PBE Meets LLM: When Few Examples Aren’t Few-Shot Enough

Shuning Zhang
University of Illinois Urbana-Champaign
sz31@illinois.edu

ABSTRACT

Large language models (LLMs) can generate code from natural
language descriptions. Their performance is typically evaluated
using programming benchmarks that simulate real-world tasks.
These benchmarks provide specifications in the form of docstrings,
function signatures, or bug reports. The model then generates a
program, which is tested against predefined test cases. In contrast,
Programming by Example (PBE) uses input-output examples as
the specification. Traditional PBE systems rely on search-based
methods over restricted transformation spaces. They are usually
designed for narrow domains and fixed input formats. It remains
unclear how well LLMs perform on PBE tasks.

In this work, we evaluate LLMs on PBE tasks involving tabular
data transformations. We prompt models to generate functions that
convert an input table to an output table. We test the generated
functions on unseen inputs to measure accuracy. Our study in-
cludes multiple LLMs and evaluates different prompting strategies,
such as one-shot vs. multi-try. We also compare performance with
and without PBE-specific knowledge. Finally, we propose a hybrid
method that calls a traditional PBE solver first, and then falls back
to LLMs if necessary. Our results show that LLMs support more di-
verse input formats and achieve higher accuracy than conventional
methods. However, they struggle with tasks that contain ambiguity.
The hybrid approach improves overall success by combining the
strengths of both approaches.

VLDB Workshop Reference Format:

Shuning Zhang and Yongjoo Park. PBE Meets LLM: When Few Examples
Aren’t Few-Shot Enough. VLDB 2025 Workshop: 14th International
Workshop on Quality in Databases (QDB’25).

VLDB Workshop Artifact Availability:
The source code, data, and/or other artifacts have been made available at
https://github.com/illinoisdata/PBE-Meets-LLM.git.

1 INTRODUCTION

Modern large language models (LLMs) [7, 25] are capable of gen-
erating high-quality programs from natural language descriptions.
To assess their performance, researchers commonly use a variety
of coding benchmarks that simulate real-world programming tasks.

This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.

Proceedings of the VLDB Endowment. ISSN 2150-8097.

Work done while Shuning Zhang was at the University of Illinois, Urbana-Champaign.
The author is now with Meta.

Yongjoo Park
University of Illinois Urbana-Champaign
yongjoo@illinois.edu

These benchmarks provide models with different forms of pro-
gram specifications, such as docstrings and function signatures [4],
function-level descriptions [2, 14, 39], class-level descriptions [6],
or even bug reports [15, 24]. The model then generates a corre-
sponding program, which is subsequently evaluated based on its
ability to pass predefined test cases.

However, LLMs are less evaluated for a different mode of pro-
gramming, i.e., Programming by Example (PBE) [19, 21]. Using
tabular data as input-output examples as program specifications,
PBE generates the best-suited program, which can be replicated on
other datasets. PBE has been developed for number/string manipu-
lation [8, 32-34, 36] and tabular data transformation (e.g., FlashFill
[22] and FlashExtract [18]). These conventional PBE systems rely
on techniques very different from how LLMs generate code. PBE
methods perform a search (e.g., A* search [16]) within a more re-
strictive space of data transformation patterns, such as moving
rows/columns, combining cells, and so on [27]. It is not straightfor-
ward whether LLMs, trained on massive datasets, would generate
code that resembles the one produced by conventional PBE methods,
or whether they would generate a completely different program.

In this work, we evaluate LLMs on a rerely explored area PBE
tasks—tabular data transformations—to assess their generality and
accuracy. That is, we construct prompts that ask the model to
generate a function that transforms an example input table into a
corresponding output table. The input table is provided in JSON
format, capturing its structure. Then, we test the generated function
on unseen test input tables to determine whether the desired output
tables are produced. Our evaluation uses the latest proprietary LLMs
(e.g., OpenAl GPT-40) to compare their performance and identify
limitations across a wide range of PBE tasks curated from prior
work. Moreover, we examine whether these LLMs can achieve
higher performance with different techniques, such as (1) one-shot
vs multi-tries, (2) no external knowledge vs additional knowledge,
and (3) a hybrid framework combining LLMs with traditional PBE
models.

Our study shows that modern LLMs can achieve high accuracy
on PBE tasks, covering more diverse input formats compared to con-
ventional PBE methods, which are typically designed for a specific
input format. For example, a conventional PBE method, FooFah [16],
demonstrates good performance on its curated datasets, but fails
more frequently on datasets prepared by another paper (e.g., Prose
[9]). The reverse is also true. In contrast, LLMs tend to show high
accuracy across diverse benchmark sets. However, our study also
reveals limitations of LLMs. They often produce incorrect programs
when the task contains inherent ambiguity, even if the correct trans-
formation might be understandable to human engineers. We share
and discuss such examples. Finally, our hybrid approach—which se-
lectively employs LLMs when conventional methods fail—achieves
higher performance than individual methods.

https://github.com/illinoisdata/PBE-Meets-LLM.git
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org

2 RELATED WORK
2.1 Program by Example

When input-output examples are provided, algorithms can find
patterns and apply the same transformation to new sets of inputs.
This method lets users specify their intent through demonstration
examples rather than explicit programming, making it a powerful
tool for automating repetitive and domain-specific tasks. After
the user provides the input-output examples, the system searches
through predefined domain-specific operations to replicate the
transformation. Instead of considering every possible function, the
core of PBE systems is their ability to restrict the search space to a
set of logical operations that are likely to be relevant. The synthesis
engine, acting as the head of the network, will search for a program
that performs the provided transformation, which involves different
computational techniques, such as deductive reasoning, where the
system identifies consistent patterns, and inductive learning, where
it generalizes rules based on input-output mappings. The goal for
such a network is to avoid overfitting and focus on simplicity, the
ability to produce a program that can handle a broader range of
similar inputs.

