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Abstract

Web repositories, such as the Stanford WebBase
repository, manage large heterogeneous collec-
tions of Web pages and associated indexes. For
effective analysis and mining, these repositories
must provide a declarative query interface that
supportscomplex expressive Web queries. Such
queries have two key characteristics: (i) They
view a Web repository simultaneously as a col-
lection of text documents, as a navigable directed
graph, and as a set of relational tables storing
properties of Web pages (length, URL, title, etc.).
(ii) The queries employ application-specific rank-
ing and ordering relationships over pages and
links to filter out and retrieve only the “best” query
results. In this paper, we model a Web repos-
itory in terms of “Web relations” and describe
an algebra for expressing complex Web queries.
Our algebra extends traditional relational opera-
tors as well as graph navigation operators to uni-
formly handle plain, ranked, and ordered Web re-
lations. In addition, we present an overview of the
cost-based optimizer and execution engine that we
have developed, to efficiently execute Web queries
over large repositories.

1 Introduction
The Stanford WebBase repository [4] is a special-purpose
warehouse that stores large collections of Web pages and
associated indexes. The repository operates in conjunc-
tion with a “crawler” that periodically traverses the Web
to gather pages to populate the repository. The pages and
indexes in the WebBase repository provide a rich corpus
for large-scale Web mining experiments (e.g., computing
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PageRank, trawling for communities, scalable clustering,
similarity indexing, etc.) as well as for more focused Web
analysis queries.

To illustrate the types of queries that a trained informa-
tion analyst could execute over WebBase, consider the fol-
lowing two examples. In Example 1, we attempt to gener-
ate a list of universities that Stanford researchers working
on “Mobile networking” collaborate with. To this end, we
examine the hypertext links from important “Mobile net-
working” pages inside Stanford to the websites of other
universities (see Figure 1).

Example 1.LetS be a weighted set consisting of all the
pages in the stanford.edu domain that contain the phrase
’Mobile networking’. The weight of a page inS is equal to
the normalized sum of its PageRank and text search ranks.
ComputeR, the set of all the “.edu” domains (except stan-
ford.edu) that pages inS point to (we say a pagep points to
domainD if it points to any page inD). For each domain
in R, assign a weight equal to the sum of the weights of all
the pages inS that point to that domain. List the top-10
domains inR in descending order of their weights.

In Example 2, the editor of the local university newspa-
per wishes to determine the relative popularity of the three
comic strips Dilbert, Doonesbury, and Peanuts, amongst
people at Stanford University. With each comic stripC,
he associates a websiteCs, and a setCw containing the
name of the strip and the names of the characters featured in
that strip. For example,Dilbertw = {Dilbert, Dogbert, The
Boss} and Dilberts = dilbert.com. He uses a combina-
tion of word occurrences and link information to compute
a measure of popularity for each strip.

Example 2. Extract a set of at most10000 pages from
the stanford.edu domain, preferring pages whose URLs ei-
ther include the “∼” character or include the path frag-
ment “/people/”. Call this setS. For each comic stripC,
computef1(C), the number of pages inS that contain the
words inCw, andf2(C), the number of pages inCS that
pages inS point to. Usef1(C) + f2(C) as a measure of
popularity for comic stripC.

These examples illustrate two key characteristics of Web
analysis queries:

1. Multiple views of a Web repository. Web analysis



Figure 1: Example 1

queries combinenavigationoperations on the Web graph
(to refer to pages based on their hyperlink interconnec-
tions), text search predicates(to refer to pages based on
their content), and predicates on attributes of Web pages, to
express complex query semantics. For instance, Example 1
combines a predicate on the domain, a text-search query,
graph exploration around setS, and link weighting based
on ranks. Thus, complex queries simultaneously employ
three different views of a Web repository: as adocument
collection, as adirected graph, and as aset of relations
storing page and link attributes.

2. Ranking, Ordering, and Top-k results. Web anal-
ysis queries employ user-defined notions of ordering and
ranking (of pages and links) as a mechanism for dealing
with thesizeandheterogeneityof Web data sets. The use
of ranking and ordering functions enables complex queries
to prioritize result elements and selectively retrieve only the
“best” results.

For instance, in Example 1, the query defines the rank-
ing of the domains inR as a function of the PageRank and
text search rank of the pages in setS. This ranking enables
selective retrieval of only as many results as are needed
(the top-ranked10 entries in this case), without wading
through a huge result set. In addition, thedocument col-
lection view of a repository requires support for ranking,
since text query operators inherently return ranked results
(e.g., a text query “CONTAINS ’Mobile networking”’ will
rank pages that contain the exact phrase higher than those
that separately contain ’Mobile’ and ’networking’.)

Similarly, in Example 2, since there is no guaranteed
mechanism for identifying personal Web pages in the Stan-
ford domain (“heterogeneity” at play), a heuristic is em-
ployed. The query identifies certain URL patterns that are
more likely to yield personal Web pages and expresses a
preference for such pages when conducting the analysis.

Currently, the Stanford WebBase repository provides
two interfaces to its content: astreaming bulk access in-
terfaceto retrieve large pieces of the repository as a stream
of Web pages over the network, and aprogrammatic inter-
faceto access the repository indexes. However, execution
of complex analysis queries using these interfaces is a te-
dious task, requiring users to design and implement query-
specific execution plans for accessing indexes, retrieving
pages, generating rankings, etc. Thus, there is a need to

provide an interface for declaratively formulating and then
efficiently executing complex Web queries.

2 Challenges and Solution Approach

The design of a formal model and query algebra for Web
repositories poses several challenges, due to the the unique
properties of the queries highlighted in the previous sec-
tion. Query models used in relational, semi-structured, or
text retrieval systems provide some, but not all of the fea-
tures required to support Web queries.

For instance, text retrieval systems employ one of
the standard IR models (Extended Boolean, Vector-space,
Probabilistic model, Bayesian Network, etc.) in conjunc-
tion with query languages that enable keyword querying,
pattern matching (e.g., regular expressions, substrings),
and structural queries [2]. Thus, treating a Web repository
as an application of a text retrieval system will support the
“document collection” view. However, queries involving
navigation or relational operators will be extremely hard to
formulate and execute.

