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Abstract
Large web search engines have to answer thou-
sands of queries per second with interactive re-
sponse times. A major factor in the cost of exe-
cuting a query is given by the lengths of the in-
verted lists for the query terms, which increase
with the size of the document collection and are
often in the range of many megabytes. To address
this issue, IR and database researchers have pro-
posed pruning techniques that compute or approx-
imate term-based ranking functions without scan-
ning over the full inverted lists.

Over the last few years, search engines have in-
corporated new types of ranking techniques that
exploit aspects such as the hyperlink structure of
the web or the popularity of a page to obtain im-
proved results. We focus on the question of how
such techniques can be efficiently integrated into
query processing. In particular, we study pruning
techniques for query execution in large engines in
the case where we have a global ranking of pages,
as provided by Pagerank or any other method, in
addition to the standard term-based approach. We
describe pruning schemes for this case and eval-
uate their efficiency on an experimental cluster-
based search engine with ����� million web pages.
Our results show that there is significant potential
benefit in such techniques.

1 Introduction

Over the last decade, the Web has grown from a few thou-
sand to its present size of several billion pages. Due to this
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explosion in size, users increasingly depend on web search
engines for locating relevant information. Given the large
number of web pages on most topics of interest, one of the
main challenges for a search engine is to provide a good
ranking function that can identify the most useful results
from among the many relevant pages. Major search en-
gines need to answer thousands of queries per second on
collections of several billion pages. Thus, search engines
require significant computing resources, typically provided
by large clusters of hundreds or thousands of servers, and
have to scale not just with the number of queries, but also
with the amount of data that needs to be analyzed per query
in order to provide a good answer.

To better understand the challenge, we look at the ba-
sic structure of current search engines. These engines, like
many other information retrieval tools, are based on an in-
verted index, which is an index structure that allows ef-
ficient retrieval of documents containing a particular word
(or term). An inverted index consists of many inverted lists,
where each inverted list 	�
 contains the IDs of all docu-
ments in the collection that contain a particular word � ,
sorted by document ID or some other measure, plus ad-
ditional information such as the number of occurrences in
each document, the exact positions of the occurrences, and
their context (e.g., in the title, in anchor text).

The simplest class of queries that can be implemented
on such an inverted index are Boolean queries. Thus, a
query (apple AND orange) OR pear for all documents
containing both apple and orange, or the word pear, can
be implemented by first intersecting the list of document
IDs in the inverted lists for apple and orange, and then
merging the result with the inverted list for pear. Of
course, state-of-the-art search engines are not limited to
Boolean queries, which have the following problems:

 Boolean queries do not provide any ranking of results,
which is a problem since the result size for common
queries may be in the millions of documents. This
problem is overcome by applying a ranking function
that assigns a numeric score to each document for the
given query using term-based techniques (such as the
cosine measure), hyperlink analysis, or traffic data.

 As the size of the document collection increases, the
inverted lists for common words can become very



long. Thus, while each inverted list is much smaller
than the entire document collection, a terabyte page
collection indexed by a large engine results in many
lists with sizes in the range of multiple megabytes that
may have to be traversed during a query. In general, a
doubling of the collection size results in a doubling of
the amount of data that is scanned for each query.

This second problem typically stays with us as we go from
Boolean to other classes of ranked queries. In particular,
many engines perform ranking by applying a ranking func-
tion to the result of a Boolean AND of the keywords. While
this restriction to AND and the low average number of key-
words per query make web search queries more efficient
than the types of queries found in traditional IR systems,
the amount of data that has to be scanned on disk is huge
and scales linearly with the size of the collection.

This problem has motivated a number of pruning tech-
niques that attempt to compute or approximate certain
classes of ranking functions without scanning the entire in-
verted lists of the search terms; this is typically based on
presorting the inverted lists so that the most promising doc-
uments are near the beginning. Most of this work has fo-
cused on term-based ranking functions. However, current
search engines rely heavily on hyperlink analysis and traffic
data (user feedback) for ranking, in addition to term-based
techniques. While there has been a large amount of re-
search on link-based ranking techniques, there is very little
published work on how to efficiently integrate link-based or
traffic-based techniques into query processing on engines
of realistic size.

In this paper, we attempt to take a first step towards clos-
ing this gap. In particular, we are interested in optimiz-
ing query performance, as measured by query throughput
and latency, in a large web search engine with term- and
link-based ranking, through the use of appropriate prun-
ing techniques that scale well with the collection size. We
describe several techniques and perform an initial experi-
mental evaluation on a research prototype engine with � � �
million pages that we have built in our group.

The next section gives some technical background. Sec-
tion 3 describes our contributions, and Section 4 discusses
related work. The proposed techniques are described in
Section 5 and experimental results are given in Section 6.

2 Preliminaries

In this section, we provide some background on ranking
in search engines. We assume that we have a document
collection

��� �������	��
������������
 � of � web pages that
have already been crawled and are available on disk. Let��� � � ��� � 
������� ��� ��
 � be all the different words that
occur anywhere in the collection. Typically, any text string
that appears between separating symbols such as spaces,
commas, etc. is interpreted as a valid potential word.