Previous PBE-driven tools have demonstrated strong capabilities
in enabling users to perform complex data transformations through
a few example-based interactions [1, 3, 5, 18, 23, 29, 32]. FlashEx-
tract [18], a PBE framework integrated into Excel, enables users
to extract structured data from semi-structured text with minimal
user input, thereby significantly reducing the time required for data
extraction tasks.

2.1.1 HoloClean. HoloClean [30] is a data cleaning system that
leverages probabilistic modeling to automatically detect and repair
errors in structured data. Its framework consists of three main com-
ponents: error detection, compilation, and data repairing. During
compilation, HoloClean generates a probabilistic model in which
random variables represent uncertainty over the values in the input
dataset. It uses factor graphs to encode the joint probability distri-
bution over these variables, capturing dependencies derived from
integrity constraints, statistical correlations, and external signals.
To perform statistical learning and inference, HoloClean builds on
DeepDive [31], a declarative probabilistic inference framework. Fi-
nally, HoloClean repairs detected errors by computing the marginal
probabilities of candidate values and selecting the most likely ones.

2.1.2 Prose. Program Synthesis using Examples (Prose), a research
group at Microsoft. The authors described their view of the PBE ar-
chitecture, which consists of three components: a search algorithm,
a ranking strategy, and user interaction models, as shown in Figure
1. The search algorithm is the key to determining if the system is
efficient and accurate. A simple search strategy is to go through all
the possible combinations of actions before making the final deci-
sion, and maintain a graph structure along the way. This method
works well with a small number of operation pools. However, with
more complex operations, this bottom-up search approach will
have high costs on memory usage and time efficiency. Thus, they
proposed combining Machine Learning (ML) into the program’s
training process to learn from those mistakes and improve the ef-
fectiveness and maintainability of the various PBE components.
The combination leads to 8x faster program synthesis, enhances

Refined Intent l

Example-based
Search

Intent ——| ., Ranked | popugger | Intended

Algorithm Program set ProgminD

w

Test inputs
Ranking DSLD

function

Intended Program in
R/Python/C#/C++/...

Figure 1: Overview of PBE Architecture[9]

ranking accuracy, and correctly identifies intended programs 50%
more effectively than heuristic-based methods [10]. This technique
makes PBE more scalable, adaptive, and practical for real-world
applications like data wrangling and code transformation.

2.1.3 Foofah. Taking inspiration from the classic A * algorithm
[13], Foofha proposed a heuristic search algorithm to synthesize
data transformation. To find a path in a graph, the A* algorithm
calculates the cost f(x) = g(n) + h(n), where g(n) is the cost to
reach state n from the initial state, and h(n) is the heuristic function
calculate the approximate cost of the cheapest path from state n
to the goal state, and chose the state with the minimum f(x) to
expand. In the case of PBE, instead of focusing on the shortest path,
correctness, and readability are more important, the cost is defined
by the minimum number of data transformation operations needed
from one state to another. With the difference in goal in mind, first,
a greedy algorithm to approximate Table Edit Distance(TED) was
created:
k

TED(T1, T2) {p1,...,p$1€nP(T1,T2) ; cost(p;) (1)
TED calculated the minimum total cost of table edit operations
needed to transform from Table 1 to Table 2. Observing frequent
simultaneous edits of adjacent cells, TED was further refined into
the Table Edit Distance Batch (TED Batch), effectively capturing
these grouped operations. With their proposed system Foofah re-
sults in an interaction time that is 60% faster than its predecessors
in each test, allowing the users to complete both data syntactic and
layout transformation.

Although PBE has demonstrated remarkable capabilities, there
are still challenges. These include ensuring it functions properly,
handling unclear input patterns, and providing sufficient user inter-
action. Future work could improve probabilistic models for more re-
liable program inference. It could also include adding ways for users
to provide feedback and creating more effective domain-specific
languages (DSLs) to enhance its performance in various situations.

2.2 Large Language Model

In recent years, large language models have been extensively stud-
ied under the direction of various optimization techniques, aiming
to enhance their efficiency and accuracy across different types of
tasks. Among these, prompt engineering, fine-tuning, and retrieval-
argument generation (RAG) have gained the most popularity and
have become the main approaches to enhance the model’s ability.

Prompt Engineering

User's Input

Figure 2: Prompt Engineering Pipeline [35]

C Output: Response
: generated by LLM
Pre-trained on :

Looaeoon + billions of «----*
parameters

Those methods enable models to be more closely tailored to spe-
cific tasks, improve accuracy, and reduce computational costs. This
section focuses on prompt engineering, covering the key ideas and
different approaches employed in this work.

2.2.1 Zero-shot prompting: refers to the model’s ability to solve the
user query without needing examples during inference, eliminating
the need for carefully crafted prompts [26]. Instead, it depends
heavily on the model’s pre-training data and its own ability to
understand and reason what the user needs.

2.2.2 Chain-of-Knowledge (CoK) Prompting: LLMs are trained with
billions of data points covering a wide range of topics, which may
confuse and hallucinate what specific techniques to use. Inspired by
human problem-solving, Chain of Knowledge (CoK) [20] systemat-
ically breaks down intricate tasks into well-coordinated steps. En-
gage in a dynamic knowledge adaptation phase, collecting evidence
from various sources, such as internal knowledge base, external
databases, and the given prompt.