On the other hand, the relational model provides a rich
and well-tested suite of operators for expressing complex
predicates over Web page attributes. However, ranks and
orders are not intrinsic to the the basic relational model.
Motivated by financial and statistical applications (e.g.
computing moving averages), there have been previous at-
tempts to introduce order into relations and relational op-
erators (SEQUIN [14], SRQL [5], AQuery [8]). However,
as we discuss in Section 7, there are several key differences
between our approach and the extensions proposed in these
systems. In particular, our approach admits a more gen-
eral class of orders, uniformly deals with ranks and orders,
allows more sophisticated ranking functions, and extends
ranking and ordering to Web navigation.

In this paper, we propose a formal model and algebra for
Web queries, with the following features:

• The use of a simple relational schema and the notion
of “Web relations” to model the operands and results of
Web queries
• Well-defined semantics when combining navigation,

relational, and text search operators into complex
queries
• A mechanism, based on “partial orders”, for defining

and manipulating orders in Web relations (to model
user-defined preferences as in Example 2)
• Operators to specify application-defined ranking func-

tion, compose ranks from multiple functions, and re-
trieve “top-k” results prioritized either by ranks or by
order relationships
• Unified treatment of “plain”, ranked, and ordered Web

relations, including (i) extensions to traditional rela-
tional operators, and (ii) precise definitions of naviga-
tion operators in the presence of ordering and ranking



Figure 2: Ranked, and ordered relations

3 Model of a Web Repository
We model the repository as a collection of pages and links
(corresponding to Web hyperlinks), with associated page
and link attributes. We present a relational schema that
is specialized for Web repositories and incorporates rank-
ing and ordering of pages and links. Note that a rela-
tional schema is merely used as a conceptual modeling
tool, and does not impose any restriction on the physical
implementation of a Web repository (analogous to the no-
tion of “physical data independence” adopted in traditional
databases). For instance, the Stanford WebBase repository
[4] implementation involves a combination of a relational
database, an embedded database, specially formatted files,
and custom file-based index structures.

3.1 Preliminary definitions

To formally describe our model, we adopt the following
definitions and notational conventions:

Page. We use the term “page” to refer to any Web re-
source that is referenced by a URL, crawled, and stored in
the repository (e.g., a HTML Web page, a plain text file, a
PDF document, image, other media file, etc.). We associate
a unique identifierpageID with each page.

Link. We use the term “link” to refer to any hypertext
link that is embedded in the pages in the repository. Each
link is associated with a source page (the page in which
the hypertext link occurs) and a destination page (the page
that the link refers to), and a unique identifierlinkID. A
separate link identifier allows us to unambiguously identify
a link even when there are multiple links between the same
source-destination pair.1

Ordered relation. Given a relationR and a strict par-
tial ordering>R (i.e., an irreflexive, anti-symmetric, and
transitive binary relation) on the tuples ofR, we refer to the
pair [R, >R] as an ordered relation onR. Conversely,R is

1We do not include intra-page hyperlinks in defining our set of links.

the “base relation” corresponding to[R, >R]. For instance,
in Figure 2, we define an ordered relation[R, >R] =
[R, {a >R d, a >R e, b >R d, b >R e, c >R d, c >R e}],
where each tuple whose domain attribute is stanford.edu is
>R-related to any tuple outside the stanford.edu domain.
This partial order is depicted in Figure 2 using the standard
Hasse diagram notation (in a Hasse diagram for a partial
order>, a directed path from nodea to nodeb implies that
a > b, and conversely).

Ranked relation. Given a relationR and a function
w that assigns weights (normalized to the range [0,1]) to
the tuples ofR, we can define a new relation[R, w] that is
simply R with an additional implicit real-valued attribute
w.2 Specifically, for each tuplet ∈ R, [R, w] contains a
tuple t′ that contains all the attributes oft and in addition
hast′.w equal to the rank oft underw. We refer to[R, w]
as a ranked relation onR and toR as the “base relation”
of [R, w]. For instance, in Figure 2, to generate[R, f ] the
tuples are ranked usingf(t) = t.pInDegree

maxR(t.pInDegree) (e.g.,

rank of tuplea is 2
7 ≈ 0.29).

Note that we do not require the ranking functionw to
operate on a per-tuple basis. In particular, as in the exam-
ple described above, the rank oft ∈ R can depend on the
attributes of all the tuples inR, not just ont. Formally,
w : R × {R} → [0, 1], even though we will usew(t) as
a shorthand forw(t, R) when the relation is clear from the
context. Finally, note that every ranked relation[R, w] can
be associated with an ordered relation[R, >w] by defining
an ordering>w such thatt1 >w t2 iff w(t1) > w(t2).

Ranking versus ordering. The notions of ranked and
ordered relations help to model two different kinds of ap-
plication semantics used in Web queries. Ordered re-
lations are useful for expressing preferences for certain
kinds of pages or links without necessarily quantifying
how much one kind is preferred over another (e.g., “pre-
fer PDF, Postscript, or plain text files to MS Word docu-
ments”, “prefer intra-host links to inter-host links”, “prefer
pages crawled within the last week to older pages”, etc.).
In addition, since our representation of such preferences is
based on partial orders, the preferences need not involve
all available pages or links. For instance, we can express
a preference for HTML files over powerpoint (PPT) files,
and not involve other document types at all, by defining
[R, >] = [R, {d > a, e > a}] on base relationR in Figure 2.

In contrast, ranked relations are useful when applica-
tions (i) can precisely quantify their relative preferences
(e.g., HTML files get a weight of 0.6, PDF and Postscript
files get a weight of 0.4, and everything else is weighted
0.2), (ii) use precomputed ranks generated by sophisti-
cated offline algorithms (e.g., PageRank), or (ii) mathemat-
ically compose ranks derived from multiple sources (e.g.,
SUM(PageRank, text-search rank)).

