and an axis (one of thirteen discussed earlier), let
axis[n] denote the set of nodes in D that bear the axis
relationship to n. For example, s[n] = {n}, c[n] is the
set of all children of n, and so on; ir[n] is the set of
all nodes reachable from n by following a single idref
edge. For N ′ ⊆ N , let axis[N ′] = ∪n′∈N ′axis[n′].
Recall that, for an arc r in Q, axis(r) is the axis of
r; let axis(r)[n] and axis(r)[N ′] denote axis[n] and

axis[N ′], respectively.
An embedding of Qz in D is a partial mapping

β : Qz → D, from the vertices of Qz to the nodes of
D, that satisfies the following conditions:

1. β(z) is defined.

2. Preserve vertex types: For each vertex v in Qz

such that β(v) is defined:

• If τ(v) = /, then β(v) = root(D).
• If τ(v) ∈ Σ, then τ(β(v)) = τ(v).

3. Preserve boolean vertex labels and outgoing arc
labels: For each vertex v in Qz such that β(v) is
defined, consider two cases depending on bool(v).

(a) Bool(v) = and: We require that for each arc
r = (v, v′), β(v′) ∈ axis(r)[β(v)].

(b) Bool(v) = or: We require that for some arc
r = (v, v′), β(v′) ∈ axis(r)[β(v)].

β is a partial mapping because, in para 3(b), β(v′)
might not be defined for some vertices v′ in Qz.

Let Q(D,S) denote the result of evaluating Q on
D, for a given original context node set (cns) S. Q(D)
corresponds to the case when Q is an absolute query;
then τ(root(Q)) = /, and S = {root(D)}. Computing
Q(D,S) requires finding all embeddings β of Q in D
such that β(root(Q)) ∈ S. We have:
Q(D,S) = {β(opv(Q)) | β is an embedding of Q in D

such that β(root(Q)) ∈ S}.

Example 4.1. In Figure 4, we show an embedding
β of a CXPath+ query Q in an XML document D.
Since this is the only possible embedding, Q(D) =
{β(opv(Q))} = {β(3)} = {6}. ◦

We show that Q(D,S) can be computed using the
FBsimulation of Q by D. First, we need to redefine
the concept of simulation to account for the presence
of boolean labels bool(v) (in addition to τ(v)) on the
vertices in Q, and the labels axis(r) on the arcs in
Q. We define the forward simulation (abbreviated as
Fsimulation) of Q by D to be the largest binary re-
lation �Fs⊆ V ×N such that the following holds: If
v �Fs n, then

1. Preserve vertex types:

• If τ(v) = /, then n = root(D).
• If τ(v) ∈ Σ, then τ(n) = τ(v).

2. Preserve boolean vertex labels and outgoing arc
labels: Consider two cases depending on bool(v)
(see Figure 5).

(a) Bool(v) = and: For each arc r = (v, v′),
there exists a node n′ ∈ axis(r)[n] such that
v′ �Fs n′.
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Figure 5: Definition of Simulation: v ∈ Q, n ∈ D

(b) Bool(v) = or: For some arc r = (v, v′),
there exists a node n′ ∈ axis(r)[n] such that
v′ �Fs n′.

For v ∈ V , let Fsim(v) ⊆ N denote the set of all
Fsimulators of v.

The above definition combines the features from the
definition of Fsimulation for ordinary graphs (Section
3) and the definition of embedding given above.

Example 4.2. For (Q, D) in Figure 4, we have
Fsim(4) = Fsim(5) = {5, 8}, Fsim(3) = {2, 6},
Fsim(2) = {2}, Fsim(1) = {4} and Fsim(0) = {0}.

Fsimulation can be computed in O(|Q||D|) time,
by proceeding bottom up in Q. Concerning the signif-
icance of Fsimulation, we have the following.

Lemma 4.1. Consider the Fsimulation of Q by D.
There exists an embedding β of Qv in D with β(v) = n
iff n ∈ Fsim(v).

Note that Fsim(v) is completely determined by Qv

and D; so it is independent of

• the cns S.

• the vertices and arcs in Q that are outside of Qv,
and how they can be embedded in D.

