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Abstract

Web repositories, such as the Stanford WebBase
repository, manage large heterogeneous collec-
tions of Web pages and associated indexes. For
effective analysis and mining, these repositories
must provide a declarative query interface that
supportscomplex expressive Web querieSuch
gueries have two key characteristics: (i) They
view a Web repository simultaneously as a col-
lection of text documents, as a navigable directed
graph, and as a set of relational tables storing
properties of Web pages (length, URL, title, etc.).
(i) The queries employ application-specific rank-
ing and ordering relationships over pages and
links to filter out and retrieve only the “best” query
results. In this paper, we model a Web repos-
itory in terms of “Web relations” and describe
an algebra for expressing complex Web queries.
Our algebra extends traditional relational opera-
tors as well as graph navigation operators to uni-
formly handle plain, ranked, and ordered Web re-
lations. In addition, we present an overview of the
cost-based optimizer and execution engine that we
have developed, to efficiently execute Web queries
over large repositories.

Introduction

PageRank, trawling for communities, scalable clustering,
similarity indexing, etc.) as well as for more focused Web
analysis queries.

To illustrate the types of queries that a trained informa-
tion analyst could execute over WebBase, consider the fol-
lowing two examples. In Example 1, we attempt to gener-
ate a list of universities that Stanford researchers working
on “Mobile networking” collaborate with. To this end, we
examine the hypertext links from important “Mobile net-
working” pages inside Stanford to the websites of other
universities (see Figure 1).

Example 1.Let S be a weighted set consisting of all the
pages in the stanford.edu domain that contain the phrase
'Mobile networking’. The weight of a page fis equal to
the normalized sum of its PageRank and text search ranks.
ComputeR, the set of all the “.edu” domains (except stan-
ford.edu) that pages i point to (we say a pagepoints to
domainD if it points to any page irD). For each domain
in R, assign a weight equal to the sum of the weights of all
the pages inS that point to that domain. List the top-10
domains inR in descending order of their weights.

In Example 2, the editor of the local university newspa-
per wishes to determine the relative popularity of the three
comic strips Dilbert, Doonesbury, and Peanuts, amongst
people at Stanford University. With each comic stfip
he associates a websife,, and a seC,, containing the
name of the strip and the names of the characters featured in
that strip. For exampld)ilbert,, = {Dilbert, Dogbert, The

The Stanford WebBase repository [4] is a special-purpos®0ss and Dilbert, = dilbert.com. He uses a combina-
warehouse that stores large collections of Web pages arfipn of word occurrences and link information to compute
associated indexes. The repository operates in conjun@ measure of popularity for each strip.

tion with a “crawler” that periodically traverses the Web

Example 2. Extract a set of at most0000 pages from

to gather pages to populate the repository. The pages arle stanford.edu domain, preferring pages whose URLSs ei-
indexes in the WebBase repository provide a rich corpusher include the " character or include the path frag-
for large-scale Web mining experiments (e.g., computingnent “/people/”. Call this sefS. For each comic strig”,

computef; (C), the number of pages ifi that contain the

Permission to copy without fee all or part of this material is granted pro- \yords in C,, and fQ(C) the number of pages ii's that

vided that the copies are not made or distributed for direct commercial
advantage, the VLDB copyright notice and the title of the publication and

pages inS point to. Usef(C) + f2(C) as a measure of

its date appear, and notice is given that copying is by permission of thgdopularity for comic stripC'.

Very Large Data Base Endowment. To copy otherwise, or to republish,

requires a fee and/or special permission from the Endowment.

Proceedings of the 29th VLDB Conference,
Berlin, Germany, 2003

These examples illustrate two key characteristics of Web
analysis queries:

1. Multiple views of a Web repository. Web analysis



provide an interface for declaratively formulating and then
efficiently executing complex Web queries.

stanford.edu

ﬁ 2 Challenges and Solution Approach

rntoration The design of a formal model and query algebra for Web
repositories poses several challenges, due to the the unique
Focu fon of X ) S ! .
o¢ Sﬂ‘;:\';’:;"““ properties of the queries hlghllghted in the_ previous sec-
tion. Query models used in relational, semi-structured, or
Figure 1: Example 1 text retrieval systems provide some, but not all of the fea-

tures required to support Web queries.

queries combin@avigationoperations on the Web graph  For instance, text retrieval systems employ one of
(to refer to pages based on their hyperlink interconnecthe standard IR models (Extended Boolean, Vector-space,
tions), text search predicate@o refer to pages based on probabilistic model, Bayesian Network, etc.) in conjunc-
their content), and predicates on attributes of Web pages, tgon with query languages that enable keyword querying,
express complex query semantics. For instance, Examplegdattern matching (e.g., regular expressions, substrings),
combines a predicate on the domain, a text-search quergnd structural queries [2]. Thus, treating a Web repository
graph exploration around s&t and link weighting based as an application of a text retrieval system will support the
on ranks. Thus, complex queries simultaneously employdocument collection” view. However, queries involving

three different views of a Web repository: aslacument  navigation or relational operators will be extremely hard to
collection as adirected graph and as aset of relations formulate and execute.

storing page and link attributes. On the other hand, the relational model provides a rich

2. Ranking, Ordering, and Top-k results. Web anal- and well-tested suite of operators for expressing complex
ysis queries employ user-defined notions of ordering an@redicates over Web page attributes. However, ranks and
ranking (of pages and links) as a mechanism for dealin@rders are not intrinsic to the the basic relational model.
with the sizeandheterogeneitpf Web data sets. The use Motivated by financial and statistical applications (e.g.
of ranking and ordering functions enables complex querie§omputing moving averages), there have been previous at-
to prioritize result elements and selectively retrieve only thelempts to introduce order into relations and relational op-
“best” results. erators (SEQUIN [14], SRQL [5], AQuery [8]). However,

For instance, in Example 1, the query defines the rank@S We discuss in Section 7, there are several key differences
ing of the domains irR as a function of the PageRank and between our appr.oach and the extensions p_roposed in these
text search rank of the pages in $etThis ranking enables SYStems. In particular, our approach admits a more gen-
selective retrieval of only as many results as are neede@r@! class of orders, uniformly deals with ranks and orders,
(the top-rankedl0 entries in this case), without wading allows more sophisticated ranking functions, and extends
through a huge result set. In addition, tecument col- "anking and ordering to Web navigation.
lection view of a repository requires support for ranking, Inthis paper, we propose a formal model and algebra for
since text query operators inherently return ranked result§Veb queries, with the following features:

