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ABSTRACT

Extracting structured information from text, such as key-value pairs
that could augment tabular data, is quite useful in many enterprise
use cases. Although large language models (LLMs) have enabled
numerous automated pipelines for converting natural language
into structured formats, there is still a lack of benchmarks for eval-
uating their extraction quality, especially in specific domains or
focused documents specific to a given organization. Building such
benchmarks by manual annotations is labour-intensive and limits
the size and scalability of the benchmarks.

In this work, we present StructText, an end-to-end frame-
work for automatically generating high-fidelity benchmarks for
key-value extraction from text using existing tabular data. It uses
available tabular data as structured ground truth, and follows a
two-stage “plan-then-execute” pipeline to synthetically generate
corresponding natural-language text. To ensure alignment between
text and structured source, we introduce a multi-dimensional evalu-
ation strategy that combines (a) LLM-based judgments on factuality,
hallucination, and coherence and (b) objective extraction metrics
measuring numeric and temporal accuracy.

We evaluated the proposed method on 71,539 examples across
49 datasets. Results reveal that while LLMs achieve strong factual
accuracy and avoid hallucination, they struggle with narrative co-
herence in producing extractable text. Notably, models presume
numerical and temporal information with high fidelity yet this in-
formation becomes embedded in narratives that resist automated
extraction.

We release a framework, including datasets, evaluation tools,
and baseline extraction systems, to support continued research. Our
findings highlight a critical gap: Models can generate accurate text
but struggle to maintain information accessibility, a key require-
ment for practical deployment in different sectors and demanding
both accuracy and machine processability.
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1 INTRODUCTION

Large language models (LLMs) have unlocked new opportunities in
automating knowledge extraction and generation tasks [14] across
structured and unstructured data. Recent advances in model capa-
bilities enable quality reporting from various sources. Industries
increasingly automate and adopt LLM powered workflows for con-
verting databases, sensor feeds and other heterogeneous structured
records into human readable insights [2, 27].

One particularly promising use case for LLM-powered knowl-
edge extraction is to perform text-to-table extraction [6, 33], where
free form text is processed into tabular data formats. Converting
natural language text into tabular data can allow it to more easily in-
tegrate with existing tabular data as well as leverage the ecosystem
of mature technologies surrounding efficient indexing and querying
over tables. This in turn can enable developers and users to make
use of text data more effectively and precisely — for example, rather
than relying on full text search or embedding-based similarity met-
rics to retrieve potentially useful documents to answer a question,
we can instead convert the documents to tables and query even
large amounts of data effectively using SQL.

However, research surrounding the topic of text-to-table extrac-
tion is still constrained by the absence of broad, domain-spanning
benchmarks and evaluations. Classic datasets such as WebNLG [9],
WikiBio [16], ToTTo [24], LogicNLG [4] all target a single con-
tent domain (typically Wikipedia) and judge mainly surface-form
overlap, leaving numerical fidelity and schema coverage untested.
Synthetic pipelines like SynthIE [13] show that LLMs can bootstrap
data, but their evaluations likewise remain confined to news or
encyclopaedic prose. Industry applications require verifiable and
high quality information transfer, especially in highly regulated
areas such as the finance, healthcare, and legal domains [3, 11, 32].
While some existing work has explored the quality of LLMs in
data-to-text workflows [14], most existing systems either focus on
structured-to-structured pipelines, such as SQL querying and table
QA, or on unstructured-to-unstructured tasks like summarization
and open-ended generation. Existing structured to text benchmarks
tend to focus on narrow domains rather than mapping real-world
complexity. Furthermore, we lack the deeper level evaluations that
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measure information preservation or factual accuracy creating a
disconnect between research benchmarks and practical needs.

To facilitate the text-to-table extraction research and evaluation,
we introduce StructText, an automated workflow to generate
text, extract tables, and evaluate the quality of both structured and
unstructured data. Our workflow operates over any existing tabular
data, processing it to automatically generate natural language text
from table rows, and subsequently evaluate the quality of structured
extraction over the synthetically generated text. By generating
unstructured text starting from a tabular data source, StructText
enables the creation of new datasets to benchmark the quality of
text-to-table extraction for any domain, using the original data
source as the ground-truth for evaluation.

As demonstrated by prior work such as SynthlIE [13], there is
an inherent asymmetry in difficulty for LLMs: generating fluent
text from structured data inputs seems to be easier for LLMs than
extracting structured information from natural language text. We
leverage this asymmetry by first synthesizing natural-language
passages from tabular data, then using these synthetic text to rig-
orously evaluate and advance LLM-based information-extraction
capabilities.

1.1 Our contributions

This work makes three primary contributions to text-to-table gen-
eration benchmarking:

Synthetic text and benchmark generation: We present a
methodology to automatically process existing tabular data to pro-
duce new benchmarking datasets. Given any tabular data source,
we leverage LLMs to select meaningful groupings of columns to pro-
duce synthetic text for each row. Our method minimizes the need
for human effort while enabling the creation of new text-to-table
benchmark datasets for any domain.