Formal model of a Web repository. We model a
Web repository as a 6-tupleW = (Ip, Il,WR,P ,L,F),
where:

2Without loss of generality, we assume that the attribute names inR
do not clash with these specially added rank attributes.



• Ip (resp. Il) is an identifier space from which the
pageID (resp. linkID) for every page (resp. link)
is chosen. Without loss of generality, we assume that
Ip∩Il = ∅, and thatIp andIl are disjoint with respect
to the domain of any other attributes inW .
• WR is a set of plain, ranked, or ordered relations called

Web relations. A relationR is said to be a Web relation
if it containsat least oneattribute whose domain isIp,
Il, 2Ip , or 2Il . A ranked relation[R, f ] or an ordered
relation[R, >R] is a Web relation if the corresponding
base relationR is a Web relation.
• P ∈ WR is a universal page relation. P contains

one tuple for each page in the repository and one col-
umn for each page attribute.P includes an attribute
P .pageID whose domain isIp and which forms a pri-
mary key forP . Thus,P has a schema of the form
P = (pageID, .....).
• L ∈ WR is a universal link relation. L contains

one tuple for each hyperlink in the repository and
one column for every available link attribute.L in-
cludes an attributeL.linkID whose domain isIl
and which forms a primary key forL. In addi-
tion, each link will include asrcID, the identifier
of the page in which the link occurs, and adestID,
the identifier for the target of the hyperlink. The
domain of bothL.srcID and L.destID is Ip, and
there is a referential integrity constraint fromL.srcID
to P .pageID. Thus L has a schema of the form
L = (linkID, srcID, destID, ....).
• F is a set of predefined page and link ranking functions

that have been registered in the repository (see exam-
ples below).

We identify four common types of Web relations. A
Web relationR = (A1, A2, . . . , An) such that for some
i ∈ 1 . . . n, domain(Ai) = Ip, domain(Aj) 6= Ip ∀j 6= i
is called apage relation. Analogously,link relations, page-
set relations, and linkset relationsare Web relations with
exactly one attribute whose domain isIl, 2Ip , or 2Il re-
spectively. By definition, the special relationsP andL are
themselves page and link relations respectively.

The elements of setF are functions that operate on
plain relations to produce ranked relations. For instance,
F may contain an elementfpRank that operates on a page
relation R to yield [R, fpRank], in which the tuples are
ranked using the normalized PageRank of the constituent
pages. As another example,F could contain an element
ftfidf (s) that ranks tuples of a page relation based on
the ranks of the pages (using the standard TF-IDF rank-
ing scheme [2]) when searching for the strings (e.g.,
ftfidf (“Web repositories”)).

Note thatWR, the set of Web relations in the repository,
contains the two special relationsP andL. In addition,
since the result of any complex Web query is itself a Web
relation (see Section 4), query results can be stored as ele-
ments ofWR and used in future queries.

Finally, though the schema definitions require only one
attribute forP and three forL, a typical useful Web reposi-

Category Operator list
Select (σ)

Unary relational Project (Π)
Group-by (γ)

Union (∪)
Intersection (∩)Binary relational

Set-difference (−)
Cross-product (×)

Rank (Ψ)
Order (Φ)Ranking and Ordering

Prune (Ωk)
Compose (Θh,op)

Forward navigation (
−→
Λ )Navigation

Backward navigation (
←−
Λ )

Table 1: List of query operators in our model

tory would have many more. In [13], we list the names and
data types of the page and link attributes used in our exper-
imental repository. We will also refer to some of these at-
tributes when formulating sample complex queries in Sec-
tion 5.

4 Query Operators

In this section, we list and define some of the query oper-
ators that are used to build complex Web queries. Table 1
lists the complete suite of operators in our algebra, classi-
fied into four categories. All the operators listed in the table
manipulate onlyWeb relations, i.e., the result of any opera-
tor as well as its operands are plain, ranked, or ordered Web
relations.

In the interest of space, we will present only the more in-
teresting and non-standard operators in this section. Specif-
ically, we will take up for detailed discussion, the operators
in the last two categories of Table 1 (“ranking and order-
ing” and “navigation”), as well as the group-by and cross-
product operators. For the remaining relational operators,
extensions to their semantics to handle ordered and ranked
relations are formally defined in [13]. Below, we summa-
rize only the salient aspects of these extensions (through-
out, we will refer to relational operators on multisets as in
SQL):

Select. When selecting from a ranked relation[R, f ],
the selection predicate can refer to the ranking attribute
R.f . Also, σ([R, >R]) = [S, >S ] whereS = σ(R) and
>S is merely>R restricted to the tuples inS.

Project. Projection on[R, f ] implicitly retainsR.f in
the result. In addition, two special projection rules are em-
ployed to yield base relations:Π−rank([R, w]) = R and
Π−ord([R, >R]) = R.

Set operations with ordering.Union, intersection, and
set-difference of a pair of ordered relations[X, >X ] and
[Y, >Y ] produces another ordered relation[Z, >Z ] where
Z = X ∪ Y , X ∩ Y , or X − Y as the case maybe. For
union and intersection>Z contains all the orderings among
the tuples ofZ that are consistent with both>X and>Y .
For set-difference,>Z includes all orderings among tuples
of Z that are consistent with>X (see [13] for examples).
These definition extend to any combination of ordered and



Figure 3: Group-by operator on an ordered relation

plain relations by setting one or both of>X and>Y to be
empty.

Set operations with ranking. When a ranked relation
[R, f ] is supplied as an operand to a union, intersection,
or set-difference operator,[R, f ] is replaced by the corre-
sponding ordered relation[R, >f ]3. Thus, set operations
do not preserve or operate on actual rank values, only on
orders induced by the ranks.

4.1 Group-by (γ)

Ranked relation. Group-by on a ranked relation[R, f ]
merely treats the ranking attributeR.f as yet another at-
tribute that can be grouped, aggregated, or dropped. When
R.f is used as a grouping attribute, the result is simply
another ranked relation[S, f ] with the same ranking at-
tribute. If R.f is aggregated (using a function such as
AVG or MIN), the result is a ranked relation[S, g] where
theg-values are simply aggregations off -values over each
group. Finally, ifR.f is neither grouped nor aggregated,
the rank values are lost and the result is a plain relation.

