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ABSTRACT

The lifecycle of data cleaning pipelines is accompanied by diverse
forms of data and software evolution. Oftentimes, these changes
are introduced upstream without communicating them to down-
stream data consumers which creates uncertainty. Evolution and
uncertainty lead to substantial human involvement and thereby,
high maintenance costs for long-running data cleaning pipelines.
A significant factor contributing to this situation is the robustness
of operators, ie., if and how operators are affected by certain types
of change and which consequences this might entail for the whole
pipeline. In the present work we investigate and define the robust-
ness of data cleaning operators towards schema evolution. To this
end, we categorize data cleaning operations based on how they
interact with the data on a structural level. Given these categories
and the different cases of structural change, a decision tree is cre-
ated which enables a systematic understanding of robustness for
data cleaning pipelines towards schema evolution. Based on these
theoretical findings, we present concepts and techniques that work
towards a vision of self-adaptive data cleaning pipelines.
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1 INTRODUCTION

Imagine the following scenario: A big retail company utilizes an
end-to-end data processing pipeline to generate reports, create
dashboards and run analysis. Each day one data batch is processed,
encompassing the retail data from that day. This pipeline is split
into different segments, e.g. data integration, data cleaning, analy-
sis. Each segment is maintained by one or many different teams,
with little to no communication between them. Now imagine, you
are part of the data cleaning team. Your goal is to produce high
quality data for downstream data consumers. Initially, you created
a data cleaning pipeline for that purpose consisting of operators for
dealing with missing values, for handling outliers and so on. You
created that pipeline based on the initial schema, thereby mapping
your implementation to the data. One day you get notified - either
by a monitoring system or some very angry colleague waiting for
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your data downstream - that your pipeline has crashed. You check
the problem and realize that it happened due to upstream schema
changes, i.e., schema evolution. The mapping you created no longer
works and it is your job to fix it. Obviously, you need to fix the prob-
lem right away, because everyone downstream is depending and
waiting on you. But before you can start, you need to reschedule
all activities and appointments you had planned for the day.

When talking to experts from industry the problems described
in the scenario are said to be very common. They become especially
apparent in the realm of data cleaning, since data cleaning pipelines
are an integral part of end-to-end data processing systems. The
goal of these pipelines is to transform erroneous upstream data
into high-quality data which can be used downstream for gaining
knowledge through analysis [1, 5, 27, 36]. Even though this step
is essential, oftentimes these pipelines are only considered to be a
means to an end before the actual work can start. This view stands
in contrast to the fact that data cleaning makes up 60% of the work
of a data scientist!.

One major problem is missing communication between the teams
of different pipeline segments. Upstream changes are not known
to downstream teams until they arrive which is too late. This cir-
cumstance produces uncertainty about when, what and to which
extent change might occur. This situation can be interpreted as
having little to no socio-technical congruency [4, 24]. To tackle this
challenge some companies utilize data governance, for example in
the form of data contracts [22].

Uncertain changes have the capacity to produce errors which
might result in runtime failure or introduce the potential for er-
roneous results. A very common type of change is schema evolu-
tion [2, 31, 34]. Dealing with schema changes during the lifecycle
of a data cleaning pipeline is usually done manually as described
in the introductory scenario. This entails multiple issues which
contribute to high maintenance cost for these types of pipelines.
Ideally, these pipelines would be set up in a way, which makes
them functionally robust towards schema evolution while still en-
suring the highest possible data quality. In some cases adaptation
of the pipeline becomes necessary, to achieve these goals and en-
able the pipeline to evolve gracefully. Ideally, this would happen
autonomously through self-adaptation.

The contributions of this paper are thus:

e The definition of robustness of data cleaning operators
towards schema evolution.

e A categorization of data cleaning operators, based on how
they interact with the schema.

!CrowdFlower Data Science Report (2016) https://visit.figure-eight.com/rs/416- ZBE-
142/images/CrowdFlower_DataScienceReport_2016.pdf
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e The creation of a decision tree that reveals which combi-
nations of schema evolution and operators are robust and
when self-adaptation is required.

o The vision of self-adaptive data cleaning pipelines that can
deal with schema changes automatically.