Indexes: An inverted index 	 for the collection consists
of a set of inverted lists 	 
�� � 	 
�� ������ 	 
������ where list 	 

contains a posting for each occurrence of word � . Each

posting contains the ID of the document where the word
occurs, the (byte or approximate) position within the docu-
ment, and possibly information about the context (in a title,
in large or bold font, in an anchor text) in which the word
occurs. The postings in each inverted list are often sorted
by document IDs, which enables compression of the list, or
by some other measure as described later. Thus, Boolean
queries can be implemented as unions and intersections of
these lists, while phrase searches (e.g., New York) can be
answered by looking at the positions of the two words. We
refer to [40] for more details.

Term-based ranking: The most common way to per-
form ranking in IR systems is based on comparing the
words (terms) contained in the document and in the query.
More precisely, documents are modeled as unordered sets
of words, and a ranking function assigns a score to each
document with respect to the current query, based on the
frequency of each query word in the page (“higher score for
multiple occurrences”) and in the overall collection (“rare
words are more significant”), the length of the document
(“long documents should not have too much of an advan-
tage”), and maybe the context of the occurrence (“higher
score if word occurs in title or bold face”). Formally, a
ranking function is a function  that, given a query con-
sisting of a set of search terms ! ��� ! 
����� !"� ��
 , assigns to
each document

�
a score  $# �%� ! �������� !"� �&
�' . The system

then returns the ( documents with the highest score.
Many different functions have been proposed, and the

techniques in this paper are not limited to any particular
ranking function, as long as certain conditions are met as
described later. In our experiments, we use a version of the
cosine measure [40] defined by

 $# �%� ! � ������ ! � ��
 ' � � ��
) *
+ � �,#.- � !

* '0/ �,# �%� !
* '1 2 � 2 �

�3#.- � ! ' � 465 # �87:9<;>=�? '@� and

�,# �%� ! ' � �87 4A5 =>B�C ? �
where =>B�C ? and =�? are the frequency of term ! in document�

and in the entire collection, respectively. To compute the
top ( documents, it suffices to assign a score to all docu-
ments that contain at least one query word (i.e., the union
of the inverted lists). Note that in general it does not suf-
fice to score only documents in the intersection since, e.g.,
a document containing two out of three query words mul-
tiple times or in the title may score higher than a longer
document containing all three query words. However, most
large search engines default to such an AND semantic, due
to reasons involving user expectations, collection size, and
the preponderance of short queries. We focus on this case.

Several authors have proposed techniques that can iden-
tify (or guess) the top ( documents without scoring all doc-
uments in the lists; see e.g., [1, 2, 14, 15, 18, 32] for recent
work and [38] for an overview of older work. Typically,
these techniques reorder the inverted lists such that high-
scoring documents are likely to be at the beginning, and
then terminate the search over the inverted lists once most



of the high-scoring documents have been scored.
Link-based and other ranking techniques: None of

the current major engines perform ranking solely based on
term-based techniques. In general, ranking is performed
through a combination of term-based and link-based tech-
niques, plus other factors such as user feedback and off-line
preprocessing for spam identification and cluster analysis.

A large amount of research has recently focused on link-
based ranking techniques, i.e., techniques that use the hy-
perlink (or graph) structure of the web to identify interest-
ing pages or relationships between pages. One important
technique is the Pagerank technique underlying the Google
search engine [8], which assigns a global importance mea-
sure to each page on the web that is proportional to the
number and importance of other pages linking to it. A num-
ber of other approaches have also been proposed, see, e.g.,
[6, 13, 22, 24, 25, 33], that perform link-based ranking ei-
ther at query time or as a preprocessing step.

Integrating term-based and other factors: Despite
the large amount of work on link-based ranking, there is al-
most no published work on how to efficiently integrate the
techniques into a large search engine. We are particularly
interested in Pagerank and other techniques that precom-
pute a global ranking function for all documents, indepen-
dent of the query, that is then at query time combined with
term-based and other results. While it has been argued that
a query-dependent link analysis might give better results,
global techniques such as Pagerank that allow precompu-
tation are very attractive for reasons of efficiency and sim-
plicity. Brin and Page allude to the possible advantages in
their paper on the architecture of the original Google engine
[8], which contains what is essentially a simple term-based
pruning technique based on the idea of fancy hits.

A natural way to build a combined ranking function is to
add up a term-based score and a suitably normalized score
derived, e.g., from Pagerank. This is the approach sug-
gested in [33] that we follow in our experiments. Formally,
we consider ranking functions of the forms

 $# �%� ! � ������ ! � �&
 ' � � # ��' 7 � ��
) *
+ � =�# � � !

* ' 
In fact, as discussed further below, we use the logarithm of
the value returned by the Pagerank computation, rather than
the raw value, as input in the above function. Moreover,
following [33], before adding up the terms we perform a
query-dependent normalization that assigns approximately
the same weight to the term-based and link-based contri-
bution, and that is derived from the mean of the � highest
term-based and link-based values in each inverted list.1

We note that in search engines, the score may also
depend on the distance between the query words in the
document, with words occurring close to each other get-
ting a higher score. Formally, this adds a third term

1The purpose of choosing not the maximum value, but the mean of the� highest is to discount the effect of outliers. In [33], a value of �������
is chosen, while we use a larger value due to the much larger data set.

	 # �%� ! �������� !"� �&
�' that depends on all query terms. Deal-
ing with this case is an open problem for future research.