Multi-dimensional evaluation framework: We devise multi-
dimensional evaluation criteria for the generated synthetic text.
The evaluation measures generation across four critical dimen-
sions: factuality, hallucination, coherence, and numeric/temporal
accuracy. Our framework incorporates LLM-as-judge methodology,
specifically adapted for structural data scenarios combined with
specialized hybrid models for numerical and temporal reasoning.
This evaluation approach measures if the generated text is faith-
ful [18] to the original structured data that is being used as input,
i.e., whether generated text truly preserves source information so
that it is possible for a system to extract the same information as in
the ground truth. Furthermore, it ensures that the generated text is
of high quality and coherent in addition to being factually correct.

Benchmark dataset: To support the feasibility of our approach,
we produce a large-scale benchmarking dataset spanning practi-
cal domains including finance, healthcare, and diverse sources of
information originating from Wikidata. Unlike existing simplified
academic scenarios, it reflects real-world complexity found in reg-
ulated industries. Using this initial dataset, we perform baseline
experiments and evaluation surrounding the benchmark creation
and text-to-table extraction tasks.

Baseline extraction method: We implement a text-to-table
extraction pipeline that converts a collection of natural-language
passages into tabular format, with each piece of text corresponding

to a single row with one or more columns and values. To quantify
performance, we define a set of evaluation metrics guided by the
existing work on key-value pair extraction from text. The baseline
acts as a reference for the more advanced approaches to be com-
pared, and also as a validation level of difficulty in the task, i.e, that
the generated synthetic text is nontrivial for modern LLMs to parse
back into structured data.

2 RELATED WORK

Early approaches on evaluating table-to-text methodologies re-
lied on template-based systems with rule-based evaluation focus-
ing on grammatical correctness. In the neural era, BLEU [23] and
ROUGE [19] metrics borrowed from machine translation inade-
quately captured factual accuracies. Recent LLM as a judge meth-
ods show promise but lack standardized application to table-to-text
benchmarks where the information fidelity is critical. Our approach
draws from and contributes to several strands of recent research in
LLM evaluation, factuality detection, and structured generation.

Key-value extraction benchmarks: Early key-value pair ex-
traction benchmarks were focused on specific semi-structured doc-
uments such as receipts (e.g., CORD [25]) with a pre-defined small
key set. KVP10K [22] dataset formulates this task as an open vo-
cabulary extraction task without a predefined key set. Typically,
creating such benchmarks involves a significant amount of effort
from domain experts for manual annotations. In this paper, we
propose a method to automatically generate benchmarks that can
be used to test key-value pair extraction approaches using tabular
data from any given domain.

Benchmarks for Structured-to-Text: Systems like ToT To [24],
LogicNLG [4], WebNLG [9], WikiBio [16] evaluate table-to-text gen-
eration, but typically in isolation from downstream tasks. They are
limited to simplified toy problems, repetitive text patterns. Unlike
these datasets, our benchmark defines a comprehensive evaluation
that focused on multi-domain complexity spanning SEC Filings [28]
and a diverse fields in WikiDB, highlighting real world data com-
plexity with information fidelity assessment through multi-stage
evaluations instead of generation only metrics.

LLM-as-a-Judge Evaluation: Recent work demonstrates that
LLMs can perform evaluative tasks traditionally done by humans.
MT-Bench/Chatbot Arena [36] showed high agreement with hu-
man preferences similar to human-human agreement. Similarly
G-Eval [20] and TrueTeacher [10] show strong correlations be-
tween LLM and human judgments across dimensions like factuality
and coherence. FACTS [12] extends this line to long-document fac-
tuality by using grounded context-aware scoring. General LLMs
as a judge focus on open-ended text quality and we build on these
frameworks by adapting them specifically to evaluate structured to
text conversion. Our design focuses on a three dimensional rubric
covering factuality, hallucination and coherence tailored for struc-
tured data.

Evaluation Criteria: Prior benchmarks often focus narrowly—on
fluency, coherence, or factuality alone. Our benchmark introduces
numeric/temporal consistency as an additional axis, particularly
important when structured numeric and temporal data is translated
into prose. This is inspired by both practical use cases (e.g., financial
reporting) and gaps observed in current evaluation metrics. Our



benchmarking not only evaluates the quality of the unstructured
text that was generated, but we go one step further and provide a
baseline for how we leverage the key-value extraction from this
unstructured text to provide an additional layer of benchmarking
of the concepts. This serves as a baseline key-value extractor that
the community can build upon.

3 BENCHMARK GENERATION

The benchmark generation can be broadly divided into three sub-
tasks: (1) synthetic text generation from structured data, and (2)
multi-dimensional quality assessment, (3) filtering low quality text
with validation.

3.1 Synthetic Text Generation

The goal of our synthetic text generation pipeline is to produce
“natural” language text from a tabular data source without the need
for human intervention. Each row that is present in a table indicates
a single instance of data, with the columns of the table indicating
certain types of properties or relations of that data.