The remainder of this paper is structured as follows. Section 2
presents related work. In Section 3 we introduce a running example
which is used throughout the rest of the paper. We present our
definition of operator robustness w.r.t. schema evolution in Sec-
tion 4. We also propose a categorization for data cleaning operators
in this section. Section 5 includes a conceptual workflow and a
decision tree for dealing with schema evolution. Building on these
findings, we present concepts and techniques to achieve a vision of
self-adaptive data cleaning pipelines in Section 6. Section 7 sum-
marizes the findings and provides an outlook for future research
possibilities.

2 RELATED WORK

Data cleaning is essential to ensure data quality and thus also the
quality of analyses and predictions following it. For this reason,
data cleaning is a widely researched topic in academia and practice
and a variety of different data cleaning methods exist. A description
of the complete data cleaning process and various methods can
be found in [13]. Many different tools exist for cleaning data. The
combination of Raha and Baran, for example, provides an end-to-
end data cleaning pipeline [20]. Another example is the combination
of HoloDetect [11] and HoloClean [25]. An overview of further tools
is provided in [10]. However, the concepts described in the present
paper are generally applicable to data cleaning pipelines, regardless
of the specific tool.

Schema evolution is very common given long-running software
systems [31, 34]. The change between two schemas can be expressed
by means of schema modification operations (SMO). The most basic
SMOs are ADD, DELETE and RENAME which add a new property or
delete or rename an existing one respectively [7, 12, 30]. Several ap-
proaches exist for schema and software co-evolution [32, 33]. These
systems focus on deliberate schema evolution, i.e., the changes to
the schema are performed by the user under full certainty. This
stands in contrast to our use-case, where uncertainty plays a vital
role. Even though these systems propose valuable information on
how adaptation of software can be achieved in parallel to schema
evolution, the human-in-the-loop stands in contrast to our vision
of autonomous data cleaning pipelines.

Self-adaptive systems (SAS) have a long history of research. In
their paper Kephart et al. defined the MAPE-K loop which stands
for monitor, analyze, plan, execute, knowledge [14]. Even though
additions to this model have been proposed [23], it still provides
a strong theoretical basis for SAS. These systems extend a normal
software system by adaptation logic. This logic allows specific sys-
tem functionality to autonomously react to changing circumstances.
Control-theoretical software adaptation is one approach for self-
adaptivity, where functionality is provided by two components.
Sensors which can be mapped to the monitor and analyze parts of
the MAPE-K model, notice and interpret change. Actuators propa-
gate the adaptation and adjust the system. They represent the plan
and execute steps of the MAPE-K model. Both components utilize

knowledge of the system and its circumstances [9]. Different types
of adaptation mechanisms exist, providing various granularities for
readjusting a software system [35]. In the present work we focus
on the analysis (Section 5), plan and execute (Section 6) steps of
the MAPE-K loop.

To our knowledge, self-adaptive data cleaning pipelines have not
been the subject of research besides a set of conceptual requirements
which we proposed in [18].

3 RUNNING EXAMPLE

In this section we present a running example. Similar to the in-
troductory example, we employ a data preparation pipeline that
performs batch processing of data on a daily basis. Figure 1 pro-
vides an overview of the system. Given a data cleaning pipeline
consisting of several operators, i.e., algorithms that perform specific
cleaning tasks and a set of consecutive data batches, we account
for schema evolution that may occur between batches in the form
of SMOs. It is uncertain if and to what extent these changes might
occur between batches. In a first step, this paper focuses on the
three basic SMOs: ADD, DELETE and RENAME. Moreover, inferring
the correct set of SMOs is not the focus of the present work. This
task falls into the realm of schema extraction / inference [3, 6, 15]
and schema versioning [2, 16].
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Figure 1: Overview — data batches are cleaned in a pipeline
consisting of several operators. Between data batches schema
evolution occurs, resulting in a set of SMOs. If operators are
not robust against these changes, this can lead to failures or
suboptimal data quality.