Recall that Q(D,S) consists of β(opv(Q)) for those
embeddings β of the entire query Q in D, such that
β(root(Q)) ∈ S; clearly, Q(D,S) ⊆ Fsim(opv(Q)).
The two restrictions listed above can be transmit-
ted downwards in Q by adding backward simulation
to Fsimulation. The forward and backward simula-
tion (abbreviated as FBsimulation) of Q by D is the
largest binary relation �FBs⊆ V × N , such that the
following holds: If v �FBs n, then

1. Preserve vertex types:

• If v = root(Q), then n ∈ S.
• If τ(v) ∈ Σ, then τ(n) = τ(v).

2. Preserve boolean vertex labels and outgoing arc
labels: Consider two cases depending on bool(v)
(see Figure 5).

(a) Bool(v) = and: For each arc r = (v, v′),
there exists n′ ∈ axis(r)[n] such that
v′ �FBs n′.

(b) Bool(v) = or: For some arc r = (v, v′),
there exists n′ ∈ axis(r)[n] such that
v′ �FBs n′.

3. Preserve incoming arc label: If v 6= root(Q), let v′

be the parent of v in Q; let r = (v′, v). Then there
exists a node n′ ∈ N such that v′ �FBs n′, and
n ∈ axis(r)[n′]. This should hold independent of
bool(v′).

For v ∈ V , let FBsim(v) ⊆ N denote the set of all
FBsimulators of v. Concerning the significance of FB-
simulation, we have the following.

Lemma 4.2. Consider the FBsimulation of Q by D.
For any vertex v ∈ V , there exists an embedding β
of Q in D with β(root(Q)) ∈ S and β(v) = n, iff
n ∈ FBsim(v).

Specializing this lemma for v = opv(Q), we have
the following.

Theorem 4.3. Consider the FBsimulation of Q by
D. Q(D,S) = FBsim(opv(Q)).

Since Q is a tree, FBsimulation can be computed
by first computing Fsimulation, and then adding back-
ward simulation, as follows:

1. First compute Fsim(v) for all v ∈ V . This can
be done bottom-up in Q.

2. Set FBsim(root(Q)) = Fsim(root(Q)) ∩ S.

3. Add backward simulation top-down in Q, starting
from root(Q), as follows. Suppose that for some
vertex v ∈ V , we have computed FBsim(v). Let
v′ be a child of v, and r = (v, v′) be the arc from v
to v′ (see Figure 5). Set FBsim(v′) = Fsim(v′)∩
axis(r)[FBsim(v)].

Step 1) can be performed in O(|Q||D|) time. For
any N ′ ⊆ N and axis, axis[N ′] can be computed
in O(|D|) time. So, for each vertex v′ in step 3),
FBsim(v′) can be computed in O(|D|) time; overall,
step 3) takes O(|Q||D|) time. So, the above algorithm
runs in O(|Q||D|) time.

Example 4.3. For (Q,D) in Figure 4, we computed
the Fsimulation of Q by D in Example 4.2. Us-
ing the above procedure, we now compute FBsimu-
lation. We have FBsim(0) = {0}, FBsim(1) = {4},
FBsim(5) = {5}, FBsim(2) = {2}, FBsim(3) = {6}
and FBsim(4) = {8}; Q(D) = FBsim(opv(Q)) =
FBsim(3) = {6}. ◦

We have the following result.

Theorem 4.4. A CXPath+ query Q can be evalu-
ated on an XML document D by computing the FB-
simulation of Q by D, in O(|Q||D|) time.

5 Simulation, Bisimulation
and Quotients of D

In this section, we define the simulation and bisimula-
tion relations on an XML document D = (N,E, Eref ),



and also define the resulting quotient graphs; these
definitions are used in Section 6. Then we show that
the simulation quotient could be exponentially smaller
than the bisimulation quotient. Simulation and bisim-
ulation are binary relations on N .

The Simulation Relation

For simulation, we need to modify the definitions from
Section 3, to account for the special root node and the
presence of two kinds of edges in D. We define the
Fsimulation of D to be the largest binary relation
�Fs on N such that the following holds: If n1 �Fs n2,
then

• Preserve node types:

– If n1 = root(D), then n2 = root(D)
– Else τ(n2) = τ(n1).

• Preserve outgoing tree edges: For each tree edge
(n1, n

′
1), there exists a tree edge (n2, n

′
2) such that

n′1 �Fs n′2.

• Preserve outgoing idref edges: For each idref
edge (n1, n

′
1), there exists an idref edge (n2, n

′
2)

such that n′1 �Fs n′2.