Search engine architecture: Answering thousands of
queries per second on a terabyte collection requires the
equivalent of a small supercomputer, and all current ma-
jor engines are based on large clusters of servers connected
by high-speed LANs or SANs. There are two basic ways
to partition an inverted index structure over the nodes: (a) a
local index organization where each node builds a complete
index on its own subset of documents (used by AltaVista
and Inktomi), or (b) a global index organization where each
node contains complete inverted lists for a subset of the
words.2 Each scheme has advantages and disadvantages
that we do not have space to discuss here; see [4, 28, 37].

In this paper, we assume a local index organization, al-
though some of the ideas also apply to a global index. Thus,
we have a number of machines, in our case ��
 , each con-
taining an index on a subset of the documents. Another ma-
chine acts as a query integrator that receives queries from
the users, broadcasts them, and then merges the returned re-
sults into a proper ranking that is sent back to the user; see
[26] for details. Thus, one way to answer a top- ��� query is
to ask for the top- � � results from each machine. However,
if documents are randomly assigned, most machines may
only have to return their top- ( results for ( � � or ( �� in
order to determine the global top- � � . This is relevant to our
work since pruning techniques are much more efficient for
small values of ( . In fact, some of the proposed methods
can be implemented in an incremental fashion, so that each
machine returns the top- � , top- � , top-

�
results as soon as

each is discovered during the computation, and the query
integrator can first ask for the top- � results and then later
request additional values to obtain the top-

�
or top- � from

some of the nodes as needed.

3 Contributions of this Paper

In this paper, we study optimized query processing in
search engines with a locally partitioned inverted index and
a ranking function that combines term-based techniques
with a global page ordering obtained through link analysis,
user feedback, or other offline preprocessing. In particular:

(1) We describe several pruning techniques that can sig-
nificantly improve query throughput and response
times on large document collections.

(2) We perform a preliminary experimental evaluation
based on a search engine prototype with ��
 nodes and
� � � million web pages built in our research group, us-
ing a real query trace from the Excite search engine.
Our experiments show the limits and benefits of the
proposed techniques in terms of query throughput and
response time for varying levels of concurrency.

2In addition, there are hybrid schemes [37], and replication is often
used in conjunction with partitioning for better performance.



3.1 Significance of the work

We believe that our work is interesting from two angles.
First, query processing efficiency is a very important issue
in large search engines that is not addressed much in the
published literature. Increasing efficiency say, by a factor
of two, allows a major engine to run on hundreds or thou-
sands of fewer machines. It seems that there are still signif-
icant differences in query execution efficiency among the
major engines, which are based on different proprietary in-
dex organizations and query execution schemes. The prob-
lem of scaling with collection size and load is also impor-
tant in the context of intranet or enterprise search in larger
organizations (multinational companies, federal agencies)
where query load is smaller but nonetheless significant, re-
quiring a small cluster of machines.3 We note that prun-
ing schemes such as the ones we propose are particularly
attractive during peak times when the query load is signif-
icantly larger than average, and they can adapt to the load
in a continuous and online fashion. It appears that sev-
eral search engines are already using techniques for dealing
with high loads by modifying query execution [7], though
no details have been published.

Second, we believe our results are interesting in the con-
text of the ongoing discussion about different approaches
to link analysis, in particular the issues of preprocessing-
based [22, 31, 33] vs. online [24, 25] techniques, and global
[31] vs. topic-specific [22] vs. query-specific [24, 25, 33]
techniques. Our results indicate that a global precomputed
ordering is highly desirable from a performance point of
view, as it allows optimized index layout and pruning.
While it is not clear yet that query-specific and online ap-
proaches are really superior in terms of results, such meth-
ods could possibly be more efficiently implemented as cor-
rective measures on top of a strong global ordering such as
Pagerank that can be used for index layout and pruning.4

3.2 Limitations and Loose Ends

There are a number of important issues that we do not ad-
dress in this paper and that are left for future work. Firstly,
our focus here is on query throughput and response time,
and in our experiments we try to bypass the issue of re-
sult quality which is of course very important. We do so
by fixing a particular ranking function from [33] that com-
bines the cosine measure and the Pagerank method of [8],
and that we believe to be a reasonable approach to rank-
ing. We then attempt to compute or approximate this func-
tion in the most efficient manner. While our techniques
do not assume any particular ranking function, the savings
obtained in our experimental evaluation clearly depend on
the choice of this function. If the function weighs the term-
based score much higher than the link-based score, then our
approach will give little or no benefit over the standard ap-

3In some cases, intranet collection sizes may be even larger than the
� � TB size of the Google collection.

4We note that this issue is not really limited to link-based techniques,
but also includes other approaches such as user feedback or offline text
analysis that might be used to arrive at a global ordering.

proach. However, it appears from the Google Toolbar that
link-based scores have a significant impact on ranking.

In future work, we intend to investigate what savings
would be obtained by pruning a more finely tuned ranking
function, involving factors such as term context (title, font
size, anchor text), within our search engine prototype. On
the other hand, we also plan to evaluate our techniques us-
ing the TREC web data set, in order to explore the trade-off
between efficiency and the result quality in terms of preci-
sion and recall. Other problems for future research are the
impact of using distances between terms in the document,
and topic-specific link analysis techniques such as [22, 33].

In addition, there are several loose ends in our exper-
imental evaluation that we plan to resolve first. This in-
cludes experiments for more than two keywords, results for
deterministic pruning with an incremental query integrator,
the effects of significantly increasing the collection size on
a single node, and an analysis of the impact of query char-
acteristics such as the number of terms and their selectiv-
ity and correlation. We intend to include these results in a
longer journal version of this paper.