2.2.3 Multi Turn Reasoning: To reduce the hallucinations that exist
in the LLMs responses, multi turn reasoning [37, 38] approach was
used. This includes the model first generating an initial solution,
then the verification step to check if the original responses suf-
ficiently solve the users’ request, and lastly, producing a revised
response if necessary. By verifying its own work through this multi-
step process, the LLM enhances its logical reasoning ability and
reduces hallucination errors. Focused verification step help models
identify and correct their inaccuracies.

3 EXPERIMENT DESIGN

To better understand the capabilities of LLMs, we designed a series
of experiments exploring various proposed approaches by system-
atically combining different dimensions, such as prompt strategies,
external knowledge, and hybrid methods. All prompts and datasets
used in the experiments are available in our GitHub repository.

3.1 Evaluating LLMs on PBE tasks

We aimed to evaluate the capability of current LLMs in performing
PBE tasks related to data transformation. We conducted initial ex-
periments, one shot no knowledge prompt approach, using several
baseline models, including Llama, Gemini, Claude, and GPT. The
results showed that GPT achieved the highest accuracy at 79.7%,
outperforming Llama-2-13B (17.21%), Gemini-1.5-pro (47.05%), and
Claude 3.5 (71.41%). Motivated by GPT’s superior performance,
we chose to explore methods to enhance its effectiveness in this
domain further.

3.2 Approach 1: Large-Language Model

To maintain fairness, all tests were performed using GPT-40’s API
call on chat completion under identical settings across all runs.

3.2.1 Dimension 1: One-shot vs Multiple Tries.

One-Shot: This vanilla approach prompts the LLM one time with the
full task context, including the example input and expected output,
and asks it to generate a transformation function that performs the
required data manipulation. In this setting, the LLM is expected to
synthesize the correct transformation logic in one pass, without
any feedback loop or iterative refinement. The goal of this setup is
to evaluate the model’s ability to generalize and reason correctly
with minimal external guidance or opportunity for correction.

Multiple Tries: We also examine the Large Language Model’s
ability to discover mistakes and whether they are able to learn from
its own mistakes and correct itself. To explore this, we proposed
the multi-turn verification method. Unlike conventional multi-step
approaches, where LLMs see the same question a set number of
times, this method provides different prompts at each iteration. And
let the LLM utilize the previous responses to identify error based on
the output of its prior responses, similar to the chain of verification
prompting.

The process begins with the LLM generating an initial function
that it believes will reproduce the data transformation. This func-
tion is then executed locally on the example input dataset. If the
generated output does not match the example output, two sepa-
rate experiments are tested: (a) The model is provided with its
previously generated code, output, and example output. And let
the model generate the code again. (b) An extra error verification
step is added to this approach. Where the generated and exam-
ple outputs are passed to a separate GPT4-o model, specifically
prompted to identify high-level structural errors. Then, pass the
list of fixes and the previous chat history back to the original model
and generate the code again. Finally, after iterating through this
verification loop, the LLM produces the final output, which ideally
should successfully reproduce the data transformation on the test
dataset.

3.2.2 Dimension 2: No Knowledge vs Extra Knowledge.

No Knowledge base prompt: The naive no-knowledge prompt in-
cludes the input and output list and a short description of the task
the LLM needs to perform. To streamline the process, the test input
list was also provided as part of the prompt and asked the LLM to
simply put the test list as the function input argument, ensuring a
more structured and efficient response.

Knowledge prompt: A list of simple programming functions are
provided as part of the prompt. Similar to how Foofah provided the
list of operations for its model to search and create an action plan,
we used Foofah’s operation set as a starting point—since it covers
most commonly seen data transformation techniques—and adapted
it to be Python 3 compatible while constraining the search space for
efficiency. However, unlike previous conventional PBE programs,
which combine multiple sub-programs into a step-by-step series,
we asked the LLMs to learn from the provided information and
generate a program that performs the transformation in one single
function call. This extra information helps the model reduce the
search space and provides a better understanding of the task, and

guides it to focus more effectively on data transformation and
Python code generation.

3.3 Approach 2: Search-LLM Hybrid

LLMs show strong reasoning ability and are great at solving com-
plex, previously unseen tasks. While traditional machine learning
models, on the other hand, always bring stability and efficiency.
With the advantages of both models in mind, we explored the third
method: the hybrid model. In this approach, LLM will take charge
when the traditional PBE model struggles to create the perfect pro-
gram, which might be caused by the example’s complexity or by an
unseen example dataset in which the PBE model cannot effectively
reproduce the transformation. By combining these two method-
ologies, we aim to enhance adaptability and improve performance
in challenging data transformation tasks. Moreover, this strategy
leverages the strength of both approaches while ensuring that the
system maintains robustness when seeing unfamiliar task cases.

3.4 Experiment Setup

Baseline: Two program synthesis models built for Programming
by Example (PBE) in data transformation tasks were used as the
baseline comparison.

e Foofah [16]: A PBE system that targets solving both syntac-
tic and layout data transformations. Proposed the program
synthesis as a search problem in a state space graph and a
heuristic search approach based on their proposed class A*
algorithm to synthesize the program.

e Prose [9]: a research group in Microsoft led by Sumit Gul-
wani. They were also the first group of people to start look-
ing into the field of Programming by Example.

The PBE architecture consists of three components: a search algo-
rithm, a ranking strategy, and user interaction models. The search
algorithm is the key to determining if the system is efficient and
accurate. A simple search strategy is to go through all the possi-
ble combinations of actions before making the final decision, and
maintain a graph structure along the way.