(€.9., atext query "CONTAINS 'Mobile networking” will ¢ the yse of a simple relational schema and the notion

rank pages that contain the exact phrase higher than those ¢«aep relations” to model the operands and results of
that separately contain 'Mobile’ and 'networking’.) Web queries

Similarly, in Example 2, since there is no guaranteed , \ye|_defined semantics when combining navigation,
mechanism for identifying personal Web pages in the Stan- relational, and text search operators into complex
ford domain (“heterogeneity” at play), a heuristic is em- queries
ployed. The query identifies certain URL patterns that are A mechanism. based on “partial orders”. for definin
more likely to yield personal Web pages and expresses a” and erﬁaﬁi Ela,tinassrdgrs iﬁawgboreIZtiSoﬁso(toemodgl
preference for such pages when conducting the analysis. ip 9 .

user-defined preferences as in Example 2)

Currently, the Stanford WebBase repository provides . - : .
two interfaces to its content: streaming bulk access in- ¢ Qperators to specify appllcatlon—deflned _ranklng func-
. tion, compose ranks from multiple functions, and re-

terfaceto retrieve large pieces of the repository as a stream : . ; o ;

of Web pages over the network, angragrammatic inter- trieve top?k re;ults prioritized either by ranks or by
faceto access the repository indexes. However, execution ordg_r relationships )
of complex analysis queries using these interfaces is a te-* Unified treatment of “plain”, ranked, and ordered Web
dious task, requiring users to design and implement query- "€lations, including (i) extensions to traditional rela-
specific execution plans for accessing indexes, retrieving tional operators, and (i) precise definitions of naviga-
pages, generating rankings, etc. Thus, there is a need to tion operators in the presence of ordering and ranking



pagelD pDomain _pMime pInDegree the “base relation” corresponding|tg, > z]. For instance,

a| 15 |stanfordedu| PPT 2 a bo¢ in Figure 2, we define an ordered relatipR, >p] =
b| 92 |stanford.edu | PDF 4 w [R,{Q>R d,a>pe,b>pd,b>gec>rdc>pg 6}],
€| 13 |stanfordedu | PDF 3 where each tuple whose domain attribute is stanford.edu is
d| 49 |berkeley.edu| HTML | 4 d e > p-related to any tuple outside the stanford.edu domain.
e 55 |berkeley.edu| HTML | 7 S This partial order is depicted in Figure 2 using the standard
R R Hasse diagram notation (in a Hasse diagram for a partial
order>, a directed path from nodeto nodeb implies that
a > b, and conversely).
pagelD pDomain pMime pInDegree f Ranked relation. Given a relationR? and a function
al 15 stanfordedu] PPT ) 029 w that assigns weights (normalized to the range [0,1]) to
b 92 |stanfordedu| PDF 4 057 the tuples ofR, we can define a new relatioR, w] that is
¢| 13 [stanfordedu| PDF 3 0.43 simply R with an additional implicit real-valued attribute
d| 49 |berkeley.edu| HTML | 4 0.57 w.2 Specifically, for each tuplé € R, [R,w] contains a
e| 55 |berkeley.edu| HTML | 7 1.0 tuplet’ that contains all the attributes efand in addition
. plnDegree hast’.w equal to the rank of underw. We refer to[ R, y}]
R, f] f(t)z'T as a ranked rglatlon OR_ anc_i toR as the “base relation”
’ max(f. plnDegree) of [R,w]. For instance, in Figure 2, to generafe, f] the
Figure 2: Ranked, and ordered relations tuples are ranked using(t) = ma;:gzj?sg]jr:geree) (G
rank of tuplea is 2 ~ 0.29).
3 Model of a Web Repository Note that we do not require the ranking functiento

We model the repository as a collection of pages and linkgPerate on a per-tuple basis. In particular, as in the exam-

- : : ; le described above, the rankio& R can depend on the
(corresponding to Web hyperlinks), with associated pagé) . ’ . :
and link attributes. We present a relational schema tha?ttrIbUtes of all the tuples i, not just ont. Formally,

) - > . w : R x {R} — [0,1], even though we will uses(¢) as
is specialized for Web repositories and incorporates ranka shorthand fom(#, R) when the relation is clear from the

ing and ordering of pages and links. Note that a rela- .

tional schema is merely used as a conceptual modelin ontext. I_:lnally, note that every ranked relatjdi) w]. can

tool, and does not impose any restriction on the physical € as;oqated W'thhat?] o;deredtrellfat[ﬁz >u] by;jeﬂmng

implementation of a Web repository (analogous to the no@" 0r@ering>., suchthaty >y, > 1 w(t1) > wlta).
Ranking versus ordering. The notions of ranked and

tion of “physical data independence” adopted in traditional ; . .
databases). For instance, the Stanford WebBase repositofy/dered relations help to model two different kinds of ap-

[4] implementation involves a combination of a relational PiCation semantics used in Web queries. Ordered re-
-%(@tlons are useful for expressing preferences for certain
in

ds of pages or links without necessarily quantifying
how much one kind is preferred over another (e.g., “pre-
fer PDF, Postscript, or plain text files to MS Word docu-
ments”, “prefer intra-host links to inter-host links”, “prefer
To formally describe our model, we adopt the following pages crawled within the last week to older pages”, etc.).
definitions and notational conventions: In addition, since our representation of such preferences is

Page. We use the term “page” to refer to any Web re- based on partial orders, the preferences need not involve
source that is referenced by a URL, crawled, and stored imll available pages or links. For instance, we can express
the repository (e.g., a HTML Web page, a plain text file, aa preference for HTML files over powerpoint (PPT) files,
PDF document, image, other media file, etc.). We associatand not involve other document types at all, by defining
a unique identifiepagel D with each page. [R,>]=[R,{d > a,e > a}] on base relatio® in Figure 2.