4 Discussion of Related Work

For background on indexing and query execution in IR and
search engines, we refer to [3, 5, 40], and for basics of par-
allel search engine architecture we refer to [7, 8, 26, 34].
Discussions and comparisons of local and global index par-
titioning schemes and their performance are given, e.g., in
[4, 12, 23, 28, 37]. A large amount of recent work has
focused on link-based ranking and analysis schemes; see
[6, 22, 24, 25, 31, 33] for a small sample.

Previous work on pruning techniques for top- ( queries
can be divided into two fairly disjoint sets of literature.
In the IR community, researcher have studied pruning
techniques for the fast evaluation of vector space queries
since at least the 1980s. Some early work is described
in [11, 21, 38, 41]. Most relevant to our work are the
techniques by Persin, Zobel, and Sacks-Davis [32] and the
follow-up work in [1, 2], which study effective early termi-
nation (pruning) schemes for the cosine measure based on
the idea of sorting the postings in the inverted lists by their
contribution to the score of the document. A scheme in [32]
also proposed to partition the inverted list into several par-
titions, somewhat reminiscent of our scheme in Subsection
5.2, but for the purpose of achieving good compression of
the index, rather than to integrate a global page ordering.

More recently, there has been a lot of work on top- (
queries in the database community; see [16] for a survey
and [15, 18] for a formal analysis of some schemes. This
work was originally motivated by queries to multimedia
databases, e.g., to retrieve images. Stated in IR terms,
the algorithms also assume that postings in the inverted
lists are sorted by their contributions and are accessed in
sorted order. However, several of the algorithms proposed
in [15, 18, 19, 30, 39] also assume that once a document is
encountered in one of the inverted lists, we can efficiently



compute its complete score by performing lookups into the
other inverted lists. This gives much better pruning than
sorted access alone, but in a search engine context it may
not be efficient as it results in many random lookups on
disk.5 Other schemes [10, 18, 20] work without random
lookups or in cases where only some of the lists are sorted.

Thus, there are a variety of previous pruning schemes,
though many have objectives or assumptions that are dif-
ferent from ours. For example, work in IR is often focused
on queries with very large numbers of terms per query (e.g.,
between 
 
 and

� � � in [32]), or concerned with main mem-
ory consumption or CPU resources for evaluating the co-
sine measure. Other work assumes that random lookups
are feasible. Schemes can be either precise or only compute
approximate top- ( results [14, 18], or use precomputation
to reduce the lengths of the stored inverted lists [17]. We
also note that much of the previous work performs ranking
on the union, rather than intersection, of the inverted lists.
This results in increased work for the CPU for evaluating
the cosine measure, and some schemes store precomputed
floating point scores as part of the inverted lists. One the
other hand, using the union can help some pruning schemes
by allowing them to lower-bound the total score of a doc-
ument seen in only some of the lists, by assuming a score
of zero for the others. Our approach uses ideas from sev-
eral schemes, but we are not aware of any previous work
considering integration of a global page ordering such as
Pagerank into pruning methods.

Finally, in their paper on the original Google archi-
tecture [8], Brin and Page discuss an optimization called
“fancy hits” that stores term occurrences in special con-
texts such as title, bold face, or anchortext in a separate
much smaller structure that can be quickly scanned for
likely good documents. Since these special contexts can be
modeled in the vector space model by increasing weights
appropriately, this approach is closely related to the one
described by us in Subsection 5.2. Note that [8] does not
give much detail on how fancy hits are used and we do not
know what types of pruning schemes are used in the cur-
rent Google engine. However, to our knowledge several
of the major engines still scan the entire inverted lists for
most queries. With the exception of [27], we are not aware
of any previous large-scale study on query throughput in
large engines under web query loads.

5 Pruning Techniques

We now describe the different pruning techniques that we
study in this paper. Recall that we are given a global or-
dering of the web pages and an associated global score for
each page. In our experiments, we are using the Pager-
ank ordering, with pages numbered from � (most impor-
tant) to � (least important) and with real-valued scores
produced through an iterative computation. However, any
other global ordering would also work. For simplicity, we

5The situation may be different in highly distributed environments
with limited bandwidth [36].

describe all techniques for the case of � query terms.
One subtle issue is how to utilize the output of the Pager-

ank computation. Initially, we tried to use the raw Pager-
ank score. However, the distribution of these values is ex-
tremely skewed and very different from that of the term-
based values which contain logarithms as part of the cosine
measure. We found that the distribution of the logarithm of
the Pagerank value is much closer to that of the term values,
as shown in Figure 5.1. We thus decided to use the loga-
rithm as input to the normalization procedure below, and
throughout the following ��� refers to the logarithm of the
raw value. We note that the Pagerank scores between � and
� � returned by the Google Toolbar are conjectured to also
be logarithmic in nature. The base of the logarithm does
not matter due to the subsequent normalization, though we
could give a higher relative importance to either term-based
or global scores by modifying the normalization.
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Figure 5.1: Distributions of raw Pagerank, log of Pager-
ank, and term scores in a subset of the collection (from left
to right). For the latter two, between � � and � ��� of the
values are within a factor of � � of the highest score in the
inverted list, while Pagerank scores are much more skewed.