Dataset: In this work, two distinct datasets are utilized to evalu-
ate LLMs’ capacity to comprehend the underlying data structure
and relationships. The first dataset, corrected version shared by
Foofah, initially contains the input data in a non-relational format,
which, after transformation, will result in a relational output table.

e Foofah [16]: Published its dataset as a combination of the
previous datasets, ProgFromEx [12], Wrangler [17], Potter’s
Wheel (PW) [28] and Proactive Wrangler (Proactive) [11]
with its contribution, containing 50 test scenarios in total.
In the Foofah dataset, each test scenario contains five sub-
test files, numbered 1 through 5, indicating the number
of data records selected from the raw data as the example
input and output that are passed into the program.

e Prose [9]: used has a semi-structured format. Unlike the
relational dataset, semi-structured data does not adhere to
a strict schema, presenting a distinct set of challenges for
LLMs. The Prose dataset includes tasks involving string
transformations and Excel-like data manipulation, often
formatted in JSON or XML, making it a useful benchmark

for evaluating model performance on real-world, flexible
data representations.

Metrics: Exact match accuracy was used for evaluation, com-
paring the transformed table produced by the model’s generated
function directly with each test case’s ground truth output table.
For each test case, we compared the resulting table row by row to
check whether each data point matched precisely with the corre-
sponding value in the expected output. Then, the accuracy of each
row was calculated based on the percentage of data points in that
row that were correct; the overall accuracy for each test dataset is
the average accuracy of all rows. Unlike binary exact match, this
approach offers a more detailed assessment by capturing partial
accuracy inside every sample. Hence, it presents a fuller picture
of the model’s ability. To report the final accuracy we used the
weighted average, as each dataset contains a different distribution
of transformation types, and using a simple macro-average could
overemphasize datasets with rare or easier transformations. By ap-
plying a weighted average, we ensure that the contribution of each
dataset reflects its size and diversity, providing a fair and balanced
overall evaluation.

4 EVALUATION RESULTS

Since running the same task multiple times is often unrealistic in
real-world applications, where users expect reliable results in a
single attempt. Therefore, instead of running the model multiple
times and averaging the accuracy for each test case, we evaluated
the correctness of the generated programs from each approach
based on a single execution per model across the two datasets.

e How would different dimensions from approach 1 influence
the accuracy

e How well these models generalize across domains and
datasets

4.1 LLMs Benefit From Knowledge and Tries

Baseline: To establish a baseline for comparison, we consider the
accuracy of Foofah and Prose, which are traditional search-based
program synthesis methods. Foofah achieves a weighted average
accuracy of 0.571, while Prose scores 0.473. These scores serve as
benchmarks for evaluating the effectiveness of newer LLM-based
approaches.

One-shot vs Multiple Tries: Comparing GPT-40 + One-Shot
(0.797) to GPT-40 + Multi-tries (0.786), we observe that one-shot per-
formance is slightly better in this instance. However, the difference
is minimal, and multi-try methods tend to be more consistent across
datasets. When combined with extra knowledge, the multi-try setup
(best at 0.827) clearly outperforms its one-shot counterpart with ex-
tra knowledge (0.766), demonstrating the value of multiple attempts
in more informed settings. With the two variants from Multi-tries,
they both deliver competitive performance. Specifically, variant (b)
achieves slightly higher peak scores (0.943) compared to (a) (0.876),
indicating that variant (b) is superior at achieving high-quality re-
sults in certain instances. However, variant (a) demonstrates more
stable consistency across other metrics, suggesting it provides bal-
anced outcomes.

No Knowledge vs Extra Knowledge: To evaluate the effect of
external knowledge, we compare setups without and with extra

Table 1: Accuracy on Foofah and Prose Dataset

Approach Dataset Overall (Weighted Avg.)
ProgEx [12] Wrgler [17] Potter [28] Proact [11] Prose [9]

Prose 0.139 0.286 0.183 0.156 0.949 0.473
Foofah 0.689 0.667 0.891 1 0.300 0571
Gemini-3.5 0.790 0.670 0.793 1 0.566 0.714
Llama2-13B 0.068 0.433 0.135 0.043 0.257 0.172
Gemini-1.5-pro 0.068 0.417 0.677 0.400 0.530 0.471
GPT-40 + One-Shot 0.368 0.733 0.886 0.770 0.755 0.797
GPT-40 + Multi-tries (a) 0.813 0.827 0.874 0.876 0.858 0.786
GPT-40 + Multi-tries (b) 0.787 0.870 0.857 0.943 0.873 0.846
GPT-40 + One-Shot + Extra kg 0.759 0.713 0.833 0.880 0.731 0.766
GPT-40 + Multi-tries (a)+ Extra kg 0.778 0.763 0.814 0.890 0.860 0.827
GPT-40 + Multi-tries (b)+ Extra kg 0.718 0.867 0.794 0.933 0.878 0.811
Foofah + GPT-40 + Multi-tries 0.802 0.870 0.904 1 0.883 0.863

150 T T T T T T T T T leading to limited usability and a lack of flexibility when adapting

—— Multi-tries (a) to new or unfamiliar transformation patterns.

¢ Multi-tries (b) However, this is not a problem for large language models. With

" —@— Multi-tries (a)+ Extra kg billions of data points being passed to different models for the train-

g 100 - —8— Multi-tries (b)+ Extrakg ing process, the model is designed to solve a wide range of tasks

B with its extensive world knowledge. This nature enables LLMs to

hc) handle unseen or complex data transformation tasks with fewer

'% so |l | human-enforced guidelines, as the table below indicates. For in-

o stance, one test case from the Prose dataset [9] involves mapping

language names to their corresponding ISO 639-1 codes, such as

["Arabic = ar"], ["Basque = eu"]. GPT-4o is able to solve this correctly,

0 | | | | | | | | | | whereas Foofah, constrained by its limited domain knowledge, fails

1 2 3 4 5 6 7 8 9 10
Round

Figure 3: Trends in code generation failures across iterative
rounds of the loop process. Failures are defined as either
a mismatch with the intended data transformation logic or
execution errors. The plot demonstrates a consistent decrease
in failure rate with increased iteration.

knowledge. For GPT-40 + Multi-tries, adding extra knowledge im-
proves performance from 0.786 to 0.827. Similarly, GPT-40 + Multi-
tries with extra knowledge achieves consistently high accuracy
across datasets, indicating that domain or dataset-specific guidance
significantly enhances synthesis outcomes. Notably, combining
Foofah with GPT-40 + Multi-tries further boosts the weighted aver-
age accuracy to 0.863, the highest among all tested approaches.