Here, we use the term reports to refer to synthetic text generated
for a particular set of columns of a table. A report type refers to all
reports generated for a specified set of columns. The synthetic text
generation step, then, will aim to produce one or more report types
for each table and generate corresponding reports for each row.

A report is more than just the task of converting the key-value
pairs of structured data into templated text outputs but ensuring
that the right combination of columns are selected to generate a re-
port that transcends simple templating by dynamically determining
column combinations and ensuring linguistic coherence.

For the purposes of our benchmarking efforts, we assume that
each row of the table will have its own corresponding set of syn-
thetic texts. Given our ultimate goal of benchmarking and evaluat-
ing the quality of text-to-table extraction, in order to effectively pro-
duce data from which a system can feasibly extract the appropriate
key-value information, we felt that the task would be unreasonably
challenging for both extraction and evaluation if multiple rows
could also be present within a given passage of text.

For a given table, we will produce several report types which
target a set of columns within the table. For each report type, we
then generate synthetic text for each row. Note that for a particular
report type within a table, all rows will produce reports using the
exact same set of columns, but for each table, a set of different
columns will be selected.

We adopt a workflow that has a plan-then-execute two stage
pipeline for our report generation.

Planning Stage: Our LLM based system first analyzes ten sam-
ple rows from the input table and must autonomously identify
data patterns and relationships to produce meaningful report struc-
tures. Unlike structure based reporting which rely on predefined
schema, the model analyzes column semantics, data types, and
value distributions to understand the data’s inherent structure. It
must recognize natural groupings of related information, such as
financial metrics paired with temporal context, and determine an
appropriate level of granularity. We limit the output to one to five
report types to ensure meaningful analytical aggregation rather

than simple column enumeration. The LLM outputs a structured
plan mapping each report type to its constituent elements.

For instance, when presented with SEC data, the model au-
tonomously identifies that revenue, net income, and earnings per
share naturally group into a financial performance report without
being explicitly told that these represent income statement com-
ponents (see Fig. 1). This planning phase directly tests the model’s
ability to recognize implicit data relationships and impose a mean-
ingful structure on the raw tabular data.

We place no hard constraint on the set of columns per report type,
the LLM is free to reuse any columns it deems semantically relevant.
This is important for identifiers such as company_holding_name
and stock_ticker that appear in every SEC report type and is
useful as an identifier. We empirically chose 10 samples as a bal-
ance between computational efficiency and coverage; ablations on
sample size remain as future work

Planning Output: SEC Financial Data Column Groupings

Report Type 1: Financial Performance

Identifiers: company_holding name, stock_ticker
Metrics: revenue, net_income, eps_basic, eps_diluted
Each with: {value, period, filing_date, unit}

Report Type 2: Balance Sheet

Identifiers: company_holding_name, stock_ticker

Metrics: total_assets, current_assets, total_liabilities, current_liabilities,
stockholders_equity

Each with: {value, period, filing_date, unit}

Report Type 3: Operating Metrics

Identifiers: company_holding_name, stock_ticker
Metrics: operating_income, cash_equivalents
Each with: {value, period, filing_date, unit}

Figure 1: LLM planning phase output showing natural group-
ings of columns (metrics). Each report includes company
identifiers and financial metrics with temporal/unit meta-
data.

Generation Stage: In the second stage, the grounded text gener-
ation uses the planned report type name and the subset of columns
selected from the original structured data from stage one to pro-
duce a coherent narrative that strictly follows this identified set of
columns. This way, the models must examine the data samples and
determine appropriate reports based on natural column groundings,
testing analytical judgments rather than template filling. Further,
the generated prompts mitigate hallucination of information by
focusing on the selected subset of columns from the data enforcing
factual discipline during text creation. The design aims at a) en-
abling the LLM to recognize meaningful data relationships without
human guidance, and b) generating informative text while main-
taining factual discipline and minimizing hallucinations as much
as possible.



Structured Data — LLM Processing — Natural Language Reports

revenue: 2.65595E+11
revenue_period: 9/29/18
revenue_filing_date: 11/5/18
revenue_unit: USD
total_assets: 3.633E+10
total_assets_period: 12/28/24
eps_basic: 2.41
eps_basic_unit: USD/shares
stock_ticker: AAPL
company_name: Apple Inc.

Financial Performance: "Apple Inc. (AAPL) reported a revenue of $265,595,000,000 for the period
ending on September 29, 2018, with the filing date being November 5, 2018. The net income for the
period ending on December 28 ..."

Balance Sheet: "Apple Inc. (AAPL) reported total assets of $344,085,000,000 as of December 28, 2024,
with the filing date being January 31, 2025. The company’s current assets stood at $133,240,000,000
for the same period ..."

Operating Metrics: "Apple Inc. (AAPL) reported an operating income of $42,832,000,000 for the
period ending on December 28, 2024, with the filing date being January 31, 2025. The company also
held cash equivalents of ..."

Figure 2: Example of LLM table-to-text transformation for
Apple Inc. The model first plans report groupings, then gen-
erates natural language preserving exact values and temporal
context.