We use the cosine measure as defined in Section 2, but
we threshold =�# �%� !

* '
at
� � and limit the term

2 � 2
in the

document length normalization to between 
 � and � ��� 
 .
Following [33] we then define the total score of a document
with respect to query

� ! ��� ! 
 � as

�	� �
� # � '���� #.! � ' 7 ����� # ! 
 ' 7
����� # �%� ! �>' 7 ����� # �%� ! 
�'������� #.! � ' 7 ������� #.! 
 ' � (1)

where ���� # ! ' is the mean of the � highest pagerank values
for documents in the inverted list for term ! , and � ����� #.! '
is the mean of the � highest term cosine values for ! . We
choose � � � � � and in all experiments we use the global
mean values over the entire collection on ��
 machines;
this requires additional precomputation but allows simple
merging of results at the query integrator.

We note that the way the Pagerank score is preprocessed
and normalized does of course have an impact on perfor-
mance. In particular, if we use the raw Pagerank score



instead of the logarithm and perform normalization using
the mean of the top ����� as above, then Pagerank would not
have much impact on the result of most queries, and thus no
significant pruning based on Pagerank would be possible.
This is because for most queries, there would not be any
document with significant normalized Pagerank containing
both keywords, due to the extreme skew of the values. This
would seem to contradict our (unscientific) observation that
Pagerank, as displayed by the Google Toolbar, does seem
to have a strong influence on query results. If we normalize
using average values instead, then the top- � � results would
be decided primarily based on Pagerank for most queries,
and even the first-m heuristic would get great performance
benefits without much loss in precision. By using the loga-
rithm of the raw Pagerank value, both terms are important
in the ranking of query results.

5.1 A Naive Pruning Heuristic

For the first heuristic, we assume that inverted lists are
sorted in descending order by the Pagerank scores of the
documents; this is easily achieved by using the global rank
as document ID during indexing. The pruning heuristic,
called first-m, simply scans the inverted lists until it finds
the first � pages that contain all query terms. Since our
indexes are sorted by Pagerank, these are the � pages with
the highest Pagerank that contain all query terms. After
scoring these � pages, the top ( are returned.

While this technique may not provide the best way to
approximate our ranking function, we are interested in it
for two reasons. First, for the case of � � ( , this tech-
nique might be considered as a reasonable upper bound on
the efficiency gain that can be obtained by pruning, since
its cost is essentially that of identifying ( pages in the in-
tersections of the lists.6 Second, in the case where � is a
moderate multiple of ( , this technique might be seen as a
reasonable baseline from which to start.

We note that instead of sorting by Pagerank only and
leaving the term values completely unsorted, we could
also sort each list by term value and leave the Pageranks
unsorted. This approach would be similar to earlier ap-
proaches for purely term-based ranking, and it would not
perform well for our ranking function. Moreover, it would
require additional data structures for matching up postings
from the different lists that would slow down computation.

5.2 Separating Large Term Values

The next approach is motivated by the “fancy hits” ap-
proach of Brin and Page [8] and the work by Persin et al. in
[32]. As discussed, previous pruning techniques for term-
based queries sort the postings in each list by their contri-
bution to the final score. In this case, since we are combin-
ing term-based and link-based scores according to Equa-
tion (1), a natural approach would be to sort the postings
in each list by a combination of their term-based and link-
based scores. For example, for queries with two terms, we

6It is however not a strict upper bound if query terms are correlated.

could sort each list by the term value plus half the Pager-
ank contribution, so that by adding up the values from both
lists we get the complete document score. Intuitively, this
should introduce a strong correlation between the two lists
that makes it more likely to encounter good documents
early in both lists.

However, there are problems with this simple idea. First,
the above formulation depends on the number of terms in
the query. Things are further complicated by the query-
specific normalization in Equation (1), and thus it is not
clear by what combination of term-based and link-based
scores we should sort since we cannot cleanly separate con-
tributions due to different terms. Second, since postings
are not ordered by document ID, we need additional data
structures to match postings from different lists, and list
compression also becomes less effective.

We thus decided to go with the following simpler
scheme, which partitions each list into two parts by term
value. More precisely, we have a short list containing the	

postings in the list with the highest term value according
to the cosine measure, and a longer list containing all other
postings. The short list, called “fancy list” and inspired by
[8], contains maybe a few thousand or more postings, and
both lists are sorted by Pagerank. The intuition is that a
document scoring high overall should be either in one of
the fancy lists or close to the beginning of the longer lists.
We utilize this structure in all subsequent heuristics.

5.3 A Better Pruning Heuristic

The next heuristic, called fancy first-m, is an extension of
first-m to the new structure. We first process the two fancy
lists. For all documents occurring in both of the lists, we
compute their complete score and keep the top- ( results.
We also maintain two structures

� �
and

� 

for documents

that occur only in the first or second fancy list, respectively.
Afterwards, we simultaneously scan the two longer lists.
Whenever we find a document occurring in both longer
lists, or a document in one longer list that has already oc-
curred in the other fancy list, we evaluate its score and con-
sider it for inclusion in the top- ( results. We again termi-
nate after encountering � documents in the intersection.

5.4 A Reliable Pruning Technique

The fancy first-m approach from the previous section was
again a heuristic that does not guarantee the correct top (
results. We now describe a technique based on fancy lists
that stops only when it can safely determine that it has ob-
tained the top- ( results. To do this, we periodically perform
the following check while traversing the longer lists, after
processing the fancy lists as described before.