Hybrid Method: Combining traditional systems like Foofah with
GPT-40 Loop Verification (a) Base Prompt resulted in 0.863 accuracy
overall. It performed well on Proact (1.0) and Prose (0.883), but still
faced challenges with intricate datasets.

4.2 LLM Could Complement Conventional PBE

One limitation of the traditional PBE system is that it is all built
within the knowledge of a specific domain. Even the overall task
may fall under the general area of data transformation; however,
the model’s ability is limited by the program provided to the system
and the rules available to it. As a result, the previous PBE systems
often struggle when seeing tasks outside their designated area,

to generalize to such examples.

Table 2: Evaluation result on cross-domain datasets

Foofah Dataset | Prose Dataset
% test cases passed to LLM 15.88% 78.95%
% test cases solved by LLM 48.65% 45.19%

These differences become particularly evident when comparing
the performance of LLM vs. PBE systems, Foofah and Prose, across
various datasets. As shown in the table 1, Prose did remarkably well
on its own dataset, achieving around 90% accuracy. However, it
experienced a considerable performance drop on Foofha’s dataset,
highlighting its limitations in generalizing across domains, with
unseen transformation types or dataset structures. Similarly, Foofah
performs well on its domain dataset but decreases its performance
when evaluated on the Prose dataset.

In contrast, LLM, with only the base prompt and no other human
intervention or task-specific tuning, performs relatively well on
both datasets, achieving 82.42% on the Foofah dataset and 75.53%
on the PROSE dataset on transformation text. With the highest
accuracy achieved using the hybrid method, LLM has successfully
addressed the domain-specific limitations of the traditional PBE
system.

5 DISCUSSION

In this section, we analyze two of the most common and impact-
ful failure cases encountered when using LLM-generated code for

Example Input
ggi:ggi ; i: Example Output
0100113 766425 [001-001[$-[$-[$7,664.25[$- |
001-001 |4 $-

(a) Example transformation in prompt

Test Input
001-0012 $
001-001[4 $- [Ground Truth
001-001 |6 $- [001-001[$-]$-[$-[$-]$7,664.25 |
001-001[8 $-
001-001 |9 $7.664.25

(b) Expected, Ground-truth transformation

Test Input
001-001 | 2 $-
001-001[4 $- [GPT Output]
001-001 | 6 $- [no output: indexing error |
001-001[8 $-
001-001 | 9 $7,664.25

(c) Actual transformation by generated code

Figure 4: The model incorrectly generalizes from the example
by treating the second column as a sequential index, leading
to a list assignment index error when test data lacks a con-
tinuous sequence.

data transformation tasks. Despite their overall effectiveness, LLMs
exhibit systematic weaknesses under certain conditions. The first
failure case, driven by ambiguity in the input data, caused 87% of the
test cases to fail in this area, highlighting the model’s tendency to
overfit to patterns in the examples rather than generalizing the un-
derlying logic. The second case, which requires multi-dimensional
reasoning and contextual understanding, resulted in a 60% failure
rate, showing that LLMs often struggle to infer implicit constraints
or real-world expectations.

5.1 LLM failed due to ambiguity.

We highlight a failure case where the LLM-generated code does
not generalize correctly due to ambiguity in the input data. Specifi-
cally, the model overfits to patterns present in the example dataset,
making incorrect assumptions about the structure of the input.
This illustrates a common challenge in LLM-based code generation:
when the intent is underspecified or when misleading patterns exist
in the examples, the model may infer incorrect logic that does not
hold in broader contexts.

As shown in the example in figure 4, the model should realize
that the transformation only extracts the last entry from each row
and combines it into a single row with the same ’item-id’ (the first
element in the row). Instead, because the second element in each
row in the example starts with one and has an increment of 1 in the
following rows, the model mistakenly interprets it as an index and
applies this logic to the program. While this works correctly in the
example datasets, the program fails the test cases. In the test case,
the second item in each row is no longer a continuous sequence,
which causes the list assignment index out-of-range error.

Example Input Table] [Example Output Table

[21-May-00[1973] Living [6-Nov-62 [5 December 1870 | [2000 [1973 202519621870 |

(a) Example transformation in prompt

Test Input Table | [Ground Truth Table

[Living [2-Dec-65 [1 December 1848 [1984 [28-Nov-68 | [2025]1965] 184819841968 |

(b) Expected, Ground-truth transformation

Test Input Table] [GPT Output Table

| Living [2-Dec-65 [1 December 1848 [1984 [28-Nov-68 | [20252065 [184819842068 |

(c) Actual transformation by generated code

Figure 5: GPT-40 extracts dates accurately but lacks common-
sense reasoning, misinterpreting past events as future ones.

5.2 LLM failed due to Multi-Dimensional Tasks

Some transformation tasks go beyond simple structural manipula-
tion and require reasoning over multiple domains, such as temporal
context, commonsense knowledge, or domain-specific conventions.
These tasks pose a greater challenge for LLMs, which may correctly
parse and transform text but fail to infer implicit meanings or con-
straints. For example, as shown in the figure 5 below, the task is to
extract the year of death from the list of authors.