As in the case of ordinary graphs, Fsimulation of D is
reflexive and transitive, but it may not be symmetric.
Nodes n1 and n2 are said to be Fsimilar, denoted by
n1 ≈Fs n2, if n1 �Fs n2 and n2 �Fs n1; Fsimilarity is
an equivalence relation.

Example 5.1. Consider D in Figure 2a. Since D does
not have any idref edges, the Fsimulation relation is
same as the one we saw in Example 3.1: The only
nontrivial relational pairs are 6 ≈Fs 9, 3 �Fs 5, 3 �Fs

8, 5 ≈Fs 8, and 2 ≈Fs 7.
If we add an idref edge from node 7 to node 5

in Figure 2a, the new Fsimulation relation will differ
from the one above only in that 2 �Fs 7, but 7 6�Fs 2.

Bsimulation and Bsimilar are analogous to Fsim-
ulation and Fsimilar, respectively; they deal with the
incoming tree and idref edges at a node, as opposed
to Fsimulation that deals with the outgoing edges.

The FBsimulation of D deals with both the incom-
ing and the outgoing edges at a node. It is the largest
binary relation �FBs on N such that the following
holds: If n1 �FBs n2, then

• Preserve node types:

– If n1 = root(D), then n2 = root(D)
– Else τ(n2) = τ(n1).

• Preserve outgoing tree edges: For each tree edge
(n1, n

′
1), there exists a tree edge (n2, n

′
2) such that

n′1 �FBs n′2.

• Preserve outgoing idref edges: For each idref
edge (n1, n

′
1), there exists an idref edge (n2, n

′
2)

such that n′1 �FBs n′2.

• Preserve incoming tree edges: For each tree edge
(n′1, n1), there exists a tree edge (n′2, n2) such that
n′1 �FBs n′2.

• Preserve incoming idref edges: For each idref
edge (n′1, n1), there exists an idref edge (n′2, n2)
such that n′1 �FBs n′2.

FBsimilar is analogous to Fsimilar; it is an equiva-
lence relation.

Example 5.2. In Example 5.1 above, we considered
the Fsimulation relation for D in Figure 2a; for this
D, FBsimulation turns out to be same as Fsimulation.

Now, consider adding an idref edge from node 7
to node 5 in Figure 2a. In Example 5.1, we saw that
this caused only a small change in Fsimulation; but
it causes a substantial change in FBsimulation. The
only nontrivial relational pair is 3 �FBs 5. 5 6�FBs

8 because 5 has an incoming idref edge, whereas 8
doesn’t. As a consequence, 6 6�FBs 9, 2 6�FBs 7, and
3 6�FBs 8. 7 6�FBs 2 because 7 has an outgoing idref
edge, whereas 2 doesn’t. As a consequence, 8 6�FBs 5
and 9 6�FBs 6. ◦

In the absence of idref edges, FBsimulation can
be computed as described in Section 4: First com-
pute Fsimulation bottom-up, then add Bsimulation
top-down. In the presence of idref edges, compu-
tation of FBsimulation is quite complicated, as seen
from the preceding example. In all cases, the algo-
rithms of Bloom and Paige [4] and Henzinger et al.
[8] can be used to compute the Fsimulation, Bsimula-
tion and FBsimulation relations in O(|N |2+|N ||Eref |)
time.

The Bisimulation Relation

For ordinary graphs, bisimulation was defined in [13]
(also see [1]); it provides another notion of equivalence
between the nodes. We define the forward bisimula-
tion (abbreviated as Fbisimulation) of D to be the
largest binary relation ≈Fbi on N such that the fol-
lowing holds: If n1 ≈Fbi n2, then

• Preserve node types:

– If n1 = root(D), then n2 = root(D); and
vice versa

– Else τ(n2) = τ(n1).

• Preserve outgoing tree edges: For each tree edge
(n1, n

′
1), there exists a tree edge (n2, n

′
2) such that

n′1 ≈Fbi n′2; and vice versa.

• Preserve outgoing idref edges: For each idref
edge (n1, n

′
1), there exists an idref edge (n2, n

′
2)

such that n′1 ≈Fbi n′2; and vice versa.

Fbisimulation is reflexive, symmetric and transitive;
so, it is an equivalence relation. If n1 ≈Fbi n2, we say
that n1 and n2 are Fbisimilar. Let Fbisim(n) ⊆ N
denote the set of all nodes that are Fbisimilar to n.