Let ��� ��� � ? be the Pagerank score of the last document
encountered in the longer lists, and note that all subsequent
documents must have lower Pagerank. Also, let ! � and ! 

be the largest term values in the two longer lists, respec-
tively. Thus, any postings with larger term values are lo-
cated in the fancy lists. Note that based on the current ( -th



largest total score, ! � � # ( ' , and the values ! � and ! 
 , we can
purge from

� �
and

� 

any documents that cannot make it

into the top ( . Using ! � � # ( ' , ��� ��� � ? , ! � , and ! 
 , we can also
decide if any documents not yet encountered at all can still
make it into the top ( . We stop when this test fails and both� �

and
� 


are empty, and return the current top- ( results.
We note that a very similar scheme can also be applied

when postings are sorted by Pagerank only, as in Subsec-
tion 5.1. However, we observed only negligible perfor-
mance gains even for top- � queries and thus decided to not
investigate this variant any further.

5.5 Probabilistic Pruning Techniques

We have also studied unreliable techniques that take a sim-
ilar perspective as the reliable pruning technique. In partic-
ular, during the scan of the longer list, we again maintain
the sets

� �
and

� 

of candidate documents that have only

been encountered in one of the fancy lists and that could
still make it into the top- ( if they appear in the other list
with a sufficient term score. After scanning a small por-
tion of the longer lists, the Pageranks encountered usually
become so small that no document not already in

� �
or� 


can make it into the top- ( anymore. At this point, we
can assign to each document in

� �
and

� 

a probability

that its total score is larger than the current value ! � � # ( ' ,
under some basic assumptions about the underlying docu-
ment collection (in particular independence between Pager-
ank and term values and an upper bound on the correlation
between the terms).

Using simple statistics about the distribution of term val-
ues in the list where the document has not yet been encoun-
tered, we can estimate the likelyhood that the unknown
value is larger than the difference between ! � � # ( ' and the
known part of the document score. The procedure termi-
nates whenever the probability of having the correct top- (
results goes above some threshold, say � � � or � � � . We
note that statistics could be kept in the form of a histogram
or a Zipf parameter for each inverted list that upperbounds
the value distribution, and that correlations could be esti-
mated based on hashing techniques similar to those in [9].

For the fancy list organization, we have only imple-
mented a very crude version of this idea where we termi-
nate the scan whenever the number of candidates in

� �
and

� 

drops below a fixed threshold, such as � � or � � � .

We refer to this technique as last- � , where � is the num-
ber of remaining candidates. A full implementation of the
technique is left for future work. We also note that in some
cases it might be useful to perform a limited number of ran-
dom accesses to resolve some of the remaining candidates.

As before, the techniques are also in principle applicable
to the index organization in Subsection 5.1. In fact, we have
implemented the more general technique above, assuming
term independence and using a simple histogram to upper-
bound term distributions, for this basic index organization.
However, benefits in this case are extremely limited.

6 Experimental Results

We now present the experimental evaluation of the different
approaches. We first describe the machine setup, data sets,
and preprocessing steps. Subsection 6.2 contains results
for the exhaustive baseline method and the first-m pruning
technique from Subsection 5.1. Subsection 6.3 gives re-
sults for the fancy first-m scheme. Subsection 6.4 evaluates
the reliable and the last-k pruning techniques for the fancy
list organization. Subsection 6.5 summarizes results for all
techniques. All results up to this point are on a single node
of the search engine. Subsection 6.6 finally gives results for
a ��
 -node search engine architecture with query integrator
frontend. Due to space constraints, we can only include a
small sample of the main results.

6.1 Experimental Setup

Hardware: For our experiments, we used a set of ��

Dell Optiplex 240GX machines with �  
 GHz Pentium-
4, � GB of memory, and two

� � GB Seagate Barracuda
(ST380021A) hard disks, connected by switched fast Eth-
ernet. Each node used only one disk for the index structure.

Software and Data Sets: Our experiments were run on
a search engine prototype, named pingo, that is currently
being developed in our research group. The document col-
lection consisted of about � � � million web pages crawled
by the PolyBot web crawler [35] in October of 2002. Not
all of the pages are distinct and the set contains a significant
number of duplicates due to pages being repeatedly down-
loaded because of crawl interruptions. The crawl started
at a hundred homepages of US Universities, and was per-
formed in a breadth-first manner.7 As observed in [29],
such a crawl will quickly find most pages with significant
Pagerank value. The total uncompressed size of the data
was around �  � TB. An I/O-efficient implementation of
Pagerank was used to compute the global ranks and scores.

This data set was distributed over the nodes in a (fairly)
random fashion, with each node receiving about �

 � million
pages (120 GB uncompressed) of data. Indexing took about
��� hours per disk, and the resulting inverted lists, sorted ac-
cording to Pagerank, were stored in Berkeley DB in highly
compressed form, using the compression macros available
as part of the mg system [40]. 5000 queries with two terms
were taken from a trace of over � million queries issued
to the Excite search engine on December 20, 1999. For the
experiments, we removed queries with stopwords, although
our approach actually does relatively better for queries with
very frequent words.