When examining the data, it is an instinctive assumption for
humans that a value like "65" in the table refers to the year 1965 or
atleast any century before the current year. However, when looking
at the program result from the LLM-generated code, GPT-40 was
able to slice the string successfully and extract the year from the
original input data. Still, it was unable to reason that the data refers
to the author’s passing away, and the date should not be in the
current year. These examples and others from the PROSE dataset
illustrate a limitation of the GPT-40 model in that it can handle
structure-wise transformations well. However, they may struggle
with tasks that require them to think of another step and presume
the correct meaning of the text.

6 CONCLUSION

In this work, we examine the logical reasoning and code generation
ability of LLMs through PBE tasks focused on tabular formated
data transformation. Three approaches were proposed that do not
alter the model’s structure and minimize user effort to enhance the
model’s performance on this specific task. As the experiment result
indicates, all of them were able to outperform Foofah’s PBE sys-
tem performance with the highest accuracy, reaching 86.3%. These
approaches demonstrate that with carefully designed prompting
strategies, LLMs can perform structured tasks more effectively with-
out any fine-tuning or architecture modification. As the target users
for such methods are end users who may not have technical back-
grounds, the methods we mentioned are a great fit as they do not
require modifying the model structure or setting up additional tools.
They also highlight how adaptable modern LLMs can be with differ-
ent type of tasks when paired with the proper reasoning framework
and problem decomposition strategy. There still remain promising
directions for future research, as discussed earlier, to further en-
hance LLM performance with tabular data on more complex tasks
such as PBE, including handling noisier data, multi-step reasoning,
and more generalized transformation goals.

REFERENCES

(1]

(3]

(5

=

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17

(18

Ziawasch Abedjan, John Morcos, Thab F. Ilyas, Mourad Ouzzani, Paolo Papotti,
and Michael Stonebraker. 2016. DataXFormer: A robust transformation discovery
system. In 2016 IEEE 32nd International Conference on Data Engineering (ICDE).
1134-1145. https://doi.org/10.1109/ICDE.2016.7498319

Jacob Austin, Augustus Odena, Maxwell Nye, Maarten Bosma, Henryk
Michalewski, David Dohan, Ellen Jiang, Carrie Cai, Michael Terry, Quoc Le,
et al. 2021. Program synthesis with large language models. arXiv preprint
arXiv:2108.07732 (2021).

Shaon Barman, Sarah Chasins, Rastislav Bodik, and Sumit Gulwani. 2016. Ringer:
web automation by demonstration. In Proceedings of the 2016 ACM SIGPLAN
International Conference on Object-Oriented Programming, Systems, Languages,
and Applications (Amsterdam, Netherlands) (OOPSLA 2016). Association for
Computing Machinery, New York, NY, USA, 748-764. https://doi.org/10.1145/
2983990.2984020

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde
De Oliveira Pinto, Jared Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph,
Greg Brockman, et al. 2021. Evaluating large language models trained on code.
arXiv preprint arXiv:2107.03374 (2021).

Ian Drosos, Titus Barik, Philip J. Guo, Robert DeLine, and Sumit Gulwani. 2020.
Wrex: A Unified Programming-by-Example Interaction for Synthesizing Readable
Code for Data Scientists. In Proceedings of the 2020 CHI Conference on Human
Factors in Computing Systems (Honolulu, HI, USA) (CHI ’20). Association for
Computing Machinery, New York, NY, USA, 1-12. https://doi.org/10.1145/
3313831.3376442

Xueying Du, Mingwei Liu, Kaixin Wang, Hanlin Wang, Junwei Liu, Yixuan Chen,
Jiayi Feng, Chaofeng Sha, Xin Peng, and Yiling Lou. 2023. Classeval: A manually-
crafted benchmark for evaluating llms on class-level code generation. arXiv
preprint arXiv:2308.01861 (2023).

Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri, and etc. 2024. The Llama
3 Herd of Models. arXiv:2407.21783 [cs.Al] https://arxiv.org/abs/2407.21783
Sumit Gulwani. 2011. Automating String Processing in Spreadsheets Using Input-
Output Examples. In Proceedings of the 38th ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages (POPL). 317-330. https://doi.org/10.
1145/1926385.1926423

Sumit Gulwani. 2015. Programming by Examples (and its applications in Data
Wrangling). In Lectures at Marktoberdorf Summer School, Aug 2015 (lectures at
marktoberdorf summer school, aug 2015 ed.). https://www.microsoft.com/en-us/
research/publication/programming-examples-applications-data-wrangling- 2/
Sumit Gulwani and Prateek Jain. 2017. Programming by Examples: PL meets
ML. In APLAS 2017 (aplas 2017 ed.). Springer. https://www.microsoft.com/en-
us/research/publication/programming-examples-pl-meets-ml/

Philip J. Guo, Sean Kandel, Joseph M. Hellerstein, and Jeffrey Heer. 2011. Proactive
wrangling: mixed-initiative end-user programming of data transformation scripts.
In Proceedings of the 24th Annual ACM Symposium on User Interface Software
and Technology (Santa Barbara, California, USA) (UIST ’11). Association for
Computing Machinery, New York, NY, USA, 65-74. https://doi.org/10.1145/
2047196.2047205

William R. Harris and Sumit Gulwani. 2011. Spreadsheet table transforma-
tions from examples. In Proceedings of the 32nd ACM SIGPLAN Conference on
Programming Language Design and Implementation (San Jose, California, USA)
(PLDI ’11). Association for Computing Machinery, New York, NY, USA, 317-328.
https://doi.org/10.1145/1993498.1993536

Peter E. Hart, Nils J. Nilsson, and Bertram Raphael. 1968. A Formal Basis for the
Heuristic Determination of Minimum Cost Paths. IEEE Transactions on Systems
Science and Cybernetics 4, 2 (1968), 100-107. https://doi.org/10.1109/TSSC.1968.
300136

Dan Hendrycks, Steven Basart, Saurav Kadavath, Mantas Mazeika, Akul Arora,
Ethan Guo, Collin Burns, Samir Puranik, Horace He, Dawn Song, and Jacob
Steinhardt. 2021. Measuring Coding Challenge Competence With APPS. NeurIPS
(2021).