Ordered relation. To extend group-by to ordered rela-
tions, we must define how to order the tuples of the result
(i.e., how to order the “groups”) given the order relation-
ships in the operand. The key is to ensure that the order-
ing of the result continues to be a partial order. We use
the following rule: Suppose a group-by on[R, >R] yields
[S, >S ]. Given tuplesx, y ∈ S, we setx >S y iff for each
tuplet1 ∈ R belonging to the group corresponding tox and
each tuplet2 ∈ R belonging to the group corresponding to
y, t1 >R t2.

Figure 3 illustrates the application of this rule on an or-
dered page relation[R, >R]. R represents various attributes
of 7 different pages, all of which point to a websiteWS of
interest to the user. The attributeR.numLinks represents
the number of links from each of these7 pages to pages in
WS. The partial ordering>R is used to express the fol-
lowing preference: “prefer pages with depths≤ 3”.4 Thus,

3Recall from Section 3 that for tuplesa, b ∈ R, a >f b iff a.f > b.f .
4The depth of a page is the minimum number of links that must be

Figure 4: Cross product of ordered relations

b >R c, g >R e, etc., as shown in the Hasse diagram in
the figure. The figure shows how the incoming links are
grouped based on the language of the page in which the
links occur. The ordering of the result tuplesp, q, r, ands
is computed using the rule described above. For instance,
sinced >R a, d >R e, andd >R f , (all the German pages
are at depths less than3 but all English pages are at higher
depths), we setr >S p (the “German” group is preferred to
the “English” group).

4.2 Cross-product (×)

Cross-product operations can involve any pair of plain,
ranked, or ordered relations. The challenge is to define the
ordering or ranking of the result for each possible combi-
nation of operands. The rules we set out below are based
on the following intuition: if only one of the operands is
ranked/ordered, the result must reflect the ranking/ordering
in this operand; when both operands are ordered, the order-
ing in the result must be consistent with both operand or-
derings. Thus, we separately consider the following cases:
• Case 1: Both operands are plain relations.Standard

definition of cross-product
• Case 2: Both operands are ordered relations.We de-

fine [X, >X ]× [Y, >Y ] = [Z, >Z ], where:
• Z = X × Y

• If a >X b andc >Y d, then(a, c) >Z (b, d)
• If a >X b, then(a, c) >Z (b, c) for anyc ∈ Y

• If c >Y d, then(a, c) >Z (a, d) for anya ∈ X

Figure 4 illustrates this definition. For example,
(a, q) >Z (b, p) sincea >X b andq >Y p, (c, q) >Z

(c, p) sinceq >Y p, and so on.
• Case 3: One operand is plain, other is ordered.We

define[X, >X ]×Y = [V, >V ], whereV = X×Y and
(a, c) >V (b, d) iff a >X b. The bottom right relation
in Figure 4 illustrates this definition. Sincea >X b,
every tuple in the result generated usinga is>V -related
to every tuple generated usingb.

traversed to reach that page, starting from the root page of the website to
which the page belongs.



Figure 5: TheΦ operator

• Case 4: One operand is plain, other is ranked.Anal-
ogous to Case 3, we define[X, f ]× Y = [V, g] where
V = X×Y andg((a, b)) = f(a), i.e., ranks are purely
determined byf .
• Case 5: One operand is ranked, other is ordered.To

compute[R, f ] × [S, >S ], the ranked relation is con-
verted to the corresponding ordered relation[R, >f ]
and Case 2 is used to compute[R, >f ]× [S, >S].
• Case 6: Both operands are ranked.Both operands are

converted to the corresponding ordered relations and
Case 2 applies.

Note that in Cases 5 and 6, the cross-product operation
does not use the rank values even though the ordering in-
duced by the ranks is taken into account. However, if there
is a need to preserve or operate on the actual ranks, the
compose operator (see Section 4.3) can be employed.

4.3 Ranking and ordering operators

In the previous section, we extended the semantics of tra-
ditional relational algebra operators to handle ordered and
ranked Web relations as operands. In this section, we de-
fine four new operators specifically designed for creating
and manipulating ranked and ordered relations.

Rank (Ψ). OperatorΨ simply formalizes the act of ap-
plying a ranking function to a base relation. Thus, given a
relationR and ranking functionf : R × {R} → [0, 1], we
defineΨ(f, R) = [R, f ].

Compose (Θh,op). The compose operatorΘ is used
to merge two ranked relations to produce another ranked
relation. Each instance ofΘ is associated with a “com-
position function”h, that defines how ranks are assigned
to the output relation, and a binary set operatorop (op ∈
{∪,∩,−,×}) that defines how the tuples of the resulting
relation are constructed. The composition function assigns
a new rank for each tuple of the result, using the ranks of
all the tuples in the operand relations. We provide several
examples of rank composition in Section 5.

Order (Φ). TheΦ operator constructs an ordered rela-
tion, given either a ranked relation or a plain base relation.
When applied on a ranked relation,Φ([R, f ]) returns the
corresponding ordered relation[R, >f ] (recall that>f is

the ordering induced by the rank values inR.f , i.e., for
a, b ∈ R, a >f b iff a.f > b.f ).

To applyΦ to a plain relation, we specify an “ordering
condition”. An ordering condition onR is an expression
C1 > C2 whereC1 andC2 are any two valid selection
predicates onR. We defineΦC1 > C2(R) = [R, >], where
a > b iff a ∈ σC1(R)−σC2(R) andb ∈ σC2(R)−σC1(R).
In other words, tuples that satisfyC1 are preferred to those
that satisfyC2. However, tuples which satisfy both condi-
tions are removed from the ordering. For convenience, we
will interpretΦC as being equivalent toΦC > NOT C.