Fancy lists were implemented in a separate Berkeley DB
database. Note that we did not delete postings included
in the fancy lists from the longer lists in the basic index.
This allowed us to experiment with different sizes for the
fancy lists without having to rebuild the basic index, but
as a consequence the basic index is slightly larger than
needed. We also stored position information for all post-

7Subject to a � ��� interval between accesses to the same server that
may cause reordering from strict breadth-first.



ings even though this is not needed for the simple ranking
functions we consider here. Removing the postings, or us-
ing improved compression macros, would increase query
throughput. Overall, however, we are confident that our
index and query execution implementations are fairly opti-
mized towards high performance.

Evaluation Methodology: We first compare the perfor-
mance of the various techniques on a single node of the
search engine. At the end, we show selected results on ��

machines with a query integrator. The cost of a technique
is usually stated in terms of the average number of � KB
blocks that are scanned per query, but we also investigate
how this translates into the query throughput and latency
that is achieved under various degrees of concurrency.

The quality of the techniques is always measured rel-
ative to the ranking function that we are approximating;
thus, the reliable pruning technique has zero error. We con-
sider two measures. An error of �  � � under the strict-k
measure means that the technique we consider returns ex-
actly the same top- ( results as the ranking function for � � �
of all queries. An error of �  � � under the loose-k measure
means that ����� of all documents returned within the top- (
belong in the top- ( . We typically report results for ( � � ,
� , and � � . We note that the cases of small ( are of inter-
est because in a parallel search engine we do not need the
correct top- � � from each node to determine the global top-
� � . In particular, retrieving the top- � results from each of
��
 nodes suffices to reliably determine the global top- ���
with probability about ��� � , assuming random allocation
of documents to nodes.

6.2 Performance for Baseline and first-m

In our first set of experiments, we compared the following
two approaches:

(a) Baseline (no pruning): We compute top � � results by
scanning the complete inverted lists, except when the
inverted lists differ significantly in size in which case
a binary search approach kicks in automatically.

(b) first-m: We return the top ��� results out of the first �
documents in the intersection, for � � � � � � � � � � ��� � .

Figures 6.1 and 6.2 show the throughput and average la-
tency achieved for various levels of concurrency, i.e, the
number of queries that are allowed to be executed concur-
rently on a node. As expected, the throughput improves at
first with the degree of concurrency, but the average latency
soon starts to increase significantly as the CPU is shared
between too many active queries. Note that in the case of
“AND” queries, the cosine measure has essentially no com-
putational overhead beyond simple list intersection; hence
we did not plot the cost of intersection without cosine eval-
uation as it was almost identical. As we see, the first-m
methods achieve significantly higher throughput and lower
latency than the baseline method. For � � � ��� � we obtain
a throughput of ��� queries per second and half a second
latency for concurrency level � , while the baseline method

top-10 first-1000 first-100 first-10

417.6 110.8 41.0 14.0

Table 6.1: Average number of � KB block accesses per
node and per query.

is limited to less than
�

queries per second. For � � � � �
and � � � � , throughput further increases and latency de-
creases, and the optimum degree of concurrency increases
as expected for smaller disk accesses.
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Figure 6.1: Query throughput per second.

1 2 4 8 16
0

2

4

6

8

10

12

14

Degree of Concurrency

A
ve

ra
ge

 L
at

en
cy

 p
er

 Q
ue

ry

Top 10
First 10
First 100
First 1000

Figure 6.2: Average latency for each query.

If we decrease � to values smaller than � � , there is
only very limited additional benefit. This is because for� � � � , only a few blocks of each inverted list are re-
trieved as shown in Table 6.1, implying that disk time is
already dominated by seek times. Note that the baseline
method scans about �  
 � MB of compressed postings data
(about � � MB uncompressed data) per query, even on a sin-
gle node of �

 � million documents.
In Figures 6.3 and 6.4, we show how well the heuristic

performs at identifying the correct top- ( results. For exam-
ple, first-1000 returns the correct top document for almost



����� of all queries, and correctly identifies all top- � results
for

� � � of all queries. One the other hand, of all the re-
sults returned in the top- � , almost ��� � really belong there.
However, for first-100 the results drop to around

� � � , 
 � � ,
and � � � , respectively.

Thus, the results are at best mixed. While we get great
performance benefits, they come at a significant error rate.
Our hope is that the error rate will be significantly reduced
as we move to the fancy list organization.
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Figure 6.3: Error rate for loose- ( , for different ( .
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Figure 6.4: Error rate for strict- ( , for different ( .

6.3 Performance of fancy first Schemes

We now look at the fancy first-m scheme. Figure 6.5 shows
the number of blocks scanned per query for various val-
ues of � and sizes of the fancy list. We see that the cost
increases moderately with the length of the fancy lists, pri-
marily due to the extra cost of scanning these lists. We do
not consider caching effects and simply count the number
of blocks that are accessed by our program, though Berke-
ley DB automatically takes care of caching.

As shown in Figures 6.6 and 6.7, the fancy first-m
schemes achieve significantly lower error rates than the
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Figure 6.5: Average cost per query, for fancy first-m
schemes with � � ����� � , � � � , and � � . The length of the
fancy lists is varied from � to � ����� � postings. We also plot
results for the case where we choose the fancy lists to be
� � and � � � of the list length; these points are located on
the � -axis according to their average list length relative to
the others. Cost is plotted as ratio between the number of
blocks accessed by fancy first-m and the baseline scheme.

first-m schemes. In particular, for a fancy list length of
� ��� , fancy first-100 obtains the correct top- � results for
more than ��� � of all queries. We note that fancy first-1000
obtained the correct top- � result for all queries in our query
set except for fancy lists of length � ; thus, only this point is
plotted. Also, we see that choosing the lengths of the fancy
lists as a percentage of the total list length leads to better
error bounds when compared to a fixed length organization
with about the same cost.
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Figure 6.6: Error rate for loose- ( measure, for different
values of � and ( , and different lengths of the fancy lists.