Link. We use the term “link” to refer to any hypertext  In contrast, ranked relations are useful when applica-
link that is embedded in the pages in the repository. Eackions (i) can precisely quantify their relative preferences
link is associated with a source page (the page in whiclie.g., HTML files get a weight of 0.6, PDF and Postscript
the hypertext link occurs) and a destination page (the pagiiles get a weight of 0.4, and everything else is weighted
that the link refers to), and a unique identifienk/D. A 0.2), (ii) use precomputed ranks generated by sophisti-
separate link identifier allows us to unambiguously identifycated offline algorithms (e.g., PageRank), or (ii) mathemat-
a link even when there are multiple links between the samécally compose ranks derived from multiple sources (e.g.,
source-destination pair. SUM(PageRank, text-search rahk)

Ordered relation. Given a relationR and a strict par- Formal model of a Web repository. We model a
tial ordering>pg (i.e., an irreflexive, anti-symmetric, and Web repository as a 6-tuple) = (Z,,Z;, Wg, P, L, F),
transitive binary relation) on the tuples Bf we refertothe  where:
pair [R, >g] as an ordered relation adR. ConverselyR is

and custom file-based index structures.

3.1 Preliminary definitions

2Wwithout loss of generality, we assume that the attribute namés in
1We do not include intra-page hyperlinks in defining our set of links. do not clash with these specially added rank attributes.




e 7, (resp. 7;) is an identifier space from which the | Category | Operator list

pagel D (resp. linkID) for every page (resp. link) _ Select ()

is chosen. Without loss of generality, we assume that Unary relational Gﬁ:ﬂgiy ()y)

7,NZ; = 0, and thatZ,, andZ; are disjoint with respect Union (U)

to the domain of any other attributesiy. Binary relational Intersection ()

. . . Set-difference )

e Wr is a set of plain, ranked, or ordered relations called Cross-product¥)

Web relationsA relation R is said to be a Web relation Rank @)

if it containsat least oneattribute whose domain ig,, Ranking and Ordering Order @)

7;, 2%, or 271, A ranked relatior{R, f] or an ordered Prune ()

relation[R, > ] is a Web relation if the corresponding Compose ®r,op)

Forward navigation K)

base relatiorz is a Web relation. Navigation AT L
. . . . Backward navigation (\ )
e P € Wg is auniversal page relation P contains
one tuple for each page in the repository and one col- Table 1: List of query operators in our model

umn for each page attributeP includes an attribute

P.pagel D whose domain i€, and which forms a pri-  tory would have many more. In [13], we list the names and

mary key forP. Thus,P has a schema of the form data types of the page and link attributes used in our exper-

P = (pagelD, .....). imental repository. We will also refer to some of these at-
e L € Wk is auniversal link relation £ contains tributes when formulating sample complex queries in Sec-

one tuple for each hyperlink in the repository andtion 5.

one column for every available link attributel in-

cludes an attribute.linkID whose domain isZ;

and which forms a primary key foC. In addi- 4 Query Operators

tion, each link will include asrcID, the identifier |n this section, we list and define some of the query oper-
of the page in which the link occurs, anddastID,  ators that are used to build complex Web queries. Table 1
the identifier for the target of the hyperlink. The |ists the complete suite of operators in our algebra, classi-
domain of bothL.srcID and L.destID is Z,, and fied into four categories. All the operators listed in the table
there is a referential integrity constraint frofnsrc/ D manipulate onlyeb relationsi.e., the result of any opera-
to P.pagelD. Thus L has a schema of the form tor as well as its operands are plain, ranked, or ordered Web
L= (linkID,srcID,destID,....). relations.

e Fis aset of predefined page and link ranking functions  Inthe interest of space, we will present only the more in-
that have been registered in the repository (see exanteresting and non-standard operators in this section. Specif-

ples below). ically, we will take up for detailed discussion, the operators
We identify four common types of Web relations. A in the last two categories of Table 1 (“ranking and order-
Web relationR = (A, A,,...,A,) such that for some ing” and “navigation”), as well as the group-by and cross-

i €1...n, domain(A;) = T, domain(A;) #T,¥j #i  product operators. For the remaining relational operators,
is called gpage relation Analogouslylink relations page-  extensions to their semantics to handle ordered and ranked
set relations andlinkset relationsare Web relations with  relations are formally defined in [13]. Below, we summa-
exactly one attribute whose domainZg 277, or 27t re-  rize only the salient aspects of these extensions (through-
spectively. By definition, the special relatioRsand£ are  out, we will refer to relational operators on multisets as in
themselves page and link relations respectively. SQL):

The elements of sef are functions that operate on Select. When selecting from a ranked relati¢R, f],
plain relations to produce ranked relations. For instancethe selection predicate can refer to the ranking attribute
F may contain an elemerf, z..x that operates on a page R.f. Also, o([R,>g]) = [S,>s] whereS = o(R) and
relation R to yield [R, fyrank), in Which the tuples are >g is merely> p restricted to the tuples ifi.
ranked using the normalized PageRank of the constituent Project. Projection on[R, f] implicitly retainsR. f in
pages. As another examplg, could contain an element the result. In addition, two special projection rules are em-
frriar(s) that ranks tuples of a page relation based orployed to yield base relationgi_,.,x([R,w]) = R and
the ranks of the pages (using the standard TF-IDF rankf_,,.4([R, >r]) = R.
ing scheme [2]) when searching for the striag(e.g., Set operations with ordering. Union, intersection, and
feriar (“Web repositories)). set-difference of a pair of ordered relatiops, > x| and

Note thatWWr, the set of Web relations in the repository, [Y, >y ] produces another ordered relatiph > ;] where
contains the two special relatio® and £. In addition, Z = XUY,XnNY, orX —Y as the case maybe. For
since the result of any complex Web query is itself a Webunion and intersection ; contains all the orderings among
relation (see Section 4), query results can be stored as eléhe tuples ofZ that are consistent with bothy and>y-.
ments ofWWg and used in future queries. For set-differencey z includes all orderings among tuples

Finally, though the schema definitions require only oneof Z that are consistent with x (see [13] for examples).
attribute forP and three foii., a typical useful Web reposi- These definition extend to any combination of ordered and



language host
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German

English

English
Italian

music.stanford.edu

Q-0 A 0 o
S S L )
—- A AN O W

www-sul.stanford.edu
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Group on language, totalLinks = SUM(numLinks)

language totalLinks

English | 8 |
French
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©w = 0T

Ttalian

Figure 3: Group-by operator on an ordered relation

plain relations by setting one or both ofy and>y to be
empty.

Set operations with ranking. When a ranked relation
[R, f] is supplied as an operand to a union, intersection
or set-difference operato, f] is replaced by the corre-
sponding ordered relatiofR, >f]3. Thus, set operations
do not preserve or operate on actual rank values, only o
orders induced by the ranks.