Example 5.3. For D in Figure 1a, the following nodes
are bisimilar: (4, 6, 9), (3, 5, 8) and (2, 7). For this D,
Fsimulation is identical to Fbisimulation. If we add an
idref edge from node 7 to node 5, then nodes 2 and
7 would not be Fbisimilar; for Fsimulation, we would
have 2 �Fs 7, but 7 6�Fs 2.

For D in Figure 2a, we saw Fsimulation in Example
5.1. The only Fbisimilar pairs are (6, 9) and (5, 8);
3 6≈Fbi 8 and 2 6≈Fbi 7. ◦

Backward bisimulation and forward and back-
ward bisimulation (abbreviated as Bbisimulation and
FBbisimulation) are defined analogously [11, 1, 9].
We let n1 ≈Bbi n2 and n1 ≈FBbi n2 denote that n1

and n2 are Bbisimilar and FBbisimilar, respectively.
A clue about our abbreviations and subscripts:

Capital letters F and B are used only for directions
(Forward and Backward); in the subscripts, s is used
for simulation (or similar), and bi is used for bisimu-
lation (or bisimilar).

Example 5.4. For D in Figure 1a, FBbisimulation
(also FBsimulation) is same as Fbisimulation. If we
add an idref edge from node 7 to node 5, then no
two nodes would be FBbisimilar. For D in Figure 2a,
no two nodes are FBbisimilar; compare this to the
FBsimilar relation in Example 5.2. ◦

In the absence of idref edges, FBbisimulation can
be computed in the same manner as FBsimulation:
First compute Fbisimulation bottom-up, then add
Bbisimulation top-down. In the presence of idref
edges, computation of FBbisimulation is quite compli-
cated. In all cases, the algorithm of Paige and Tarjan
[12] can be used to compute the bisimulation relations
in O(|D| log |D|) time.

The Quotients

An equivalence relation ≈ on N partitions N into
equivalence classes: Any two nodes in the same class
are related, and two nodes from different classes are
not related. For n ∈ N , let n≈ ⊆ N denote the equiv-
alence class containing n. Note that if m ≈ n, then
m≈ = n≈. The quotient graph D≈ is obtained from D
by merging the nodes of each equivalence class into a
single node.

In the following sections, we let DFs, DBs, DFBs,
DFbi, DBbi and DFBbi denote the quotient graphs of D
corresponding to the equivalence relations ≈Fs, ≈Bs,
≈FBs, ≈Fbi, ≈Bbi and ≈FBbi, respectively. DFs, DBs

and DFBs will be called the Fsimulation, Bsimulation,
and FBsimulation quotients, respectively. DFbi, DBbi

and DFBbi will be called the Fbisimulation, Bbisimu-
lation, and FBbisimulation quotients, respectively.

Example 5.5. For D in Figure 1a, DFBbi is shown in
Figure 1b; DFBs is same as DFBbi. For D in Figure
2a, DFBs is shown in Figure 2b; DFBbi is same as D.

Bisimulation is a Refinement

Let ≈1 and ≈2 be two equivalence relations on N . We
say that ≈2 is a refinement of ≈1 if, for any pair of
nodes m,n ∈ N , whenever m ≈2 n holds, m ≈1 n also
holds. So, ≈2 is a refinement of ≈1, if each equivalence
class of ≈2 is contained in some equivalence class of
≈1. It is easily seen that if m ≈Fbi n, then m ≈Fs n;
so, ≈Fbi is a refinement of ≈Fs. Similarly, ≈Bbi is a
refinement of ≈Bs, and ≈FBbi is a refinement of ≈FBs.

Since ≈Fbi is a refinement of ≈Fs, DFbi will
have more nodes compared to DFs; in fact, DFs =
(DFbi)Fs. Since computing DFs is more expensive
than computing DFbi, we can speed up the compu-
tation of DFs by first computing DFbi (|DFbi| ≤ |D|),
and then computing its simulation quotient. A similar
statement holds for DBs and DFBs.

The Difference Between Sim and Bisim

To get an intuitive feel, let us consider the difference
in the absence of idref edges. Then, there is no dif-
ference between Bsimilar and Bbisimilar: m ≈Bs n iff
m ≈Bbi n. Two nodes are Bsimilar (or Bbisimilar) iff
the sequences of node types on the path from the root
to the two nodes are identical. But, there is a big dif-
ference between Fsimulation and Fbisimulation (and
consequently between FBsimulation and FBbisimula-
tion). We present instances where the FBsimulation
quotient is exponentially smaller than the FBbisimu-
lation quotient.