For a better understanding, the data used in the running example
in the rest of the paper is introduced below. The use case consists
of sensor data that measures air pollution and temperature. This
data includes errors such as missing values, outliers, functional de-
pendencies and others for which data cleaning is required. Figure 2
shows an example excerpt of the data. This contains, for example,
outliers in Temperature (123) and missing values in Pollution
(null). Other possible errors would be the violation of the functional
dependency between Sensor-ID and Location or duplicates. To
repair these errors, data cleaning operators are required, such as
an operator for the Missing Value Imputation of Pollution.



{
{
"Sensor-ID": "936A92",
"Time": "25-07-02 08:00",
"Location": "countryside",
"Pollution": 32.3,
"Temperature": 123
3,
{
"Sensor-ID": "936A92",
"Time": "25-07-02 08:30",
"Location": "countryside",
"Pollution": null,
"Temperature": 24
"Sensor-ID": "A92639",
"Time": "25-07-02 08:08",
"Location": "city",
"Pollution": 83.8,
"Temperature": 29
3,

3

Figure 2: Excerpt of sensor data. Missing values can be seen
in Pollution and outliers in Temperature.

These operators are combined into a data cleaning pipeline, as
shown in Figure 1. The creation of this pipeline is not part of the
paper. This is still an open research question for which various
initial approaches exist [19, 21, 36]. In [29], we propose an approach
called FONDUE in which the search space of possible operators
is first reduced as far as possible by rule-based optimization and
the integration of best practices. The most optimal pipeline is then
determined with the help of cost-based optimization. The quality
of the pipeline is determined based on the resulting data quality,
determined by a tool such as CheDDaR [8].

In this paper, we assume that — as described in the introductory
example - we have already created the pipeline with all the required
operators, based on the initial schema. Now new batches arrive
every day and run through this pipeline. In this process, changes in
the shape of the SMOs can occur between the individual batches.

In Figure 3, we consider two batches: batch 1 and batch 2, which
arrive on consecutive days. An example is shown for each of the
three SMOs ADD (Figure 3a), RENAME (Figure 3b) and DELETE (Fig-
ure 3c). For the purpose of clarity, only one SMO is shown at a time.
In practice, several SMOs can of course occur between two batches.

4 ROBUSTNESS TOWARDS SCHEMA
EVOLUTION

In this section we develop our concept of robustness of data clean-
ing operators and pipelines towards schema evolution. First, we
provide some terminology and intuition. Second, we present our
definition of operator robustness. Third, we present a categorization
of data cleaning operators w.r.t. their interaction with the schema,
which significantly moderates their robustness. Finally, we explain
how contextualization plays a vital role and can be used not only to
increase robustness, but also data quality.

batch 1 batch 2
{ {
{ {
"Sensor-ID": "936A92", "Sensor-ID": "BF9827",
"Time": "25-07-03 08:00", "Time": "25-07-04 08:00",
"Location": "countryside", "Location": "city",
"Pollution": 32.3, "Pollution": 81.4,
"Temperature": 123 "Temperature": -26,
3}, "Manufacturer": "M1"
. },
3} .
}
(a) ADD Manufacturer
batch 1 batch 2
{ {
{ {
"Sensor-ID": "936A92", "ID": "BF9827",
"Time": "25-07-02 08:00", "Time": "25-07-03 08:00",
"Location": "countryside", "Location": "city",
"Pollution": 32.3, "Pollution": 81.4,
"Temperature": 123 "Temperature": -26
3, 3,
} 3}
(b)RENAME Sensor-ID TO ID
batch 1 batch 2
{ {
{ {
"Sensor-ID": "936A92", "Sensor-ID": "BF9827",
"Time": "25-07-02 08:00", "Time": "25-07-03 08:00",
"Location": "countryside", "Pollution": 81.4,
"Pollution": 32.3, "Temperature": -26
"Temperature": 123 3,
Y, .
. }
}

(c) DELETE Location

Figure 3: Examples for each of the SMOs ADD, RENAME, DELETE
between batch 1 (left) and batch 2 (right).