Figure 5 shows two instances of using theΦ operator.
The first ordering condition orders all pages from “.com”
domains ahead of pages from “.org” domains. The sec-
ond ordering condition orders English pages from “.org”
domains ahead of pages in non-English languages.

Prune (Ωk). The prune operator provides a mechanism
for retrieving a fixed-size subset of tuples from a relation
(refer to [13] for formal definition). In particular, given a
relationR, Ωk(R) selects a subset of sizemin(k, |R|). If
R is a plain relation, the operator can non-deterministically
choose any subset of this size. When applied to a ranked
relation,Ωk([R, f ]) returns a ranked relation containing the
k top ranked tuples in[R, f ]. Since multiple tuples ofR
may have the samef values, several top-k sets are possible
and the actual result is non-deterministically chosen from
among them.

Finally, when applied to an ordered relation
[R, >], Ωk selects tuples on the basis of this or-
dering. For example, consider the ordered relation
[R, {a > b, a > c, a > e, f > b, f > c, f > e}] shown
in Figure 5, corresponding to the preference for “.com”
domains over “.org” domains.Ω1 on this relation can
non-deterministically return any one of the three tuplesa,
f , or d. However,Ω1 cannot returnb, c, or e since they are
all ordered belowa andf . Similarly, Ω4 on this relation
can yield any set of four tuples as long as at leasta andf
are part of the result (thus,6 possible results). In all cases,
the result of the operator is also an ordered relation and the
ordering of tuples in the result is simply the ordering in
>R restricted to the available tuples. Thus, one possible
result of applyingΩ4 is [{a, f, e, d}, {a > e, f > e}].

4.4 Navigation operators

Graph navigation in complex Web queries tends to be sim-
ple in structure, often focusing purely on connectivity and
neighborhood properties (e.g., which pages point to page
X , which pages doesX point to, what are the pages that
are at most 2-clicks away fromX , how many links in-
terconnect two sets of pages, etc.). This contrasts sharply
with the sophisticated operators and path expressions used
in navigating and branching through the label structure of
semi-structured database graphs [6]. The reason is that
the size and immense heterogeneity of Web data sets (and
Web graphs) makes it very hard to formulate precise path
queries. Often, when navigating Web graphs, the ability to
“bias” the choice of links and pages (e.g., prefer intra-host



(a) Operands

(b) Only pages ordered

(c) Pages and links ordered

Figure 6: Navigation in the presence of ordering

links to inter-host links, prefer links from pages that link
to www.stanford.edu ) is more useful than the ability
to precisely specify paths using complex regular expres-
sions. Further, even if complex path queries could be for-
mulated, their execution on massive Web graphs5 would be
prohibitively expensive.

Thus, the key challenge is to meaningfully propagate
user-defined ranks and orders when navigating through the
Web graph. In our model, navigation operators are ex-
pressed in terms of cross-product and group-by operations
involving page and link relations. Hence, the semantics
of navigation in the presence of ordering and ranking de-
rive from the semantics of the operators defined earlier. We
will first define how ranks and orders propagate through a
“single-step” navigation operation, i.e., following exactly
one link from a set of pages to reach another set of pages.
Later, we will extend the definition to paths in the Web
graph.

We use the symbols
−→
Λ and

←−
Λ to represent forward and

backward navigation respectively. Forward navigation fol-
lows links in the Web graph in the direction of the actual
hyperlinks whereas backward navigation is in the opposite
direction. Our description will focus on

−→
Λ but the details

for
←−
Λ are similar.

Operator
−→
Λ accepts a page relation (sayR) and a link

relation (sayS) as operands. One or both ofR andS may
be plain, ordered, or ranked.

−→
Λ computes the set of pages

5For example, a 110 million page Web data set translates to over a
billion edges in the Web graph [12].

reachable in 1-step from the pages inR by following any
of the links inS in the forward direction. Recalling the
definition of page and link relations,R andS must have
exactly one attribute with domainIp andIl respectively.
Let those attributes beR.pageID andS.linkID. For con-
venience, we will assume that the link relation also includes
source and destination page identifiers for each tuple, with
attribute namesS.srcID andS.destID. We define,

R
−→
Λ S = ΠS.destID(γS.destID(Z)), where

Z = σR.pageID=S.srcID(R × S), and

Navigation with ordering.

The formula for
−→
Λ involves a join on the page and link

relations followed by grouping and projection. To illus-
trate the application of this formula in the presence of
ordering, we will take up two examples: one involving
ordering only on the pages and another involving order-
ing on both pages and links. Figure 6(a) shows the two
operands that we will use in our example; a page relation
[R, >R] = φpLanguage=English > pLanguage6=English(R)
with a preference for “English” pages and a link relation
[S, >S ] = φIntraDomain=yes > IntraDomain=no(S) with a
preference for intra-domain links.6

(i) Ordering only on pages.For this example, we will
ignore the ordering on the links (i.e., ignore>S) and com-
pute [X, >X ] = [R, >R]

−→
Λ S as shown in Figure 6(b).

6A link from cs.stanford.eduto db.stanford.eduis within the stan-
ford.edu domain but a link fromcs.stanford.eduto www.cnn.comis not
intra-domain.



Figure 7: Navigation in the presence of ranking

Relation[T, >T ] in Figure 6(b) represents the intermedi-
ate step of joining the page and link relations. The final
result[X, >X ] is produced by grouping and projecting out
the destination page identifiers (the circled column) from
[T, >T ]. Applying the rules for cross-product from Sec-
tion 4.2, sincea >R b anda >R c, all tuples ofT gen-
erated usinga are ordered ahead of the remaining tuples.
Similarly, the ordering>X is derived by applying the rules
for group-by from Section 4.1. For instance,N >X M
becauseaC >T bD andaC >T cE.

We note that the ordering in the final result matches our
intuition, given the preferences expressed in>R. For in-
stance, inspectingS and[R, >R], we see that pages8 and
9 are pointed to by page1, pages7 and10 are pointed to by
pages2 and3, and>R expresses a preference for1 over2
and3. Thus, we would expect pages8 and9 to be ordered
ahead of7 and10, which is precisely what is represented
in the diagram for>X .