Two nodes are Fbisimilar iff the trees rooted at the
two nodes are identical except for duplicate subtrees.
For example, in Figure 1a, the subtrees rooted at nodes
3 and 5 are duplicates; each is identical to the subtree
at node 8; so, nodes 2 and 7 are Fbisimilar. The du-
plication can be at any level: If another child labeled
d is added to node 3, 5 or 8, nodes 2 and 7 would still
be Fbisimilar. In Figure 2a, the subtree at node 5 is
identical to that at node 8; but the subtree at node 3
is not a duplicate; so nodes 2 and 7 are not Fbisimilar.

For simulation, m �Fs n iff the tree rooted at m can
be obtained from the tree at n by duplicating subtrees
and/or dropping subtrees at any level. For example,
in Figure 2a, the tree at node 2 can be obtained from
the tree at node 7 as follows: Duplicate the subtree at
node 8, then drop the subtree at the node labeled d
from one of the copies. So, 2 �Fs 7. Conversely, the
tree at node 7 can be obtained from the tree at node
2 as follows: Drop the subtree at node 3. So, 7 �Fs 2.

Now, we present document instances where the FB-
simulation quotient is exponentially smaller than the
FBbisimulation quotient. For each positive integer k,
we present an XML document D whose the bisimula-
tion quotient DFBbi = D has more than 22k−1 nodes,
but the simulation quotient DFBs has only about k2k

nodes. Figures 2a and 6a correspond to the cases
k = 1, 2, respectively. We define the document D as
follows. Let the alphabet Σ consist of types {a, b, c}
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Figure 6: (a). An XML Document D (and DFBbi). (b). Its Simulation Quotient DFBs.

and k other special types (d and e in Figure 6). A full
c is a node labeled c with k children labeled by the spe-
cial types (nodes 9–16 in Figure 6a). A partial c is a
node labeled c with i < k children labeled by i dis-
tinct special types (nodes 17–28 in Figure 6a). There
are 2k − 1 partial c’s, including a c with no children.
A b-node is a node labeled b that has one full c and a
set of partial c’s as children. There are 22k−1 distinct
b-nodes. Document D has root labeled / with a child
labeled a. This node labeled a has the distinct b-nodes
as children. All the b nodes in D are Bbisimilar. No
two b-nodes are Fbisimilar; so no two are FBbisimilar;
the FBbisimulation quotient of D is D itself. All the b
nodes are Fsimilar and so FBsimilar. The FBsimula-
tion quotient DFBs has only one b node, with one full
c and all the 2k − 1 partial c’s as children (see Figures
2b and 6b, for k = 1, 2); |DFBs| < k2k + 3. This leads
to the following.

Theorem 5.1. There exist large XML documents
with FBbisimulation quotients exponentially larger
than FBsimulation quotients.

6 FBsimulation Quotient is the
Smallest Covering Index for BPQ+

Let D = (N,E, Eref ) be an XML document. Kaushik
et al. [9] showed that DFBbi, the FBbisimulation quo-
tient of D, is the smallest covering index for BPQ. We
show that DFBs, the FBsimulation quotient of D, is
the smallest covering index for BPQ+.

Let ≈ be an equivalence relation on N . Recall (from
Section 1) that D≈ is a covering index for a class
C ⊆ CXPath of queries, if the following holds: No
absolute query Q ∈ C can distinguish between two
nodes of D in the same equivalence class; i.e., Q(D) is
the union of some of the equivalence classes.

Now, we show that DFBs is a covering index for
BPQ+; the proof is completely different from that for
the analogous result (that DFBbi is a covering index
for BPQ) in [9].

Lemma 6.1. DFBs is a covering index for BPQ+.

Proof. Let Q = (V,A) ∈ BPQ+; let m,n ∈ N and
m ≈FBs n. We need to show that Q can not distin-
guish between m and n; i.e., either both m and n are

in Q(D), or neither is in Q(D). Let m ∈ Q(D); we will
show that n ∈ Q(D). In our proof, we consider two
different kinds of simulations; simulation of Q by D,
defined in Section 4, and simulation of D by D, defined
in Section 5; we differentiate between them using the
initials Q and D, respectively, prepended to the rela-
tion names. Since m ∈ Q(D), we have (from Theorem
4.3) that opv(Q) �QFBs m. Summarizing the above,
we need to prove the following: If opv(Q) �QFBs m
and m ≈DFBs n, then opv(Q) �QFBs n. We will
prove the following more general result: For v ∈ V
and n1, n2 ∈ N ,

If v �QFBs n1 and n1 �DFBs n2, then v �QFBs n2

(1)
This looks similar to the well-known transitivity result
for FBsimulation of ordinary graphs. But things are
more complicated here: If B is dropped from all the
subscripts in Statement (1), the resulting statement is
not true (while the transitivity result holds for Fsim-
ulation of ordinary graphs).