4.1 Group-by (v)

Ranked relation. Group-by on a ranked relatiofR, f]
merely treats the ranking attribufe. f as yet another at-

[X’ >X ] [Y’ >Y ]
q
a a p
b l q l
b p

[Z$ >Z] = [X’ >X] x [Y’ >Y] [V’ >V] = [X’ >X] xY

(aap) (a’q) (a_,p)
(2.9) (a.9)
®p) | (@p) (b (c.0) (b.p)
(b,9) ap D &.q (b.) (a,p) (a,q)
(c.p) (c.p)
cq ] ®p @D co 1 ®p 6o

Figure 4: Cross product of ordered relations

b >r ¢, g >r e, etc., as shown in the Hasse diagram in
the figure. The figure shows how the incoming links are
grouped based on the language of the page in which the
links occur. The ordering of the result tuplesg, », ands

is computed using the rule described above. For instance,
sinced >g a,d >p e, andd > f, (all the German pages
are at depths less th@rbut all English pages are at higher
depths), we set >¢ p (the “German” group is preferred to
H]e “English” group).

4.2 Cross-product (x)

Cross-product operations can involve any pair of plain,
ranked, or ordered relations. The challenge is to define the
ordering or ranking of the result for each possible combi-

tribute that can be grouped, aggregated, or dropped. Wheytion of operands. The rules we set out below are based
R.f is used as a grouping attribute, the result is simplygp, the following intuition: if only one of the operands is

another ranked relatiofiS, f] with the same ranking at-
tribute. If R.f is aggregated (using a function such as
AVG or MIN), the result is a ranked relatidi$, g] where
the g-values are simply aggregationsivalues over each
group. Finally, if R.f is neither grouped nor aggregated,
the rank values are lost and the result is a plain relation.
Ordered relation. To extend group-by to ordered rela-

tions, we must define how to order the tuples of the result ®

(i.e., how to order the “groups”) given the order relation-
ships in the operand. The key is to ensure that the orde

ing of the result continues to be a partial order. We use

the following rule: Suppose a group-by @R, > ] yields
[S,>s]. Giventuplest,y € S, we setr >g y iff for each
tuplet; € R belonging to the group correspondingtand
each tuple, € R belonging to the group corresponding to
Y, t1 >R ta.

Figure 3 illustrates the application of this rule on an or-
dered page relatigt, >|. R represents various attributes
of 7 different pages, all of which point to a websités' of
interest to the user. The attribuenum Links represents
the number of links from each of theggages to pages in
W S. The partial ordering>p is used to express the fol-
lowing preference: “prefer pages with depth$”.# Thus,

SRecall from Section 3 that for tuples b € R, a > biff a.f > b.f.

ranked/ordered, the result must reflect the ranking/ordering
in this operand; when both operands are ordered, the order-
ing in the result must be consistent with both operand or-
derings. Thus, we separately consider the following cases:

e Case 1: Both operands are plain relationStandard
definition of cross-product
Case 2: Both operands are ordered relatioe de-
fine [ X, >x] x [Y, >v] = [Z, >z], where:

e /=XxY

e If a >x bandc >y d, then(a,c) >z (b,d)

e If a >x b, then(a,c) >z (b,c) foranyce Y

e If ¢ >y d, then(a,c) >z (a,d) foranya € X
Figure 4 illustrates this definition. For example,
(a,q) >z (b,p) sincea >x bandq >y p, (c,q) >z
(¢, p) sinceq >y p, and so on.
Case 3: One operand is plain, other is orderedle
define[X, > x| xY = [V, >v], whereV = X xY and
(a,c) >v (b,d) iff @ >x b. The bottom right relation
in Figure 4 illustrates this definition. Sinee >x b,
every tuple in the result generated using >y -related
to every tuple generated usihg

r_

traversed to reach that page, starting from the root page of the website to

4The depth of a page is the minimum number of links that must bewhich the page belongs.



pagelD _ planguage pDomain the ordering induced by the rank valuesif, i.e., for

a 185 English airfrance.com b H
€ R,a > biff a.f > b.f).
b 292 French paris.org a ! f . . . .
c 103 French paris.org To apply® to a plain relation, we specify an “ordering
d 849 German | tagesspiegelde condition”. An ordering condition orR is an expression
; 551 Engié: E‘f’iblimg C1 > Cy whereC; and(Csy are any two valid selection
o Ll Srnee.con predicates orR. We defined¢, - ¢, (R) = [R, >], where
R a > biff a € o¢,(R)—0¢,(R)andb € o¢,(R)—o¢, (R).

In other words, tuples that satisfy; are preferred to those
that satisfyCs. However, tuples which satisfy both condi-
tions are removed from the ordering. For convenience, we
will interpret ®+ as being equivalent ¢ < noT -

Figure 5 shows two instances of using theoperator.
The first ordering condition orders all pages from “.com”
domains ahead of pages from “.org” domains. The sec-
ond ordering condition orders English pages from “.org”
domains ahead of pages in non-English languages.

q>pD0main LIKE %.com > pDomain LIKE %.org(R) =
[R,{a>b,a>c,a>e, [ >b, f >c, f>e}]

(I)(pLanguage = English A pDomain LIKE %.org) > pLanguage # English (R) =
[R,{e>b,e>c,e>d}]

Figure 5: Thed operator

e Case 4: One operand is plain, other is rankefhal-

ogous to Case 3, we defin&, f] x Y = [V, g] where Prune (©2;). The prune operator provides a mechanism
V = X xY andg((a, b)) = f(a), 1.e., ranks are purely for retrieving a fixed-size subset of tuples from a relation
determined byf. ’ T (refer to [13] for formal definition). In particular, given a

relation R, Q;(R) selects a subset of sizein(k, |R|). If
Ris a plain relation, the operator can non-deterministically
. choose any subset of this size. When applied to a ranked
Z\irdtega;% t2hies ﬁggg?g%ﬂnﬁérgegef [g?lit{?h >1] relation,Q2; ([ R, f]) returns aranked relation containing the
) P f sl k top ranked tuples inR, f]. Since multiple tuples of?
» Case 6: Both operands are rankeloth operands are 5y have the samgvalues, several top-sets are possible

converted to the corresponding ordered relations andp the actual result is non-deterministically chosen from
Case 2 applies. among them.