3.2 Multi-Dimensional Quality Assessment
Framework

To analyze the quality of the synthetically generated text, we em-
ploy a comprehensive validation framework which combines LLM-
as-a-judge methods with objective extraction metrics to assess the
generation quality and inspect the coverage and the faithfulness of
information contained in the synthetic text.

LLM-as-judge Evaluation: We adopt the LLM as a judge par-
adigm [36] to evaluate the quality of our generated reports along
dimensions which are difficult to measure through other heuristic
or objective measures. Specifically, we use LLMs to evaluate three
critical aspects of the generated text: hallucination detection, where
we aim to detect whether the generated text “hallucinates” any in-
formation which was not contained in the original structured data;
coherence, which indicates how naturally the ideas in a text are
presented; and factuality, or whether the generated text is factual
from the perspective of general common sense knowledge.

This evaluation methodology recognizes that the reports must be
useful to human readers—not just technically accurate but coherent
and free from hallucinations. For each measure, we design 5-point
rubrics (See table 1) to serve as the metric following a similar strat-
egy as existing work (e.g., LLMs4Synthesis [1]). This transforms
the traditionally subjective human evaluation into a reproducible
assessment.

The hallucination rubric identifies ungrounded content ranging
from heavy fabrication of critical information (score 1) to complete
grounding where all the content either is derived from the struc-
tured source data or includes explicit attribution (score 5). When
judging the hallucination metric of a generated text, we ground the
generated text based on the original tabular data that was used to
generate the synthetic text — note that generated text can be based
on true information about the world but still count as a hallucina-
tion if the generated text contains information that goes beyond its
grounding information.

The coherence rubric evaluates the narrative flow of the report
generated and the logical organization of the different structures
from incoherent texts with contradictions (score 1) to seamless
organization with natural transitions (score 5).

The factuality rubric assesses whether the claims in the general
text are directly traced to the source data, distinguishing between
fundamental incorrectness (score 1) (where most of the claims
contradict) vs. full correctness (score 5).

These rubrics were designed to capture the nuances of the tabular
data to synthetic text generation, wherein unlike in open-ended
text generation, our rubrics emphasize verifiability, with each score
level including concrete criteria for the source data relationships for
both LLMs and humans enhancing reproducibility. Any automatic
judge can itself hallucinate, and it’s a known issue with using LLM-
as-judge evaluations. However, we mitigate it by A) providing a
scoring rubric to reduce the ambiguity of scores, and B) using self-
consistency checks, where the LLM also produces a rationale for
its score and an additional “claims” section, which judges each of
the sentences in the report being judged to determine if the claim
is supported or unsupported. These safeguards are inspired by the
best practices in recent LLM-as-judge work [12, 20, 35].

Numerical and Temporal Accuracy: The numerical and tem-
poral information in the synthetic report text is crucial to verify
and requires special handling. If we generate synthetic text with
incorrect numbers or dates (i.e., not aligned with the ground truth),
it will be impossible for any downstream text-to-table approach
to produce the correct extraction results. In order to validate the
accuracy of such information in generated text, we implement a
dedicated validation pipeline.

For numeric values, we combine Stanford’s Core NLP’s NER [8,
21] parser with regular expression patterns to identify monetary
amounts, percentages, and quantities. We apply a 0.1% relative error
tolerance to account for the rounding differences. For each table
row and associated synthetic text, we first collect the numeric cell
values from the source ground truth row and apply the parser to
produce normalised ground-truth numeric values. Next, for the
generated text, we similarly apply the parser to identify all numeric
values which were included in the text. Using the normalized results
from these two parsers, we compare the two sets of numeric values
to determine the precision and recall of numeric values in the
generated text. We note that in this validation, we do not specifically
check whether the numeric values are expressing the semantics in
the text accurately, but only check whether the numeric values
occur.

Similarly, for temporal values, we employed a LLM extraction for
context-aware parsing of generated text, which handles complex
phrases. Given that temporal identifiers such as dates and times
can be expressed in a large variety of ways — e.g. “the fourth quar-
ter of 2022” versus “2022 Q4” — we used Stanford’s Core NLP’s
SUTime [21] as a fallback to produce a standardized format.

3.3 Filtering Low Quality Text with Validation

As a final step for the benchmark generation workflow, we can
perform filtering to ensure that only high-quality data is used for
evaluation purposes. Following the initial dataset collection and



Table 1: Evaluation rubrics for generated reports (1=worst, 5=best)

Score  Factuality Hallucination Coherence

1 Fundamentally incorrect: Most claims Heavy: Numerous invented details Incoherent: Difficult to follow, random
contradicted jumps

2 Largely incorrect: Core information mis- Frequent: Multiple unverifiable points Poor flow: Jarring transitions, disconnected
represented

3 Mixed accuracy: Minor distortions, main  Occasional: Some ungrounded details Acceptable: Some awkward transitions
narrative correct

4 Mostly correct: Only minor/peripheral er- Rare: Minor details lack grounding Smooth: Clear progression, minor issues
rors

5 Fully correct: No errors, all claims sup- None: All content grounded or attributed Seamless: Natural flow, effortless transitions
ported

validation using the multidimensional quality assessment frame-
work’s results, we can analyze the quality assessment results to
eliminate any reports that are not fully aligned with the ground
truth structured data.