We prove Statement (1) in two parts.

Part I. We first prove the following

If v �QFs n1 and n1 �DFBs n2, then v �QFs n2 (2)

We prove the statement by induction on height(v).
The height of a vertex in Q is the length of the longest
path from that vertex to a leaf; a leaf has height 0, and
root(Q) has the largest height.

To prove that v �QFs n2, we need to prove that
two things are preserved: a). vertex type τ(v),
and b). boolean vertex label bool(v) and arc labels
outgoing from v.

The proof pertaining to the preservation of τ(v) is
the same for the base case as well as for all the subcases
of the induction step; so we present it here. We need to
separately consider two cases: τ(v) = / and τ(v) ∈ Σ.
If τ(v) = /, then n1 = root(D); since n1 �DFBs n2,
n2 = root(D); so, we are done. Else if τ(v) ∈ Σ, then
τ(n1) = τ(v); since n1 �DFBs n2, τ(n2) = τ(n1) =
τ(v); so, we are done. Now, we prove the preservation
of b).
Base Case. Height(v) = 0; i.e., v is a leaf in Q. Since
v has no outgoing arcs, b) is preserved.
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Figure 7: Proof of Lemma 6.1: v ∈ Q, n1, n2 ∈ D

Induction Step. The two values for bool(v) (and and
or) can be handled together. Consider an arc r =
(v, v′) outgoing from v. Suppose that there exists a
node n′1 ∈ axis(r)[n1] such that v′ �QFs n′1. We will
show that there exists a node n′2 ∈ axis(r)[n2] such
that n′1 �DFBs n′2 (see Figure 7). Then, by induction
hypothesis (since height(v′) < height(v)), it would
follow that v′ �QFs n′2. From this we can conclude
that b) is preserved. We need to consider nine cases,
depending on the value of axis(r).
axis(r) = s. n′1 must be n1; we take n′2 to be n2.
axis(r) ∈ {c, pa, ir, rir}. Existence of n′2 follows
from the definition of DFBsimulation (along with
n1 �DFBs n2).
axis(r) = d. n′1 ∈ d[n1]; let n1,0 =
n1, n1,1, n1,2, . . . , n1,k = n′1 be the path in T = (N,E)
from n1 to n′1. Since n1 �DFBs n2, n2 must have
a child n2,1 such that n1,1 �DFBs n2,1; this in turn
implies that n2,1 must have a child n2,2 such that
n1,2 �DFBs n2,2; and so on. So, n2 must have a de-
scendant n′2 such that n′1 �DFBs n′2.
axis(r) = a. Similar to the previous case, except that
we use the fact that n1 �DFBs n2, to get a sequence
of parents (and hence an ancestor).
axis(r) = ds. Follows from the cases for s and d.
axis(r) = as. Follows from the cases for s and a.

Part II. Now, we prove Statement (1), using (2). The
proof is by induction on depth(v). The depth of a
vertex in Q is the length of the unique path in Q from
root(Q) to that vertex; root(Q) has depth 0.

Consider the algorithm we described for comput-
ing QFBsimulation, following Theorem 4.3. This al-
gorithm first computes QFsimulation, then adds back-
ward simulation top-down, starting from root(Q).
Base Case. Depth(v) = 0; so v = root(Q). Since Q
is an absolute query, τ(v) = /. From v �QFBs n1,
we have n1 = root(D); since n1 �DFBs n2, we have
n2 = root(D) = n1. So, v �QFBs n2.
Induction Step. From Part I, we have v �QFs n2.
Consider the unique arc r = (v′, v) incoming at v.
Since v �QFBs n1, there exists a node n′1 such that
v′ �QFBs n′1 and n1 ∈ axis(r)[n′1]. We need to show
that there exists a node n′2, such that

n′1 �DFBs n′2 and n2 ∈ axis(r)[n′2].