(ii) Both pages and links ordered. For this example,
both>R and>S are taken into account. So we compute
[Y, >Y ] = [R, >R]

−→
Λ [S, >S]) as shown in Figure 6(c).

As before, the intermediate result[U, >U ] represents the
join of the page and link relations which is then grouped
to yield [Y, >Y ]. Once again, the ordering>Y computed
using our formula can be intuitively explained by looking
at the operand relations. For instance,N >Y O (page8
preferred to9) is explained by the fact that though page1
points to both8 and9, the1 → 8 link is an intra-domain
link (tuple C ∈ S) whereas the1 → 9 link is not (tuple
A ∈ S).

Navigation with ranking.

When page and link relations are ranked, the navigation
operator accepts two aggregation functions as parameters
(
−→
Λ a,b): a defines how to combine page and link ranks

and b specifies how to aggregate all the incoming ranks
(since multiple links may may point to the same target
page). For instance, Figure 7 illustrates the computation
for [R, f ]

−→
Λ max,avg [S, g]. As in the earlier examples, the

figure shows the intermediate step of joining the page and
link relations to yield[T, h] (note that since ranks must

Figure 8: Query graph for Example 1

be preserved, we use the compose operatorΘmax,× rather
than plain cross-product). Themax function is applied
when computing[T, h] (e.g.,h.aC = max(a.f, C.g) =
max(0.9, 0.8) = 0.9) and theavg function is applied
when grouping to generate the final result (e.g.,M.w =
(bB.h + cF.h)/2 = 0.85).

Unary navigation operators.

For a page relationR, we define
−→
Λ(R) = R

−→
Λ L, and←−

Λ(R) = R
←−
Λ L, whereL is the universal link relation.

Thus, instead of choosing the links from a set of tuples in
a link relation, the unary navigation operators permit nav-
igation using all available links in the repository. These
unary operators are useful for the common scenario of com-
puting the out-neighborhood

−→
Λ (R) and in-neighborhood←−

Λ (R) of a set of pages. As with the binary operator,
whenR is ranked, the unary operator includes an aggrega-
tion function to indicate how to combine multiple incoming
ranks (e.g,

−→
Λ MAX(R) indicates that each page in the out-

neighborhood ofR will receive a rank equal to the maxi-
mum ranks of all the pages inR that point to it).

Further, since the result of
−→
Λ (R) is itself a page rela-

tion, we can recursively apply navigation on the result to
compute expanding out and in-neighborhoods. Thus, we
define

−→
Λ i(R) =

−→
Λ(
−→
Λ i−1(R) − R), ∀i > 1. Notice that

if R is ordered or ranked, each neighborhood will also be
correspondingly ordered or ranked. Thus, our unary navi-
gation operators provide a natural extension to simple un-
ordered and unranked path navigation in Web graphs.

5 Examples of Complex Queries
In this section, to illustrate how the various operators in our
algebra work together, we take up two sample Web analysis
tasks and construct the corresponding queries. Queries for
several other tasks, including Example 2 from Section 1,
are described in [13].

We will begin with Example 1 described in Section 1.
Figure 8 shows the query graph for this analysis task, with
each node representing an operator in our algebra. For con-
venience, we have split the query into two pieces connected
by the intermediate result relation[T, f ]. Notice that in the



Figure 9: Query graph for Example 3

left piece of the query graph, after selecting “stanford.edu”
pages from the universal page relationP , we apply two
ranking functions:fTextRank to assign ranks based on
a text search for “Mobile networking” andfPageRank to
assign ranks based on the PageRank attribute. We compose
these two ranks using theΘ operator and compute the out-
neighborhood of this ranked set of pages (labeled[T, f ]).
In the second part of the query graph, we join[T, f ] with
P to retrieve the domain of each page (the “pDomain” at-
tribute), group on pDomain (summing up ranks within each
group as prescribed in Example 1), and finally choose the
top-ranked10 domains usingΩ10.

Example 3. In this example, the webmaster of
“my.domain1.org” and “my.domain2.net” prepares a list of
1000 pages that point to both his websites. In particular,
he is more interested in pages that deep-link into his web
sites, i.e., link directly to deeply buried pages instead of
linking to the main page or one of the top-level index pages.
Figure 9 illustrates the query graph for this example. The
query computes the intersection of the in-neighborhood of
both websites. The preference for deep links is expressed
as a preference for pages with depth≥ 4. This ordering is
automatically converted into an ordering on the neighbor-
hood pages by the semantics of the

←−
Λ operator. Finally,

the URLs of the top1000 pages, subject to this order, are
retrieved.

6 Optimizing and Executing Web queries

As part of the Stanford WebBase repository, we have de-
veloped an optimizer and execution engine for efficiently
executing complex queries over Web data sets. Our cost-
based optimizer is similar in spirit to the query optimiz-
ers employed in relational query execution systems. How-
ever, certain unique features of Web data sets, the storage
structures used in Web repositories, and the characteristics
of complex Web queries, pose new and interesting chal-

lenges. The discussion in this section is intended to high-
light these challenge and provide an overview of our opti-
mization scheme.

As with joins in relational queries, optimization of nav-
igation operations is crucial for efficiently executing com-
plex Web queries. However, the difference is that naviga-
tion operators must now be implemented over the special-
ized structures used to represent Web graphs, rather than
as hash joins or sort-merge joins over relational tables. In
this section, we will focus our attention on the techniques
we have devised to optimize navigation over massive Web
graphs. Our techniques are based on the following two key
ideas:

Exploit query locality. While a repository may involve
several hundred million pages and billions of hyperlinks,
most analysis queries focus a relatively small “piece” of
the data set (e.g., the piece could be all pages in domainsX
andY related to topicZ). Further, as indicated before, nav-
igation is often local and explores only the immediate for-
ward or backward neighborhood of this piece. Thus, many
queries are “localized” to one or more small portions of
the Web graph. A key feature of our optimizer is an index
structure and optimization scheme geared to identify and
exploit such locality.