Note that in Cases 5 and 6, the cross-product operation Finally, when applied to an ordered relation
does not use the rank values even though the ordering inR ~) , selects tuples on the basis of this or-
duced by the ranks is taken into account. However, if thergjering.  For example, consider the ordered relation
is a need to preserve or operate on the actual ranks, th& {4 > b a>ca>e, f>b f>c,f>e}]  shown
compose operator (see Section 4.3) can be employed.  in Figure 5, corresponding to the preference for “.com”

domains over “.org” domains.2; on this relation can
4.3 Ranking and ordering operators non-deterministically return any one of the three tuples

h i i ded th ics of f, ord. However(}; cannot returm, c, or e since they are
In the previous section, we extended the semantics of tréy| o qered below: and f. Similarly, 2, on this relation

ditional relational algebra operators to handle ordered an an yield any set of four tuples as long as at leaand f

ranked Web relations as operands. In this section, we dege nart of the result (thug,possible results). In all cases,
fine four new operators specifically designed for creatingyg regylt of the operator is also an ordered relation and the
and manipulating ranked and ordered relations. ordering of tuples in the result is simply the ordering in

Rank (V). Operaton simply formalizes the act of ap- -,  restricted to the available tuples. Thus, one possible
plying a ranking function to a base relation. Thus, given a.gq it of applyings is [{a, f,e,d}, {a > e, f > e}]
relation R and ranking functiorf : R x {R} — [0, 1], we
define®(f, R) = [R, f].

Compose ©p,0p). The compose operatd is used
to merge two ranked relations to produce another ranke@Graph navigation in complex Web queries tends to be sim-
relation. Each instance @& is associated with a “com- ple in structure, often focusing purely on connectivity and
position function”h, that defines how ranks are assignedneighborhood properties (e.g., which pages point to page
to the output relation, and a binary set operatoptf(op € X, which pages doeX point to, what are the pages that
{U,n, —, x}) that defines how the tuples of the resulting are at most 2-clicks away fronX, how many links in-
relation are constructed. The composition function assigngerconnect two sets of pages, etc.). This contrasts sharply
a new rank for each tuple of the result, using the ranks ofvith the sophisticated operators and path expressions used
all the tuples in the operand relations. We provide severain navigating and branching through the label structure of
examples of rank composition in Section 5. semi-structured database graphs [6]. The reason is that

Order (®). The ® operator constructs an ordered rela- the size and immense heterogeneity of Web data sets (and
tion, given either a ranked relation or a plain base relationWeb graphs) makes it very hard to formulate precise path
When applied on a ranked relatio®([R, f]) returns the queries. Often, when navigating Web graphs, the ability to
corresponding ordered relatid®, > | (recall that>; is  “bias” the choice of links and pages (e.g., prefer intra-host

e Case 5: One operand is ranked, other is orderdd.
compute[R, f] x [S, >g], the ranked relation is con-

4.4 Navigation operators
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Figure 6: Navigation in the presence of ordering

links to inter-host links, prefer links from pages that link reachable in 1-step from the pageshirnby following any
to www.stanford.edu ) is more useful than the ability of the links in.S in the forward direction. Recalling the
to precisely specify paths using complex regular expresdefinition of page and link relation? and.S must have
sions. Further, even if complex path queries could be forexactly one attribute with domaifi, andZ; respectively.
mulated, their execution on massive Web gra@ptsuld be  Let those attributes bB.pagel D andS.linkID. For con-
prohibitively expensive. venience, we will assume that the link relation also includes
Thus, the key challenge is to meaningfully propagatesource and destination page identifiers for each tuple, with
user-defined ranks and orders when navigating through thaitribute names'.srcI D andS.destI D. We define,
Web graph. In our model, navigation operators are ex- RAS — s dest1n(Vs.destin(Z)), where
pressed in terms of cross-product and group-by operations 7 _ R xS d
involving page and link relations. Hence, the semantics = ORpagerD=S.srerp (1 X 5), an
of navigation in the presence of ordering and ranking de- . | . .
rive from the semantics of the operators defined earlier. wdavigation with ordering.
will first define how ranks and orders propagate through arpe formula for A involves a join on the page and link
“single-step” navigation operation, i.e., following exactly re|ations followed by grouping and projection. To illus-
one link from a set of pages to reach another set of pagegate the application of this formula in the presence of
Later, we will extend the definition to paths in the Web ordering, we will take up two examples: one involving
graph. . o ordering only on the pages and another involving order-
We use the symbols\ and A to represent forward and ing on both pages and links. Figure 6(a) shows the two
backward navigation respectively. Forward navigation fol-operands that we will use in our example; a page relation
lows links in the Web graph in the direction of the actual [R, >r] = ¢pranguage=English > pLanguagesEnglish (R)
hyperlinks whereas backward navigation is in the oppositavith a preference for “English” pages and a link relation

direction. Our description will focus on\ but the details  [9, >s] = d1ntraDomain=yes > ntraDomain=no(S) With a
for ‘A are similar. preference for intra-domain links.
—

Operator A accepts a page relation (s&) and a link . (i) Ordering o_nly on pages. Fo_r thi_s example, we wil
relation (sayS) as operands. One or both Bfand.S may ignore the ordering on the-_!mks (ie., |gn%) gnd com-
SN _
be plain, ordered, or rankedA computes the set of pages pute [X,>x] = [R,>r] A S as shown in Figure 6(b).
8A link from cs.stanford.eduo db.stanford.edus within the stan-

SFor example, a 110 million page Web data set translates to over &ord.edu domain but a link frorgs.stanford.edtio www.cnn.conis not
billion edges in the Web graph [12]. intra-domain.
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Figure 8: Query graph for Example 1

Figure 7: Navigation in the presence of ranking be preserved, we use the compose opel@igs, « rather

Relation[T’, >7] in Figure 6(b) represents the intermedi- than plain cross-product). Theaz function is applied
ate step of joining the page and link relations. The finalWhen computing7’, A} (e.9.,h.aC = max(a.f,C.g) =
result|X, > x| is produced by grouping and projecting out 1ax(0.9,0.8) = 0.9) and theavg function is applied
the destination page identifiers (the circled column) fromhen grouping to generate the final result (e/g.w =
[T, >7]. Applying the rules for cross-product from Sec- (bB-h + cF.h)/2 = 0.85).

tion 4.2, sincen >x b anda >p ¢, all tuples ofI" gen-  ynary navigation operators.

erated using: are ordered ahead of the remaining tuples. - _
Similarly, the ordering> x is derived by applying the rules For a page relatio?, we defineA(R) = R A L, and

for group-by from Section 4.1. For instanc¥, >x M A(R) = R A £, wheref is the universal link relation.