Terminology:

e Data Cleaning Operator: As described in the running ex-
ample, an operator is an algorithm that performs a specific
cleaning task, like Missing Value Imputation of Pollution.
Operators work on different structural levels.

e Structural Level: A dataset consists of different structural
levels. These levels encompass single value, property, record,
and kind. We use the unified terms for structural elements
as described in [17], since we do not limit our work to
relational data.

o Schema: The specific structure of a dataset is described by
the schema.

As stated in the introductory example, change over time in the
form of schema evolution is certain. Depending on the data cleaning



pipeline the impact of such change might be a crash, incorrect
results or suboptimal data quality. Accordingly, robustness can
be functional, e.g. the pipeline does not crash and continues to
process data, but it also entails the data quality dimension. This
is sensible, since producing high quality data is the primary goal
of a data cleaning pipeline. Another goal which is especially true
for pipelines with a long lifecycle under uncertainty, is minimizing
human involvement. This non-functional requirement is particularly
important to reduce the running cost of such pipelines. These two
goals are strongly interconnected in the provided use case. When
examining a system as shown in Figure 1, the potential for failing
these goals becomes apparent. A pipeline which produces the best
possible data quality, but is also fragile towards change stemming
from its complexity, will crash more often under schema evolution.
In contrast, a general purpose data cleaning pipeline, implemented
with flexibility towards change, will never achieve optimal data
quality. We derive the following definition:

Operator Robustness towards Schema Evolution

If a data cleaning operator remains functional and delivers the
highest possible data quality, even after the data it works on
have been affected by schema evolution, we call this operator
robust towards schema evolution.

The first step to achieving schema robust operators and pipelines,
is to investigate the ways in which operators interact with the
schema. In the following, we describe common data cleaning oper-
ators and the structural levels on which they work. In the present
work, we focus on the levels property and record, since most com-
mon data cleaning operators work on these structures. In order to
be able to differentiate more precisely in the context of robustness,
we further divide the property-based operators into the following
structural categories: Single Property (SP), Multiple Properties (MP),
and Property plus Context (PC). Record-based operators do not re-
quire any further distinctions and thus represent a single category.
Figure 4 shows an overview of this classification. The operators
examined and the structural categories on which they work are
presented in Table 1 — a more detailed explanation follows below.
Even though the list is clearly not complete, it represents a well-
defined basis for non-domain-specific data cleaning tasks [26]. It
becomes apparent that property-based operators are the most com-
mon. Accordingly, these types of operators should be considered
first when developing solutions for the given problem.

Single Property (SP): Operators which only and exclusively
work on a single property and which cannot utilize additional
contextual information in order to enhance the quality of their
repairing task. Only the Wrong Datatype Handling operator from
Table 1 falls under this category. To the best of our knowledge,
there is no sensible way of increasing data quality through the use
of more context.

Multiple Properties (MP): This category represents operators
which need more than one property for their basic functionality.
An operator for handling functional dependencies is part of this
category. A functional dependency is always defined for at least
two properties, i.e., if one of these properties is deleted by means of

® ©
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Category Single = Multiple Property Record (R)
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Figure 4: Relation between Structural Level and Structural
Category

Table 1: Data Cleaning Operators and the Structural Cate-
gories they work on

| = Property-based , — = Record-based

(SP = Single Property, MP = Multiple Properties, PC = Prop-
erty plus Context, R = Record)

Operator Structural Category
Missing Value Imputation lPC

Functional Dependency Restoration | MP

De-Duplication —R

Outlier Handling lPC

Set Violation Handling LPC

Interval Violation Handling L PC

Wrong Datatype Handling 1L SP

Uniqueness Violation Handling LPC

schema evolution, the operation becomes pointless, since the con-
straint expressed through the functional dependency is gone. These
operators do not benefit from additional contextual properties?.

Property plus Context (PC): Operators falling under this cate-
gory generally work with a single property, but they can benefit
from context provided by additional properties in order to increase
the data cleaning quality. We term these operators to be context-
sensitive. Consequently, these operators are especially important
when considering robustness and data quality at the same time. We
provide more detail about context-sensitive operators at the end of
this section.