Carlos E Jimenez, John Yang, Alexander Wettig, Shunyu Yao, Kexin Pei, Ofir
Press, and Karthik Narasimhan. 2023. Swe-bench: Can language models resolve
real-world github issues? arXiv preprint arXiv:2310.06770 (2023).

Zhongjun Jin, Michael R. Anderson, Michael Cafarella, and H. V. Jagadish. 2017.
Foofah: Transforming Data By Example. In Proceedings of the 2017 ACM In-
ternational Conference on Management of Data (Chicago, Illinois, USA) (SIG-
MOD ’17). Association for Computing Machinery, New York, NY, USA, 683-698.
https://doi.org/10.1145/3035918.3064034

Sean Kandel, Andreas Paepcke, Joseph Hellerstein, and Jeffrey Heer. 2011. Wran-
gler: interactive visual specification of data transformation scripts. In Proceedings
of the SIGCHI Conference on Human Factors in Computing Systems (, Vancouver,
BC, Canada,) (CHI ’11). Association for Computing Machinery, New York, NY,
USA, 3363-3372. https://doi.org/10.1145/1978942.1979444

Vu Le and Sumit Gulwani. 2014. FlashExtract: a framework for data extraction by
examples. In Proceedings of the 35th ACM SIGPLAN Conference on Programming
Language Design and Implementation (Edinburgh, United Kingdom) (PLDI ’14).

[19]

[20

[21]

[23

[24]

[25

I
S

[27

[28

[29]

(30]

(32

[33

[34

[36

[37

(38]

W
20,

Association for Computing Machinery, New York, NY, USA, 542-553. https:
//doi.org/10.1145/2594291.2594333

Douglas B. Lenat. 1976. AM: An Artificial Intelligence Approach to Discovery in
Mathematics as Heuristic Search. Technical Report AIM-286. Stanford University,
Artificial Intelligence Laboratory.

Xingxuan Li, Ruochen Zhao, Yew Ken Chia, Bosheng Ding, Shafiq Joty, Soujanya
Poria, and Lidong Bing. 2024. Chain-of-Knowledge: Grounding Large Lan-
guage Models via Dynamic Knowledge Adapting over Heterogeneous Sources.
arXiv:2305.13269 [cs.CL] https://arxiv.org/abs/2305.13269

Henry Lieberman (Ed.). 2001. Your Wish is My Command: Programming by
Example. Morgan Kaufmann, San Francisco, CA.

Na Meng, Miryung Kim, and Kathryn S. McKinley. 2011. Systematic editing:
generating program transformations from an example. SIGPLAN Not. 46, 6 (June
2011), 329-342. https://doi.org/10.1145/1993316.1993537

Aditya Menon, Omer Tamuz, Sumit Gulwani, Butler Lampson, and Adam Kalai.
2013. A Machine Learning Framework for Programming by Example. In Pro-
ceedings of the 30th International Conference on Machine Learning (Proceedings
of Machine Learning Research), Sanjoy Dasgupta and David McAllester (Eds.),
Vol. 28. PMLR, Atlanta, Georgia, USA, 187-195. https://proceedings.mlr.press/
v28/menon13.html

Noor Nashid, Islem Bouzenia, Michael Pradel, and Ali Mesbah. 2025. Is-
sue2Test: Generating Reproducing Test Cases from Issue Reports. arXiv preprint
arXiv:2503.16320 (2025).

OpenAl 2024. GPT-4 Technical Report. arXiv:2303.08774 [cs.CL] https://arxiv.
org/abs/2303.08774

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, and Ilya
Sutskever. 2019. Language Models are Unsupervised Multitask Learners. OpenAIl
(2019). https://cdn.openai.com/better-language-models/language_models_are_
unsupervised_multitask_learners.pdf Accessed: 2024-11-15.

Vijayshankar Raman and Joseph M Hellerstein. 2001. Potter’s wheel: An interac-
tive data cleaning system. In VLDB, Vol. 1. 381-390.

Vijayshankar Raman and Joseph M. Hellerstein. 2001. Potter’s Wheel: An Inter-
active Data Cleaning System. In Proceedings of the 27th International Conference
on Very Large Data Bases (VLDB ’01). Morgan Kaufmann Publishers Inc., San
Francisco, CA, USA, 381-390.

Mohammad Raza and Sumit Gulwani. 2017. Automated Data Extraction Using
Predictive Program Synthesis. Proceedings of the AAAI Conference on Artificial
Intelligence 31, 1 (Feb. 2017). https://doi.org/10.1609/aaai.v31i1.10668
Theodoros Rekatsinas, Xu Chu, Thab F. Ilyas, and Christopher Ré.
2017. HoloClean: Holistic Data Repairs with Probabilistic Inference.
arXiv:1702.00820 [cs.DB] https://arxiv.org/abs/1702.00820

Jaeho Shin, Sen Wu, Feiran Wang, Christopher De Sa, Ce Zhang, and Christopher
Ré. 2015. Incremental knowledge base construction using DeepDive. Proc. VLDB
Endow. 8, 11 (July 2015), 1310-1321. https://doi.org/10.14778/2809974.2809991
Rishabh Singh. 2016. BlinkFill: semi-supervised programming by example for
syntactic string transformations. Proc. VLDB Endow. 9, 10 (jun 2016), 816-827.
https://doi.org/10.14778/2977797.2977807