Quality filtering After the multi-dimensional validation step,
the filtering proceeds in three passes:

(1) Metric selection: pick the validation dimension whose
metric is lowest for the dataset - e.g., we found that temporal
accuracy was the lowest (see Table. 3).

(2) Thresholding: drop any report whose precision or recall on
that dimension falls below a user-set threshold 7 (we sweep
7=1.0—0.70 in 0.05 steps; Fig. 4 shows the trade-off).

(3) Re-weighting: recompute the macro averages on the re-
tained data. This helps validate if the improvements from
pruning one metric adversely affects the others.

This simple strategy kept over 50% of SEC reports when 7=0.90
while also improving the overall metrics.

4 TEXT-TO-TABLE EXTRACTION BASELINE

Having established our methodology for generating synthetic text
from tabular data, we now describe our baseline workflow for the
text-to-table extraction task. Here, the main goal of the text-to-
table extraction task is to take a collection of natural language
texts and convert it into a tabular data format, with each piece of
text corresponding to a single row with one or more columns and
values.

4.1 Baseline Extraction Approach

For the scope of this paper and benchmark creation, we make two
key assumptions in this task. First, we assume that a given piece of
text corresponds to only a single row, rather than requiring extrac-
tion of multiple rows from a single chunk of text. Second, for the
extraction and evaluation steps, we assume that in a collection of
texts, a consistent set of columns can be extracted from each text.
Relating this back to our automatic report generation workflow,
each report corresponds to a set of columns from the table, and
each report type is constructed using a fixed set of columns. Our
assumption follows from this structure, where our extraction and
evaluation is performed for a specific report type. This assump-
tion allows us to evaluate two aspects of a text-to-table extraction
method - the ability to correctly identify what column(s) can be

extracted from a set of report texts, and the ability to correctly
extract values.

Our extraction approach operates over a single report type at
a time for each table. The first step is to inspect a sample of the
reports to identify a set of columns which can be extracted from the
reports. Not all reports might necessarily contain information about
all columns (e.g., this can occur if the original row had null values for
a given column), but by sampling over multiple reports our system
will aim to get a general sense of the kind of information which
can be extracted. Here, we make use of an LLM prompting strategy
to identify a set of plausible columns which can be extracted from
the report type.

Next, given the set of columns which we have predicted can
be extracted from the reports, we perform extraction over each
row’s report text. For each row, we feed in the report text together
with the predicted set of columns to extract, and produce a JSON-
formatted dictionary of key-value pairs corresponding to column-
value extractions.

Together, these two steps compose our baseline implementation
for extracting tables from text, with the first step essentially ex-
tracting the “schema” of the table and the second extracting the
cell values. For tables where multiple reports were generated, we
repeat this process in a similar manner — for the scope of this paper,
we process each report independently and focus only on evaluating
the extraction quality for each report in isolation.

4.2 Evaluating Extraction Quality

In order to evaluate the quality of the text-to-table extraction re-
sults, there are two factors which must be considered. First, it is
possible that extraction will identify column names which are not
identical matches with the original column names. In such cases
we will need to rely on other similarity metrics to avoid overly pe-
nalizing the results for minor differences such as singular vs plural,
tense, capitalization, or spacing differences. Besides checking for
exact matches, we can use edit-based similarity metrics such as
Levenshtein distance [17], similar to the work of KVP10K [22], or
embedding-based similarity such as BERTScore [34]. This flexibil-
ity allows our baseline approach to prioritize semantically similar
column names over exact matches helping adapt to a wide range
of naming outcomes in real-world data. Ultimately, the focus is to
unify values under appropriate columns- irrespective of the exact



name as long as the mappings preserve the correct semantics and
the extracted values align with the ground truth.

A second consideration is how to determine which predicted
column extraction to compare against the ground truth columns.
While this might be trivial in cases where the extraction has exact
matches, when there are minor differences in the column names we
must make a decision about which extracted column values will be
compared against which ground truth columns. Furthermore, this
decision may be further complicated when handling cases where
the system predicts too many or too few columns to extract from
each report.

To handle this, we employ a bipartite matching approach, map-
ping each ground truth column to at most one predicted column.
Each pair of ground truth and predicted column will have some
associated similarity score, computed using the aforementioned
similarity metrics. We then choose the best mapping by selecting
the mapping which maximizes the total similarity scores among
the mapped columns. We apply OR tools [26] to optimize the total
score using integer programming.

Lastly, after performing extraction and choosing optimal map-
pings to compare predictions against ground truth columns, we
can evaluate the extraction quality. We apply standard measures
of precision, recall, and F1 scores, weighting each metric by the
text similarity score. For our text-to-table extraction task, we can
evaluate how accurately we identify columns (for each report of
each table) as well as the accuracy of value extractions (for each
row of each report).