becauseC' >7 bD andaC >t cE. Thus, instead of choosing the links from a set of tuples in
~ We note that the ordering in the final result matches oug link relation, the unary navigation operators permit nav-
intuition, given the preferences expressed~ip. For in-  jgation using all available links in the repository. These

stance, inspecting and[R, > ]|, we see that pagesand  unary operators are useful for the common scenario of com-

9 are pointed to by pagg pages and10 are pointed o by 5 4ing the out-neighborhood\ (R) and in-neighborhood
page and3, and> g expresses a preference foover2 —

and3. Thus, we would expect pag8@snd9 to be ordered A(R) O.f a set of pages. As with t_he binary operator,
ahead of7 and 10, which is precisely what is represented when 12 is ranked, the unary operator includes an aggrega-

in the diagram for> x . tion function to indicate how to combine multiple incoming

(i) Both pages and links ordered. For this example, anks (€.9,A yax (R) indicates that each page in the out-
both > and > are taken into account. So we compute N€ighborhood oft will receive a rank equal to the maxi-
Y, >y] = [R,>g] N S, >5]) as shown in Figure 6(c). mum ranks qf all the pages R_t}hat pomtto it).

As before, the intermediate resilf, >;;] represents the  Further, since the result of\ (R) is itself a page rela-
join of the page and link relations which is then groupedtion, we can recursively apply navigation on the result to
to yield [Y, >y]. Once again, the orderingy computed COmpute expand_lr)g_())ut and in-neighborhoods. Thus, we
using our formula can be intuitively explained by looking define A“(R) = A(A*"*(R) — R), Vi > 1. Notice that

at the operand relations. For instanéé,>y O (pageS8 if R is ordered or ranked, each neighborhood will also be
preferred ta9) is explained by the fact that though page correspondingly ordered or ranked. Thus, our unary navi-
points to both8 and9, thel — 8 link is an intra-domain  gation operators provide a natural extension to simple un-
link (tuple C' € S) whereas thd — 9 link is not (tuple  ordered and unranked path navigation in Web graphs.
Aebl).

5 Examples of Complex Queries

. . .. Inthis section, to illustrate how the various operators in our
When page and link relations are ranked, the navigation;epra work together, we take up two sample Web analysis
operator accepts two aggregation functions as parametefsqys and construct the corresponding queries. Queries for
(A o) a defines how to combine page and link ranksseveral other tasks, including Example 2 from Section 1,
and b specifies how to aggregate all the incoming ranksare described in [13].
(since multiple links may may point to the same target e will begin with Example 1 described in Section 1.
page). For instance, Figure 7 illustrates the computatiofrigure 8 shows the query graph for this analysis task, with
for [R, f] A maz,avg [S, g]. As in the earlier examples, the each node representing an operator in our algebra. For con-
figure shows the intermediate step of joining the page andenience, we have split the query into two pieces connected
link relations to yield[T, k] (note that since ranks must by the intermediate result relati¢fi, f]. Notice that in the

Navigation with ranking.



| ) BT lenges. The discussion in this section is intended to high-
light these challenge and provide an overview of our opti-
> mization scheme.
/ \ ~ As with join.s in r_elation.al querie_s_, optimizatior) of nav-
Qoo P igation operations is crucial for effl_czlently executing com-
plex Web queries. However, the difference is that naviga-
T tion operators must now be implemented over the special-
M ized structures used to represent Web graphs, rather than
- / \<_ as hash joins or sort-merge joins over relational tables. In
A A this section, we will focus our attention on the techniques
\ we have devised to optimize navigation over massive Web
CI)pDepm - CID,,DE,),;, >4 %raphs. Our techniques are based on the following two key
ideas:
T Exploit query locality. While a repository may involve
@URL LIKE " my.domainl.org/%" @URL LIKE "my.domain2.net/%" several hundred million pages and billions of hyperlinks,
\ / most analysis queries focus a relatively small “piece” of
the data set (e.g., the piece could be all pages in donins
P andY related to topi?). Further, as indicated before, nav-
igation is often local and explores only the immediate for-
ward or backward neighborhood of this piece. Thus, many
queries are “localized” to one or more small portions of
the Web graph. A key feature of our optimizer is an index
structure and optimization scheme geared to identify and

Figure 9: Query graph for Example 3

left piece of the query graph, after selecting “stanford.edu
pages from the universal page relatin we apply two
ranking functions: fTextRank to assign ranks based on : .
a text search for “Mobile networking” anflPage Rank to exploit Sl_"Ch locality.

assign ranks based on the PageRank attribute. We composeEXIOIOIt prune. The presence of the_ pruné operatqr
these two ranks using th@ operator and compute the out- presents additional opportunities for optimization. Typ_|-
neighborhood of this ranked set of pages (labé®d’)). cally, the prune operator is employed as the last operation

In the second part of the query graph, we jéih f] with i|_1 a query to retrieve only a subset of the results. An op-
P to retrieve the domain of each page (the “pDomain” at-imizer that can push the “prgne” operator down th.e query
ptree (ideally, at every stage in the query, generating only

&s many results as are used later on) can obtain significant
speedup in query execution time. However, pushing the
prune operator down the tree in the presence of ranking
and ordering is a challenging problem.

top-rankedl0 domains usingy,.

Example 3. In this example, the webmaster of
“my.domainl.org” and “my.domain2.net” prepares a list of
1000 pages that point to both his websites. In particular,
he is more interested in pages that deep-link into his wet§-1 Page Clusters

sites, i.e., link directly to deeply buried pages instead ofrg gentify and exploit locality during query execution, we
linking to the main page or one of the top-level index pagespartition the entire data set in the repository iptme clus-
Figure 9 illustrates the query graph for this example. Theers Eachpage clusterepresents a set of pages that belong
query computes the intersection of the in-neighborhood ofq the same top-level domain (e.g., all pages in a cluster
both websites. The preference for deep links is expressegay belong to stanford.edu), have lexicographically similar
as a preference for pages with deptil. This orderingis  yRLs, and possess similar out-neighborhoods, i.e., point
automatically converted into an ordering on the neighboryg aimost the same set of pages. Intuitively, we attempt to
hood pages by the semantics of theoperator. Finally, group together “related” pages so that all the pages rele-
the URLs of the topl000 pages, subject to this order, are vant to a complex query are distributed among a relatively
retrieved. small number of clusters. We refer the reader to our previ-
ous work, reported in [12], for a precise characterization of
these page clusters and an iterative algorithm for partition-
ing a Web data set into clusters.