Then, by induction hypothesis (since depth(v′) <
depth(v)), it would follow that v′ �QFBs n′2. Then,
from the equation QFBsim(v) = QFsim(v) ∩
axis(r)[QFBsim(v′)], we can conclude that n2 ∈

QFBsim(v). Proving the existence of a node n′2 as
required above is similar to the proof in Part I, and is
omitted.

Due to lack of space, we refer the reader to [15],
for proof that DFBs is the smallest among all cover-
ing indexes for BPQ+. This, together with the above
lemma, leads to the following.

Theorem 6.2. DFBs is the smallest covering index
for BPQ+.

7 Smallest Covering Index for TPQ

Let TPQ− be the class TPQ augmented with the
boolean operator not; we have TPQ = TPQ+ ⊂
TPQ− ⊂ BPQ. In this section, we present the small-
est covering indexes for TPQ and TPQ−.

Recall that TPQ queries do not involve idref
edges. For an XML document D = (N,E, Eref ), con-
sider the tree T = (N,E). Let TFBs be the FBsimula-
tion quotient of T . By Lemma 6.1, TFBs is a covering
index for TPQ.

We show that it is the smallest such covering in-
dex. For each node n ∈ N , we show how to construct
a query Q′

n ∈ TPQ, such that Q′
n(D) = Q′

n(T ) =
FBsim(n) (in T ). The query tree Q′

n is constructed
from TFBs by setting the boolean label of each node
to and, and opv(Q′

n) to [nFBs].

Example 7.1. For T in Figure 2a, TFBs is shown in
Figure 2b. For node 5, Q′

5 = /a/b [c]/c [d]. ◦
We have the following.

Lemma 7.1. Q′
n(T ) = FBsim(n).

Theorem 7.2. For an XML document D, TFBs is the
smallest covering index for TPQ.

Now, consider the smallest covering index for
TPQ−. By Kaushik et al.’s result, TFBbi is a covering
index for this class. We show that it is the smallest
such covering index. For each node n ∈ N , we show
how to construct a query Q̂n ∈ TPQ−, such that
Q̂n(D) = Q̂n(T ) = FBbisim(n) (in T ). The query
tree Q̂n is constructed from TFBbi as follows:

• Set the boolean label of each node in TFBbi to
and.

• For each node m in TFBbi and each type τ ∈ Σ
such that m does not have a child node of type τ ,
add the predicate [not c::τ] to node m.

• Set opv(Q̂n) to [nFBbi].

Example 7.2. For T in Figure 2a, TFBbi is T itself.
For node 5, Q̂5 = /a [not a] [not c] [not d]
/b [not a] [not b] [not d] [c [not ∗ ]]
/c [not a] [not b] [not c] [d [not ∗ ]].
Compare this to the query Q′

5 in Example 7.1. ◦



We have the following.

Lemma 7.3. Q̂n(T ) = FBbisim(n).

Theorem 7.4. For an XML document D, TFBbi is
the smallest covering index for TPQ−.

8 Conclusions

Tree Pattern Queries (TPQ), Branching Path Queries
(BPQ) and Core XPath (CXPath) are important sub-
classes of XPath, TPQ ⊂ BPQ ⊂ CXPath ⊂
XPath. Let TPQ = TPQ+ ⊂ BPQ+ ⊂ CXPath+ ⊂
XPath+ denote the corresponding subclasses consist-
ing of queries that do not involve negation. Simula-
tion and bisimulation are two different binary relations
on graph vertices that have previously been studied
in connection with some of these classes. Ramanan
[14] showed that TPQ queries, without wildcard ∗
for node types, can be minimized using simulation.
Kaushik et al. [9] showed that, for an XML document,
its bisimulation quotient is the smallest covering in-
dex for BPQ.

In this paper, we further extended the application
of simulation to the evaluation of CXPath+ queries
and the indexing of XML documents to answer such
queries. We showed the following:

• A CXPath+ query Q can be evaluated on an
XML document D by computing the simulation
of Q by D.

• For an XML document, its simulation quotient
is the smallest covering index for BPQ+.

• For an XML document, its simulation quotient,
with the idref edges ignored throughout, is the
smallest covering index for TPQ.

For any XML document, its simulation quotient is
no larger than its bisimulation quotient. We showed
that, in some cases, the simulation quotient is ex-
ponentially smaller. So, our latter two results give
smaller covering indexes for two important subclasses
of queries.

Our three results above can be easily extended to
queries that consider text elements and string values,
by appropriately modifying the definition of simula-
tion: Two text nodes or string values are similar iff
they are identical.
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