5 EXPERIMENTAL METHODS
5.1 Datasets

We evaluate our benchmark generation method across datasets
from various diverse domains representing real-world complexity:

SEC Financial Filings: The dataset consists of structured finan-
cial data extracted from SEC 10-K and 10-Q filings [28]. This dataset
was programmatically extracted from the SEC Edgar filings via the
official APL Synthetic text generated from SEC Financial Filings
data offers significant advantages, wherein the researchers can re-
produce and extend the dataset without data distribution concerns,
and the extraction process itself serves as a realistic structured
table-to-text benchmark.

Creation pipeline retrieves company facts from the SEC’s XBRL
API ! for publicly traded companies for which the ticker symbol
has the relevant information that could be extracted through the
API. We extract the financial metrics by searching for the most com-
monly used US-GAAP taxonomy [5] concepts, including multiple
naming variations to maximize coverage (e.g., revenue, revenues,
and sales revenue net all map to revenue). Our selection criteria
focused on metrics universally present in financial analysis (income
statement items, balance sheet components, and cash positions).
Each metric includes temporal metadata and unit information, re-
sulting in over 40 columns per company.

This approach ensures that the benchmark can be regenerated
using the provided extraction code while capturing the complexity
of real financial reporting (where the same concept may have mul-
tiple representations and temporal context). The code handles both

https://www.sec.gov/search-filings/edgar-application-programming-interfaces

annual and quarterly filing, prioritizing the most recent data when
multiple values exist.

WikiDBs: WikiDBs [30] is a dataset that is derived from Wiki-
data [31], where knowledge graph entities and their relations have
been curated and formatted to resemble tabular data. WikiDBs
leverages the large-scale and well-structured contents of Wikidata
to collect large groups of entities with related topics and properties
and then transforms the assertions present in the KG into columns
and cell values. Like Wikidata itself, WikiDB covers an extremely
broad range of topics, and the full dataset contains 100,000 tables.

For our initial experiments, we collected a subset of 1,000 tables
from WikiDBs to validate our approach, with the included tables
covering a diverse set of topics such as geographic data, cultural
and economic indicators, product and service information, and
legislative data. Additionally, we filter out any columns containing
potential personally identifiable information, such as names and
contact information. The final version of the tables contained an
average of 11.6 columns and 152.8 rows.

5.2 Models and Infrastructure

We used the Qwen2.5-72B-Instruct model [29], which provided the
report planning and generation. For the evaluation part, we used
the Meta’s Llama-3.3-70B-Instruct [7] as our primary LLM for all
the evaluation components. We set the temperature to zero for
deterministic generation and employed the DSPy [15] framework
to enforce the structured outputs processing averages.

5.3 Evaluation Protocol

The final scores that were combined using the multiple evaluation
perspectives. The generated text quality averages across the three
LLM-as-judge dimensions while the information fidelity weighs
the column identification and the value extraction quality. The
data set level application uses size weighted averages to prevent
the small data sets from disproportionately influencing the overall
conclusion.

6 RESULTS

We evaluated our benchmark on 50 datasets spanning SEC’s fi-
nancial filings and a subset of diverse WikiDB tables. Our multi-
dimensional evaluation framework assesses text quality, informa-
tion fidelity, and numeric and temporal accuracy to provide a com-
prehensive view of the table-to-text and generation quality.

6.1 LLM-as-a-Judge Evaluation Results

Table 2 presents the LLM-as-judge evaluation results across three
dimensions with factuality, hallucination detection, and coherence.
The results demonstrate exceptionally strong performance in fac-
tual accuracy with scores of 4.58 & 4.56 for factuality and 4.90 &
4.55 for hallucination avoidance.

These near ceiling scores indicate that the current LLMs ex-
cel at generating accurate content without introducing fabricated
information, and the way the two-step structured text to report
generation seems to be effective. However, coherence scores reveals
a notable performance gap representing the challenges of having a
coherent text.
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Figure 3: SEC dataset extraction pipeline showing the programmatic generation of structured financial data from EDGAR
filings. The process handles concept variations and temporal complexity inherent in financial reporting.

Interestingly, both the SEC financial data and the WikiDB show
markedly different characteristics. The SEC reports achieve near
perfect hallucination avoidance but struggle with coherence, while
the WikiDB shows more balanced performance across dimensions.
These patterns suggest that the model has effectively extracted
and conveyed the factual information from such resources but face
systematic challenges in organizing this information into naturally
flowing narratives.

6.2 Numerical and Temporal Accuracy

Having accurate numerical and temporal information is critical for
our benchmark creation, as it would be impossible for any text-to-
table approach to extract the correct information if it is not included
in our generated reports. Our temporal and unit accuracy evalu-
ation reveals strong performances in preserving specific factual
details. Table 3 presents the precision, recall, and F1 scores for nu-
meric and temporal information validation in the generated reports.
The results demonstrate strong performances with both numeric
extractions and temporal extraction achieving a score greater than
0.9. These scores represent the highest performance across all eval-
uation dimensions, suggesting that the models excel at preserving
specific values.