Exploit prune. The presence of the prune operator
presents additional opportunities for optimization. Typi-
cally, the prune operator is employed as the last operation
in a query to retrieve only a subset of the results. An op-
timizer that can push the “prune” operator down the query
tree (ideally, at every stage in the query, generating only
as many results as are used later on) can obtain significant
speedup in query execution time. However, pushing the
prune operator down the tree in the presence of ranking
and ordering is a challenging problem.

6.1 Page Clusters

To identify and exploit locality during query execution, we
partition the entire data set in the repository intopage clus-
ters. Eachpage clusterrepresents a set of pages that belong
to the same top-level domain (e.g., all pages in a cluster
may belong to stanford.edu), have lexicographically similar
URLs, and possess similar out-neighborhoods, i.e., point
to almost the same set of pages. Intuitively, we attempt to
group together “related” pages so that all the pages rele-
vant to a complex query are distributed among a relatively
small number of clusters. We refer the reader to our previ-
ous work, reported in [12], for a precise characterization of
these page clusters and an iterative algorithm for partition-
ing a Web data set into clusters.

Below, we briefly describe a representation scheme,
based on page clusters, for physically organizing the Web
graph for efficient navigation. In the next section, we dis-
cuss the role of page clusters in our overall optimization
and query execution strategy.

S-Node representation. The S-Node representation
scheme uses page clusters to physically organize the Web
graph into a two-level structure as shown in Figure 10 [12].



Figure 10: S-Node Representation

The top-level directed graph, called a supernode graph, has
one node (“supernode”) for every page cluster and an edge
(“superedge”) from supernodeA to supernodeB iff some
page in clusterA points to some page in clusterB. A su-
pernodeA points to a lower-level directed graph that con-
tains one vertex for each page in clusterA and one edge for
each link between those pages. SuperedgeAB points to
a lower-level bipartite digraph that represents all the links
from pages in clusterA to pages in clusterB. Thus, the
lower-level digraphs (called “graph chunks”) together rep-
resent the entire Web graph and the top-level supernode
graph acts as a compact cluster-level structural summary.

Typically, the supernode graph resides in memory
whereas the graph chunks are loaded from disk on demand.
We maintain two S-Node graph representation structures,
one for the Web graph and one for its transpose, to aid in
forward and backward navigation respectively.

6.2 Cluster-based optimization and execution

Page clusters and the graph chunks that they generate, are
central to our optimization and execution strategy. The cost
of each query plan is measured in terms of the estimated
number and size of graph chunks that are transferred from
secondary storage to main memory. In addition, akin to
relational optimizers, we maintain statistics on the value
distributions of various pages and link attributes. However,
all our statistics are maintained at the cluster level, rather
than for the repository as a whole. For instance, instead of a
single histogram representing the distribution of PageRank
values across the entire repository, we maintain one such
histogram for each page cluster.

The search space of possible execution plans considered
by our optimizer, and the cost of each of these plans, is
primarily dependent on the navigation operators in a query.
In the following, we describe how plans are enumerated
and their costs computed.

Cost of a navigation operation.

We associate two sets of graph chunks with each navigation
operation. Theinput chunk set(ICS) is the set of all graph
chunks that must be available for the navigation operation
to execute, i.e., all the chunks that may conceivably contain
the source pages and links followed by the operation. The
output chunk set(OCS) is the set of graph chunks that could

Figure 11: Example to illustrate cost model

conceivably contain the pages produced as a result of the
navigation operation. The cost of a navigation operation is
simply the sum of the sizes of all the chunks in its ICS.7

To illustrate, consider the query shown in the left half
of Figure 11. The query performs the following compu-
tation: “If S is the set of all German pointed to by pages
with PageRank> 6, compute a list of all .edu pages about
’Knowledge bases’ that also point to pages inS”. The
two navigation operators in the query are labeledNav1
and Nav2. To compute the ICS and OCS forNav1 in
Figure 11, the optimizer uses the following pieces of in-
formation: (i) the fact that the source pages for this op-
eration must be pages with PageRank> 6, (ii) the fact
that destination pages must be German language pages, and
(iii) cluster-level statistics for the “pPageRank” and “pLan-
guage” attributes. For instance, using the cluster-level his-
tograms of PageRank distribution, suppose the optimizer
computes that the only page clusters containing pages with
PageRank> 6 areA andB and similarly that the only page
clusters containing German pages areC, D, andE. The
right half of Figure 11 shows a portion of the supernode
graph containing all the supernodes and superedges involv-
ing A, B, C, D, andE. SinceA does not have a superedge
connecting it toC, D, or E, (i.e., none of the pages inA
point to any German page) andE does not have an incom-
ing superedge from eitherA or B, the optimizer concludes
that ICS(Nav1) = {chunkB, chunkBD, chunkBC}.
Thus, the estimated cost of this navigation operation is
size(chunkB) + size(chunkBD) + size(chunkBC).

Plan Enumeration.

The space of possible query plans is influenced by two fac-
tors: the graph used to execute each navigation operator
and the ordering among the operators.

Web graph versus Transpose.We observe that every
navigation operation, irrespective of its specified direction
(i.e., forward or backward), can be executed by either load-
ing graph chunks from the Web graph or by loading graph

7We note that to enable cluster-based optimization, we augment the S-
Node representation scheme so that each supernode and superedge records
the size of the graph chunk that it points to.
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Figure 12: Experimental results demonstrating the impact of cluster-based optimization

chunks from the transpose of the Web graph. For instance,
Nav1 in Figure 11 can either be executed by following
links from “db.stanford.edu” pages to German pages in the
Web graph, or by selecting those German pages which have
links to “db.stanford.edu”pages in the transpose of the Web
graph. Therefore, the optimizer must compute the ICS,
OCS, and cost for both strategies.