Rishabh Singh and Sumit Gulwani. 2012. Learning Semantic String Transforma-
tions from Examples. Proceedings of the VLDB Endowment (PVLDB) 5, 8 (2012),
740-751. https://doi.org/10.14778/2212351.2212357

Rishabh Singh and Sumit Gulwani. 2012. Synthesizing Number Transformations
from Input-Output Examples. In Proceedings of the 24th International Conference
on Computer Aided Verification (CAV). 634-651. https://doi.org/10.1007/978-3-
642-31424-7_44

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N. Gomez, Lukasz Kaiser, and Illia Polosukhin. 2023. Attention Is All
You Need. arXiv:1706.03762 [cs.CL] https://arxiv.org/abs/1706.03762
Chenglong Wang, Alvin Cheung, and Rastislav Bodik. 2017. Synthesizing Highly
Expressive SQL Queries from Input-Output Examples. In Proceedings of the 38th
ACM SIGPLAN Conference on Programming Language Design and Implementation
(PLDI). 452-466. https://doi.org/10.1145/3062341.3062365

Siliang Zeng, Quan Wei, William Brown, Oana Frunza, Yuriy Nevmyvaka, and
Mingyi Hong. 2025. Reinforcing Multi-Turn Reasoning in LLM Agents via Turn-
Level Credit Assignment. arXiv:2505.11821 [cs.LG] https://arxiv.org/abs/2505.
11821

Kunhao Zheng, Juliette Decugis, Jonas Gehring, Taco Cohen, Benjamin Ne-
grevergne, and Gabriel Synnaeve. 2025. What Makes Large Language Models
Reason in (Multi-Turn) Code Generation? arXiv:2410.08105 [cs.CL] https:
//arxiv.org/abs/2410.08105

Terry Yue Zhuo, Minh Chien Vu, Jenny Chim, Han Hu, Wenhao Yu, Ratnadira
Widyasari, Imam Nur Bani Yusuf, Haolan Zhan, Junda He, Indraneil Paul, et al.
2024. Bigcodebench: Benchmarking code generation with diverse function calls
and complex instructions. arXiv preprint arXiv:2406.15877 (2024).

https://doi.org/10.1109/ICDE.2016.7498319
https://doi.org/10.1145/2983990.2984020
https://doi.org/10.1145/2983990.2984020
https://doi.org/10.1145/3313831.3376442
https://doi.org/10.1145/3313831.3376442
https://arxiv.org/abs/2407.21783
https://arxiv.org/abs/2407.21783
https://doi.org/10.1145/1926385.1926423
https://doi.org/10.1145/1926385.1926423
https://www.microsoft.com/en-us/research/publication/programming-examples-applications-data-wrangling-2/
https://www.microsoft.com/en-us/research/publication/programming-examples-applications-data-wrangling-2/
https://www.microsoft.com/en-us/research/publication/programming-examples-pl-meets-ml/
https://www.microsoft.com/en-us/research/publication/programming-examples-pl-meets-ml/
https://doi.org/10.1145/2047196.2047205
https://doi.org/10.1145/2047196.2047205
https://doi.org/10.1145/1993498.1993536
https://doi.org/10.1109/TSSC.1968.300136
https://doi.org/10.1109/TSSC.1968.300136
https://doi.org/10.1145/3035918.3064034
https://doi.org/10.1145/1978942.1979444
https://doi.org/10.1145/2594291.2594333
https://doi.org/10.1145/2594291.2594333
https://arxiv.org/abs/2305.13269
https://arxiv.org/abs/2305.13269
https://doi.org/10.1145/1993316.1993537
https://proceedings.mlr.press/v28/menon13.html
https://proceedings.mlr.press/v28/menon13.html
https://arxiv.org/abs/2303.08774
https://arxiv.org/abs/2303.08774
https://arxiv.org/abs/2303.08774
https://cdn.openai.com/better-language-models/language_models_are_unsupervised_multitask_learners.pdf
https://cdn.openai.com/better-language-models/language_models_are_unsupervised_multitask_learners.pdf
https://doi.org/10.1609/aaai.v31i1.10668
https://arxiv.org/abs/1702.00820
https://arxiv.org/abs/1702.00820
https://doi.org/10.14778/2809974.2809991
https://doi.org/10.14778/2977797.2977807
https://doi.org/10.14778/2212351.2212357
https://doi.org/10.1007/978-3-642-31424-7_44
https://doi.org/10.1007/978-3-642-31424-7_44
https://arxiv.org/abs/1706.03762
https://arxiv.org/abs/1706.03762
https://doi.org/10.1145/3062341.3062365
https://arxiv.org/abs/2505.11821
https://arxiv.org/abs/2505.11821
https://arxiv.org/abs/2505.11821
https://arxiv.org/abs/2410.08105
https://arxiv.org/abs/2410.08105
https://arxiv.org/abs/2410.08105

	Abstract
	1 Introduction
	2 Related Work
	2.1 Program by Example
	2.2 Large Language Model

	3 Experiment Design
	3.1 Evaluating LLMs on PBE tasks
	3.2 Approach 1: Large-Language Model
	3.3 Approach 2: Search-LLM Hybrid
	3.4 Experiment Setup

	4 Evaluation Results
	4.1 LLMs Benefit From Knowledge and Tries
	4.2 LLM Could Complement Conventional PBE

	5 Discussion
	5.1 LLM failed due to ambiguity.
	5.2 LLM failed due to Multi-Dimensional Tasks

	6 Conclusion
	References