As part of the Stanford WebBase repository, we have de- Below, we briefly describe a representation scheme,
veloped an optimizer and execution engine for efficientlybased on page clusters, for physically organizing the Web
executing complex queries over Web data sets. Our cosgraph for efficient navigation. In the next section, we dis-
based optimizer is similar in spirit to the query optimiz- cuss the role of page clusters in our overall optimization
ers employed in relational query execution systems. Howand query execution strategy.

ever, certain unique features of Web data sets, the storage S-Node representation. The S-Node representation
structures used in Web repositories, and the characteristic€heme uses page clusters to physically organize the Web
of complex Web queries, pose new and interesting chalgraph into a two-level structure as shown in Figure 10 [12].

6 Optimizing and Executing Web queries
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Figure 10: S-Node Representation

P
The top-level directed graph, called a supernode graph, h

one node (“supernode”) for every page cluster and an ed Figure 11: Example to illustrate cost model
(“superedge”) from supernodé to supernodeB iff some
page in clusterd points to some page in clusté&. A su- conceivably contain the pages produced as a result of the
pernoded points to a lower-level directed graph that con- navigation operation. The cost of a navigation operation is
tains one vertex for each page in clusteand one edge for  simply the sum of the sizes of all the chunks in its ICS.
each link between those pages. Supered@epoints to To illustrate, consider the query shown in the left half
a lower-level bipartite digraph that represents all the linksof Figure 11. The query performs the following compu-
from pages in clusterl to pages in clusteB. Thus, the tation: “If S is the set of all German pointed to by pages
lower-level digraphs (called “graph chunks”) together rep-with PageRank- 6, compute a list of all .edu pages about
resent the entire Web graph and the top-level supernod&nowledge bases’ that also point to pagesSh The
graph acts as a compact cluster-level structural summary.two navigation operators in the query are labelédvl
Typically, the supernode graph resides in memoryand Nav2. To compute the ICS and OCS fd¥avl in
whereas the graph chunks are loaded from disk on deman#igure 11, the optimizer uses the following pieces of in-
We maintain two S-Node graph representation structuregormation: (i) the fact that the source pages for this op-
one for the Web graph and one for its transpose, to aid ireration must be pages with PageRasks, (ii) the fact

forward and backward navigation respectively. that destination pages must be German language pages, and
(iii) cluster-level statistics for the “pPageRank” and “pLan-
6.2 Cluster-based optimization and execution guage” attributes. For instance, using the cluster-level his-

tograms of PageRank distribution, suppose the optimizer
Page clusters an_d t_he _graph chunks Fhat they generate, mputes that the only page clusters containing pages with
central to our optimization and execution strategy. The cos ageRank- 6 areA andB and similarly that the only page

of each query plan is measured in terms of the eStimateglusters containing German pages éreD, and E. The

number and size of graph_chunks that are tra_n_sferred_ fror‘ﬂght half of Figure 11 shows a portion of the supernode
secondary storage to main memory. In addition, akin to

relational optimizers, we maintain statistics on the valuegraloh containing all the supernodes and superedges involv-

distributions?of variods ages and link attributes HoweverIng 4, B, C, D, andE. SinceA does not have a superedge
o page ) connecting it toC, D, or E, (i.e., none of the pages iA

all our statistics are maintained at the cluster level, rathe

than for the repository as a whole. For instance, instead of oint to any German page) arildoes not have an incom-
posttory w ' : ! g superedge from eithet or B, the optimizer concludes

\s;mlgle h|strograirr11 reprr](;?er:tmg tnerd|s$|erth]|0irr1]tofirI:a%eRan at ICS(Navl) = {chunkp,chunkgp,chunkpc}.
alues across the entire repository, we maintain one su hus, the estimated cost of this navigation operation is

histogram for each page cluster. ; ) }
The search space of possible execution plans consideré pe(chunkp) + size(chunkpp) + size(chunkpc).

by our optimizer, and the cost of each of these plans, i$|an Enumeration.
primarily dependent on the navigation operators in a query. . o
In the following, we describe how plans are enumeratedlhe space of possible query plans is influenced by two fac-

and their costs computed. tors: the graph used to execute each navigation operator
o ) and the ordering among the operators.
Cost of a navigation operation. Web graph versus Transpos&Ve observe that every

We associate two sets of graph chunks with each navigatioRavigation operation, irrespective of its specified direction
operation. Thénput chunk sefICS) is the set of all graph _(|.e., forward or backward), can be executed by el_ther load-
chunks that must be available for the navigation operatiodnd graph chunks from the Web graph or by loading graph
to execute, i.e., all the chunks that may Concelvably contain "We note that to enable cluster-based optimization, we augment the S-

the source pages and.”nks followed by the operation. Th@ode representation scheme so that each supernode and superedge records
output chunk sgfOCS) is the set of graph chunks that could the size of the graph chunk that it points to.
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Figure 12: Experimental results demonstrating the impact of cluster-based optimization

chunks from the transpose of the Web graph. For instancePage Rank > 6 that it is expected to yield (using the data
Navl in Figure 11 can either be executed by following from the cluster-level histogram of PageRank distribution).
links from “db.stanford.edu” pages to German pages in the&Second, during query execution, all navigation operators
Web graph, or by selecting those German pages which hawere simultaneously scheduled. Thus, akin to pipelining in
links to “db.stanford.edu” pages in the transpose of the Welselational execution engines, each navigation operator re-
graph. Therefore, the optimizer must compute the ICSguests results from its predecessor in the pipeline. Each op-
OCS, and cost for both strategies. erator loads graph chunks from its ICS into memory one at
Multiple navigation operatorsSo far, we have treated atime in sorted order. When all the results from one chunk
each navigation operation in isolation when identifying thehave been computed and the successor in the pipeline re-
ICS and computing costs. However, for queries involvingquests more, the next chunk is loaded.
multiple navigation operators, the estimated cost of one op- In the interest of space, we have only introduced the
erator is influenced by the presence of the other. Specifkey ideas behind cluster-based optimization in the presence
ically, consider a query plan for the example in Figure 11of prune. For details on yield estimation and sorting ICS
in which both navigation operations are executed using forehunks in the presence of ranking and ordering functions,
ward navigation, loading only chunks from the Web graphwe refer to the reader to our extended technical report [13].
and none from its transpose. Considered on its own, th
ICS for Nav2 would involve all German pages and would
be a superset ofchunkc, chunkp,chunkg}. However, We conducted extensive experiments to measure the im-
based on our earlier example, since the OC& a1 does pact of our cluster-based optimization approach in reduc-
notincludechunk g, we can safely eliminatehunkg from  ing navigation times for complex Web queries. In Fig-

Experimental Results.