Multiple navigation operators.So far, we have treated
each navigation operation in isolation when identifying the
ICS and computing costs. However, for queries involving
multiple navigation operators, the estimated cost of one op-
erator is influenced by the presence of the other. Specif-
ically, consider a query plan for the example in Figure 11
in which both navigation operations are executed using for-
ward navigation, loading only chunks from the Web graph
and none from its transpose. Considered on its own, the
ICS forNav2 would involve all German pages and would
be a superset of{chunkC, chunkD, chunkE}. However,
based on our earlier example, since the OCS ofNav1 does
not includechunkE, we can safely eliminatechunkE from
ICS(Nav2) as well.

Thus, given a queryQ containing a set of naviga-
tion operators{N1, . . . , Nk}, the optimizer explores a
search space of(2k)! plans (all possible orderings of
{N1, . . . , Nk}with eachNi either using chunks of the Web
graph or its transpose), computes the cost of each plan mea-
sured in terms of chunk IO, and chooses the minimum cost
plan.

Exploiting prune.

For queries involving prune, at every stage, the aim is to
avoid generating result elements that later get discarded.
We make two changes to the approach described earlier.
First, when computing the ICS for each navigation opera-
tor, the optimizer produces a sorted list of graph chunks as
opposed to an unsorted set. The graph chunks in the ICS
are sorted in descending order of their estimated “yield”,
i.e., the number of output results that they are expected
to produce. For example, in Figure 11, each chunk in the
ICS of Nav1 is sorted based on the number of pages with

PageRank > 6 that it is expected to yield (using the data
from the cluster-level histogram of PageRank distribution).
Second, during query execution, all navigation operators
are simultaneously scheduled. Thus, akin to pipelining in
relational execution engines, each navigation operator re-
quests results from its predecessor in the pipeline. Each op-
erator loads graph chunks from its ICS into memory one at
a time in sorted order. When all the results from one chunk
have been computed and the successor in the pipeline re-
quests more, the next chunk is loaded.

In the interest of space, we have only introduced the
key ideas behind cluster-based optimization in the presence
of prune. For details on yield estimation and sorting ICS
chunks in the presence of ranking and ordering functions,
we refer to the reader to our extended technical report [13].

Experimental Results.

We conducted extensive experiments to measure the im-
pact of our cluster-based optimization approach in reduc-
ing navigation times for complex Web queries. In Fig-
ure 12, we present a couple of sample results from our ex-
periments.

Figure 12(a) displays the execution time for nine sample
Web queries over a 35-million page data set (approximately
600 million links, 300 GB of HTML). Queries Q1 to Q4
correspond to Examples 1 to 4 described earlier in this pa-
per and the remaining queries are described in [13]. For
each query, the chart shows execution times with and with-
out cluster-based optimization. In the latter case, the query
is executed by simply scanning the query tree bottom-up,
always choosing the Web graph for forward navigation and
the transpose for backward navigation. Figure 12(a) shows
that in most cases, enabling cluster-based optimization re-
sulted in a 40-45% reduction in query execution time.

To generate Figure 12(b), we executed a suite of30 Web
queries over5 different 20-million page data sets. Each
query was executed in three ways: (i) using a relational
database to store the Web graph, (ii) using the S-Node
representation but without optimization, and (iii) using S-
Node with cluster-based optimization. Figure 12(b) plots



the reduction in query execution time by using (ii) or (iii) as
opposed to (i). The results indicate that on average, using a
cluster-based Web graph representation structure provides
a 35-40% reduction in navigation speed. Cluster-based op-
timization further boosts the reduction factor to the 70-80%
range.

7 Related Work

Drawing inspiration graph and hypertext query systems,
a number of Web query languages have been developed
in the past (e.g., WebSQL, W3QL, WebLog, WebOQL,
StruQL, etc.) [7]. However, our work differs from these
past approaches in two respects. At the modeling level,
none of these languages incorporate the notions of rank-
ing and ordering. At the implementation level, these sys-
tems are intended either for “online” queries on the Web
or for “Web-site management”, as opposed to our “ware-
house” model (i.e., crawl, locally build repository, and ex-
ecute analysis queries).

The Squeal system [15] defines a relational schema to
support SQL queries over Web data. However, the system
is primarily aimed at relational queries over page and link
attributes, without support for ordering, ranking, and navi-
gation.

Theoretical work on computability of Web queries has
been addressed in [1, 9]. While the authors of [9] also
employ a relational Web data model, they do not include
our extended operator set to handle navigation, ranking,
and ordering. In addition, their queries are defined using
an abstract machine model, analogous to Turing machines,
in contrast to our algebraic approach. In [10], the authors
study the expressive power of relational algebra when the
underlying domains are partially ordered. However, this is
fundamentally distinct from our model, in which each in-
dividual relation can be partially ordered based on a query-
specific ordering condition.

In the context of financial and statistical applications,
systems such as SEQUIN [14] and SRQL [5], and more
recently AQuery [8] have proposed SQL extensions to in-
corporate order. However, in all these cases, the intention is
to model sequences or linearly ordered data (e.g., calendar
dates, sorted list of stock prices). In contrast, our approach
is based on partial orders, is intended to model user “pref-
erences”, and incorporates a uniform treatment of ranking
and ordering.

The prune operator discussed in Section 4.3 is similar to
the “STOP AFTER” SQL extension proposed in [3], except
that our definition extends to partially ordered relations as
well.

Optimization of path queries has been studied in the ob-
ject database community. However, a key difference is that
unlike object graphs, Web graphs do not conform to any
well-defined schema. Semi-structured query optimization
techniques do not depend on a schema but instead, em-
ploy structural and statistical summaries of the graph struc-
ture [11]. Our clustered representation scheme is similar in
spirit, but is specialized to Web graphs.

8 Conclusion
In this paper, we addressed the problem of formulating and
executing complex expressive queries over Web reposito-
ries. We showed that the combination of navigation, text
search, and relational operations and the ability to manip-
ulate application-defined ranks and orders are key charac-
teristics of Web queries. We presented a query model and
algebra that precisely define the semantics of Web queries
with these properties. Finally, we discussed some of the
optimization techniques that we have devised to efficiently
execute such queries over large Web repositories.
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