6.4 Reliable and last-k Pruning

First, we look at the cost of the reliable pruning technique
with different fancy list lengths, shown in Figure 6.8. Note
that with a length of � � , we can determine the top- � results
in about � ��� of the cost of the baseline method (with zero
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Figure 6.7: Error rate for strict- ( measure, for different
values of � and ( , and different lengths of the fancy lists.

error as the method is reliable).
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Figure 6.8: Ratio of the number of blocks accessed by re-
liable pruning and the baseline scheme, for different ( and
different lengths of the fancy lists.

We also ran experiments for the last-m scheme, with� � � � and � � ����� . Due to space limitations, we cannot
include detailed plots. However, both cases are inferior to
the fancy first-m schemes in terms of the cost/error trade-
off, as shown in the summary plot further below.

6.5 Comparison of the Various Methods

Figure 6.9 finally gives a comparison of the various meth-
ods for the case of top- � queries. We can identify 
 clus-
ters of results: first, on the � -axis we have the reliable
pruning technique, which outperforms the fancy first-1000
schemes located above it to the right. To the left of the re-
liable scheme are the clusters for fancy first-100 and fancy
first-50, which have lower cost but higher error than reli-
able pruning. Above these two to the right are the last-10
schemes which are strictly worse. Finally, at the top are the
last-100 schemes which are marginally faster than fancy
first-50, but have much higher error. In fact, by using, say,
fancy first-25, we could outperform last-100 in both cost

and error. Thus, the best schemes appear to be reliable
pruning and fancy first-m with moderate values of � .

Figure 6.9: Comparison of various pruning techniques.
Each technique and parameter setting is plotted as a point
showing its cost in disk blocks on the � -axis, and its loose-
� error on the � -axis. Also shown are 
 clusters of points
corresponding to different basic methods. Each point is
identified by technique (e.g., f100 for fancy first-m or l100
for last-100) and length of the fancy lists.

6.6 Performance on ��
 Machines

We now look at the performance of the best schemes when
we run queries on the entire set of ����� million pages parti-
tioned over ��
 machines, with a query integrator on a sepa-
rate machine that merges the results. In particular, we plot
results for the baseline scheme, reliable pruning with fancy
list length � � � , fancy first-30 with fancy list length � � ,
and fancy first-100 with fancy list length ��� � . All results
are for top- � � queries. The concurrency level in this case is
the total number of queries that are allowed to be active at
the query integrator at any time.

1 2 4 8 16
0

5

10

15

20

25

degree of concurrency

nu
m

be
r 

of
 q

ue
rie

s 
pe

r 
se

co
nd

no pruning
rp fancy−10%
first−100 fancy−10%
first−30 fancy−5%

Figure 6.10: Query throughput per second on ��
 machines.
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Figure 6.11: Query latency in seconds on ��
 machines.

Note that for reliable pruning, the query integrator asks
for the same number of results ( from all nodes, and for
each query we used the minimum ( that allowed the query
integrator to determine the top- � � . This number was pre-
computed for each query for ease of experimentation. This
is not an unrealistic shortcut however, since the reliable
pruning scheme can be implemented in an incremental
manner, so that the query integrator could ask for the top-# (�7 � ' results after receiving the top- ( results (with no ex-
tra overhead). In fact, the reliable pruning technique would
be improved if the query integrator asks only for the mini-
mum number of results needed from each particular node.

As shown in Figures 6.10 and 6.11, throughput is again
limited to less than

�
queries per second for the baseline

method. Using reliable pruning, we get a throughput of
more than � queries per second with latency below one
second, at concurrency level

�
. For the most aggressive

method, fancy first-30, we achieve more than � � queries
per second, for concurrency level � 
 .
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Figure 6.12: Errors for fancy first-m on ��
 machines.

Looking at the error rate for the fancy first-m schemes in
Figure 6.12 we get a pleasant surprise. Even for the fancy
first-30 scheme, we obtain exactly the correct top- � � results
for almost � � � of all queries, and the error rate is even

lower for fancy first-100. This is due to our prior obser-
vation that we usually only need the correct top- � or top-

�

from each node to determine the global top- � � correctly.
We finish with a few remarks on scaling with problem

size, although we have not yet obtained conclusive results.
We ran experiments with the above four techniques on a
single node with collection sizes from

�
to ���  � million

pages. We observed no significant changes in error rate,
but some increase in query cost. Partly this is due to the
fact that we chose the lengths of the fancy lists as a fixed
percentage of the list lengths; it might be better to decrease
the percentage as collection size grows. For search engines
we are particularly interested in the following question: if
total index size is not an issue, is it better to build a com-
plete index for the entire collection on each node (or subset
of nodes) and forward each query to only one node (sub-
set), or should we partition the index and broadcast to all
nodes? The answer is still open for the presented prun-
ing techniques, but we hope to resolve this by measuring
throughput and latency on significantly larger indexes.
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