ICS(Nav2) as well. ure 12, we present a couple of sample results from our ex-
Thus, given a queryy containing a set of naviga- periments.
tion operators{Ny,..., Ny}, the optimizer explores a Figure 12(a) displays the execution time for nine sample

search space of2k)! plans (all possible orderings of Web queries over a 35-million page data set (approximately
{Ny,..., N} with each)N; either using chunks of the Web 600 million links, 300 GB of HTML). Queries Q1 to Q4
graph or its transpose), computes the cost of each plan meeerrespond to Examples 1 to 4 described earlier in this pa-
sured in terms of chunk 10, and chooses the minimum cogper and the remaining queries are described in [13]. For
plan. each query, the chart shows execution times with and with-
out cluster-based optimization. In the latter case, the query
is executed by simply scanning the query tree bottom-up,
For queries involving prune, at every stage, the aim is talways choosing the Web graph for forward navigation and
avoid generating result elements that later get discardedhe transpose for backward navigation. Figure 12(a) shows
We make two changes to the approach described earlighat in most cases, enabling cluster-based optimization re-
First, when computing the ICS for each navigation operasulted in a 40-45% reduction in query execution time.

tor, the optimizer produces a sorted list of graph chunks as To generate Figure 12(b), we executed a suit&ddiveb
opposed to an unsorted set. The graph chunks in the IC8ueries ovel5 different 20-million page data sets. Each
are sorted in descending order of their estimated “yield”,query was executed in three ways: (i) using a relational
i.e., the number of output results that they are expectedatabase to store the Web graph, (ii) using the S-Node
to produce. For example, in Figure 11, each chunk in theepresentation but without optimization, and (iii) using S-
ICS of Nawvl is sorted based on the number of pages withNode with cluster-based optimization. Figure 12(b) plots

Exploiting prune.



the reduction in query execution time by using (ii) or (i) as 8 Conclusion
opposed to (i). The results indicate tha.‘t on average, “S”.‘g fA this paper, we addressed the problem of formulating and
2 35-40% reduction n havigation speed. Cluster-based offXSCUiINg COMplex expressive queries over Wb reposto-
timization further boosts the reductionfa.ctorto the 70-80%. <> we showed_ that the comblnatlon of navigation, text
range search, and rglatlongl operations and the ability to manip-

' ulate application-defined ranks and orders are key charac-
teristics of Web queries. We presented a query model and
7 Related Work algebra that precisely define the semantics of Web queries

Drawing inspiration graph and hypertext query systemsith these properties. Finally, we discussed some of the
timization techniques that we have devised to efficiently

a number of Web query languages have been develop&t ) o
in the past (e.g., WebSQL, W3QL, WebLog, WebOQL execute such queries over large Web repositories.
StruQL, etc.) [7]. However, our work differs from these

past approaches in two respects. At the modeling levefR€ferences

none of these languages incorporate the notions of rank-[1] S. Abiteboul and V. Vianu. Queries and computations

ing and ordering. At the implementation level, these sys- on the web. Irintl. Conf. on Database Theorg997.

tems are intended either for “online” queries on the Web [2] R. Baeza-Yates and B. Riberio-Net®odern Infor-

or for “Web-site management”, as opposed to our “ware- mation Retrieval Addison-Wesley, New York, 1 edi-

house” model (i.e., crawl, locally build repository, and ex- tion, 1999.

ecute analysis queries). [3] M. Carey and D. Kossman. On saying "enough al-
The Squeal system [15] defines a relational schemato  ready!” in SQL. InProc. of of the ACM SIGMOD

support SQL queries over Web data. However, the system  Conf, pages 219-230, 1997.

is primarily aimed at relational queries over page and link [4] A. Arasu etal. Searching the WeRCM Transactions

attributes, without support for ordering, ranking, and navi- on Internet Technologyl (1):2—43, August 2001.

gation. [5] R. Ramakrishnan et. al. SRQL: Sorted relational
Theoretical work on computability of Web queries has g‘;')irfy Izn%‘éagf'gérp‘]rﬁl‘:'f;;ge 10th Intl. SSDBM

been addressgd in [1, 9]. While the authors of [.9] also [6] S. Aﬁit%bgc)ul et. alData ?)ln the Web: From Relations

employ a relational Web data model, they do not include to Semistructured Data and XMMorgan Kauffman

our extended operator set to handle navigation, ranking, Publishing, San Francisco, 1st edition, 1999

and ordering. In addition, their queries are defined using [7] y ' ' i

. . X D. Florescu, A. Y. Levy, and A. O. Mendelzon.
an abstract machine model, analogous to Turing machines, Database techniques for the World-Wide Web: A sur-

in contrast to our algebraic approach. In [10], the authors vey. SIGMOD Record27(3):59—74, 1998
study the expressive power of relational algebra when the[g] A. Lerner and D. Shasha. /'-\Query,: An arrable-based
underlying domains are partially ordered. However, this is approach to array query languages and optimization.

fundamentally distinct from our model, in which each in- Unpublished.

dividual relation can be partially ordered based on a query-[9] A. O. Mendelzon and T. Milo. Formal models of

specific ordering condition. Web queries. IrProc. of the 16th ACM Symposium
In the context of financial and statistical applications, on Principles of Database Systenmmges 134-143,

systems such as SEQUIN [14] and SRQL [5], and more 1997.
recently AQuery [8] have proposed SQL extensions to in{10] W. Ng, M. Levene, and T. I. Fenner. On the expres-
corporate order. However, in all these cases, the intentionis  sive power of the relational algebra with partially or-
to model sequences or linearly ordered data (e.g., calendar dered domainsintl. Journal of Computer Mathemat-
dates, sorted list of stock prices). In contrast, our approach ics, 71:53-62, 2000.
is based on partial orders, is intended to model user “prefl11] N. Polyzotis and M. Garofalakis. Structure and value
erences”, and incorporates a uniform treatment of ranking ~ synopses for XML data graphs. Rroc. of the 28th
and Ordering_ VLDB Conf.,, Hong KOHQOO_Z. ) ]
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