Across the different metrics, the models have successfully identi-
fied and included nearly all the numeric and temporal information
from the source data. The slightly lower precision suggests occa-
sional confusion between similar values or dates, where different
granularities and contextual expressions create ambiguity in what
constitutes a "correct" extraction. The strong performance contrasts
to the key-value extraction highlighting that while specific facts
are preserved accurately, the semantic relations and attributions
become obscured in narrative form.

6.3 Baseline Text-To-Table extraction Results

To assess the difficulty of the task for an LLM and also to enable
more advanced systems to compare with some baseline results,
we evaluated the column and value extraction performance with
our baseline implementation. To compare against the ground truth
columns and values, we use a normalized Levenshtein edit distance,
and compute the similarity of predicted and true values as 1 mi-
nus the edit distance. Table 4 shows both column identification
and value extraction tasks’ precision, recall, and F1 scores. The
results revealed significant headroom in performance in automated
information extraction from generated text, demonstrating that
the benchmark is sufficiently challenging for LLMs indicating that



while the information being present in the native text, they are
expressed in ways that make automated extraction difficult. The
precision-recall trade-offs between them differ notably between the
different dataset types. The SEC dataset shows higher recall but
very low precision, while WikiDBs achieve a more balanced perfor-
mance. This pattern suggests that a fundamental challenge for SEC
data is that it tends to include more information from source data,
with complexities in how it’s expressed. At the same time, WikiDB
reports are more selective or slightly more precise.

Table 2: Text Quality Evaluation (LLM-as-judge) scored from
1=worst to 5=best

Dataset Type Factuality Hallucination Coherence Overall
SEC Financial 4.58 4.90 3.28 4.25
WikiDB Tables 4.56 4.55 3.53 4.21

Table 3: Text Quality Evaluation (Numeric and Temporal
Accuracy)

Validation Type Dataset Precision Recall F1
SEC Financial 0.941 0.924  0.927

Numeric Validation =~ WikiDB Tables 0.849 0.971  0.956
SEC Financial 0.818 0.977  0.956

Temporal Validation ~WikiDB Tables 0.878 0.916  0.915

Table 4: Extraction Performance Across Information Types

Extraction Type Dataset Precision Recall F1

SEC Financial 0.344 0.669 0.455
Column Identification ~WikiDB Tables 0.395 0.433  0.413

SEC Financial 0.257 0.11 -

Value Extraction WikiDB Tables 0.179 0.137 -

6.4 Quality Filtering
To investigate the impact of performing quality filtering over the
generated benchmark data, we also performed a granular analysis
of the numeric and temporal accuracy. Temporal precision emerged
as the weakest component (see Table 4), so we applied a thresh-
old filter over this metric and evaluated the dataset retention and
performance. We inspect the impact of threshold values 7 across
temporal precision at intervals of 0.05 starting from 7 = 1.0 down
to 7 = 0.7, and quantify how filtering impacts dataset size and met-
ric performance. Fig 4 shows the performance in the SEC dataset,
which appeared to be particularly challenging for our report gener-
ation approach. Despite aggressive filtering, over 50% of the dataset
was retained.

Figure 5 shows the challenges of validating the numeric and
temporal accuracy. Although the LLM generated text correctly
identified the fiscal year as 2024 as a temporal value, this was not

explicitly contained within the ground truth columns. This high-
lights the challenges of parsing the different contextual expressions
and granularities of data — neither the text generation nor quality
evaluation were technically incorrect in their outputs, but taken as
a whole the lowered precision of this example is misleading.

7 DISCUSSION
7.1 Key Findings and Contributions

While the models excelled at factual accuracy and minimizing hallu-
cinations they struggled with narrative coherence and information
extractability. The dichotomy highlights a fundamental challenge:
generating text that is both accurate and useful requires not just
correct fact but also effective organization and clear attribution.

While strong performance on numerical and temporal accura-
cies demonstrated that the models can preserve specific numerical
and the temporal details effectively, the poor key-value extraction
results suggest that these facts become embedded in narrative struc-
tures and obscure the semantic relations to source columns. This
finding has important implications for practical applications where
downstream systems need to extract such information from gen-
erated reports. We also note that the method that we produced is
a baseline to give the community a benchmark to build upon and
recognize that this is by no means the best method out there for
text-to-table extraction methodologies.

7.2 Scalability and Extensibility

While our evaluation focused on a representative subset of 50 tables
from the WikiDBs dataset, our dataset collection pipeline gener-
ated significantly larger resources. We also share a larger subset
of WikiDBs, formatted to be suitable for easy consumption and
evaluation through our workflow, for the community to further
build upon.

For the SEC dataset, in our current experiments we limited it
to only include US-GAAP taxonomy concepts, but the same code
for dataset creation can be extended to encompass the full XBRL
taxonomy system, potentially increasing coverage by an order of
magnitude.

Beyond the datasets we release to support experimentation and
validation of our methodology, our benchmark generation workflow
is extensible to any new tabular dataset. We hope that our approach
can help to greatly expand the scope of benchmark creation and
evaluation for the text-to-table task.

7.3 Tools and Community Infrastructure

In our use of LLM as judge we designed the prompt rubric, we
tried to keep it as general as possible. Further enhancement could
improve context-aware rubrics that could be tailored to specific
industries depending on the use case to further enhance the require-
ments and trying to match the judgment. Another future work is
to do inter-human and inter-model judge capability assessment to
see how close or how far apart the two are when provided with
similar instructions for evaluating the different metrics.

Our numeric-temporal extraction pipeline, while achieving strong
results, represents a first-pass solution to a complex problem. Fur-
ther improvements could include context-aware, numerical nor-
malization, handling multiple relative temporal expressions, and
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Figure 4: Impact of filtering on the SEC dataset, showing the percentage of total data remaining after applying filtering with
various threshold values 7 (left) and the change in quality metrics over the remaining data as filtering is applied (right).

Generated Text: Hilton Worldwide Holdings Inc. (stock ticker: HLT) reported an
operating income of $2,370,000,000 for the period ending 12/31/24, with the filing
date on 2/6/25. The company’s cash and cash equivalents were $1,301,000,000 as of
12/31/24, also filed on 2/6/25. These operating metrics highlight the company’s

operational efficiency and liquidity position at the end of the fiscal year 2024.
Number of extracted dates using the temporal parser: 5

Extracted Dates from Text: [{‘value’: ‘2024-12-31’, ‘type’: ‘date’, ‘text’:
“12/31/24°}, {‘value’: ‘2025-02-06’, ‘type’: ‘date’, ‘text’: ‘2/6/25’}, {‘value’:
€2024-12-317, ‘type’: ‘date’, ‘text’: ‘12/31/24’}, {‘value’: ‘2025-02-06’, ‘type’:
‘date’, ‘text’: ‘2/6/25’}, {’value’: ‘2024’, ‘type’: ‘year’, ‘text’: ‘fiscal year

2024’3}]

Ground Truth Date Columns with the Parsed Dates:
Column Cell Value Parsed
stock_ticker HLT []
operating_income_period 12/31/24 2024-12-31
operating_income_filing_date 2/6/25 2025-02-06
cash_equivalents_period 12/31/24 2024-12-31
cash_equivalents_filing_date 2/6/25 2025-02-06

Temporal Parsing Metrics:

Precision: 80% (4 correct / 5 extracted)
Recall: 100% (4 found / 4 ground truth)
F1 Score: 88.89%

True Positives: 4

False Positives: 1

False Negatives: )

Figure 5: Parsing Challenges: The temporal metrics reveal a
precision of 80.00% and recall of 100%, indicating that while
all ground truth dates were captured, the parser extracted
additional temporal expressions. The lower precision is at-
tributed to the LLM correctly identifying "2024" from "fiscal
year 2024" (shown in bold), which represents valid temporal
information but was not included in the ground truth anno-
tations. This highlights the inherent challenges in temporal
parsing where different granularities (full dates vs. years)
and contextual expressions create ambiguity in what consti-
tutes a "correct” extraction.

multi-scale temporal reasoning (such as quarters, years, and filing
dates).

We positioned our key-value extraction system as the baseline.
Substantial room exists for improvement. We encourage the com-
munity to develop enhanced extraction methods that better handle
semantic paraphrasing and distributed information and implicit
relationships between values and their attributes.

Our quantitative study focused on a single strong open-weights
model (Qwen2.5-72B-Instruct model for report generation and
Meta’s Llama-3.3-70B-Instruct for evaluation) so that we could
prototype the end-to-end evaluation pipeline and demonstrate our
benchmarking and evaluation methods. The overall pipeline, how-
ever, is model-agnostic and can be used with any combination of
models. In future work, we plan to benchmark a spectrum of model
sizes and architectures. We release the generation and evaluation
code to encourage the community to run—and publish—such cross-
model comparisons.

8 CONCLUSION

This paper establishes a comprehensive workflow and evaluation
infrastructure to generate benchmarks for text-to-table extraction
tasks, addressing a critical gap between research evaluation and
practical needs. Our contribution spans three key areas:

e We provide a large-scale, multi-dimensional dataset with
realistic complexity. Unlike existing benchmarks that focus
on narrow tasks or simplified scenarios, our data reflects the
challenges of real-world reporting systems where accuracy,
completeness, and readability must be balanced.

o Our multi-dimensional evaluation framework goes beyond
surface-level metrics. Our combination of LLM as judge
assessment with objective extraction metrics will reveal
that current models can generate factually accurate text
that remains difficult to process programmatically, finding
with important implications for system design.

e We deliver complete open source infrastructure enabling
reproducible research and community extension. Our base-
line tools, while showing room for improvement, provide
concrete starting points for advancing the field. This bench-
mark reveals both achievements and challenges in current
LLM capabilities.

While models demonstrate strong factual grounding, numerical
precision, and hallucination mitigation, they struggle with narra-
tive organization and semantic clarity. These findings suggest that



the future research should focus not just on accuracy but on gen-
erating texts that support downstream information extraction. By
providing a comprehensive benchmark, we aim to accelerate the
progress in table-to-text generation towards systems that meet the
requirements of real-world applications.
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