Record (R): Operators working record-based work orthogonal
to property-based operators. They slice through the dataset hori-
zontally instead of vertically and are therefore not affected by the
schema or schema evolution in the same way as property-based
operators. In our table, only de-duplication belongs to this category.

The structural categories provide a perspective on how operator-
data-interaction is mediated through the schema. Looking at robust-
ness towards schema evolution from the perspective of data qual-
ity, context-sensitive operators become especially important. This
makes contextualization through additional properties an significant
building block for our work. Contextualization is the mechanism
affecting operators belonging to the property plus context category.
This concept is especially important because it bridges the gap

2Not to be confused with additional properties resulting in n-ary functional
dependencies.



between purely functional robustness and data quality. Consider
the data from the running example, as seen in Figure 2: Pollution
values obviously differ a lot by Location (e.g. countryside vs. city).
Now let’s take an operator for missing value imputation of the
property Pollution (property to be cleaned). This can be done us-
ing only the mean value of Pollution. However, since the values
differ so greatly by location, the operator also uses the Location
property (as a context property) to insert the mean value grouped by
location. Accordingly, data quality can be increased if contextual
information is provided by other properties, for example as shown
in the form of grouping. Another example would be contextual
outliers which might only be detectable and thus repairable if con-
text from another property is considered. Take for instance the
temperature in the running example. Given the whole property
Temperature, an outlier might be defined as something exceeding
the normal range of temperatures. Contextualizing this operation
with the month from the Time property and using the resulting
groups’ ranges to define month-based outliers, leads to significantly
better data quality.

Contextualization

Contextualization is the use of additional context-properties
in the cleaning process of operators from the PC category to
achieve higher data quality.

Given the definitions of robustness, the categories of data clean-
ing operators and how they interact with the schema and the defi-
nition of contextualization, we can now investigate a workflow to
achieve robust data cleaning pipelines.

5 CONCEPTUAL ROBUSTNESS WORKFLOW

In this section we present a solution to achieve robust data cleaning
pipelines. In order to accomplish this, we develop a conceptual
workflow and a decision tree. Our solution is presented step-by-
step in the following.

The first step is to deal with uncertainty. Even though uncer-
tainty about change is present, we can identify different cases and
categorize them. In this way, we can reduce a potentially very large
margin for change. In Step I of Figure 5 we can see the reduction
from the infinite space of all possible SMOs to a specific set, that af-
fected the current data batch. As stated earlier, generating this set is
not within the scope of this paper, still, we want to provide some in-
tuition for this step: In [16], an approach is presented that generates
schema version graphs and derives SMOs based on them. However,
this can lead to ambiguities. In our running example in Figure 3b, it
is not clear whether we are dealing with a RENAME Sensor-ID TO
ID operation or a sequence of a DELETE and an ADD operation
(DELETE Sensor-ID, ADD ID). These ambiguities must either be re-
solved by the user [37] or by analyzing the data [16]. One challenge
in our batch processing scenario is that the old data is no longer
available. Suitable approaches such as using data profiles or similar
must be used here. This will be the focus of our future research.
In addition, only one change (one SMO) per property per schema
version is considered in [16]. The generalization to multiple SMOs
per property is also an open research question.

Given the set of SMOs we form the set of all permutations of
tuples, consisting of one of each operator of the data cleaning
pipeline and one of each SMO in Step II of the workflow. This set
of tuples serves as input for a decision tree in Step III. Figure 6
depicts the tree. The leaves provide decisions what to do with a
specific operator-SMO-combination. An operator is either robust
towards a distinct schema modification, or it needs to be adapted.
This adaptation ensures not only functionality, but also the highest
possible data quality. Each tuple is processed until the set of tuples
is empty. In the ADD-case it might be necessary to add new operators
to the pipeline in order to clean newly added, erroneous properties.
This is outside the scope of the present work and an open research
question we plan to tackle in the future. This topic is strongly tied
to generating pipelines for whole datasets, as was presented in
Section 3.

In the following, the different cases of the decision tree are ex-
plained in detail w.r.t. robustness and adaptation.

uncertain change ;( i
'{ RENAME, ADD, DELETE, ADD, RENAME, ADD, DELETE, ...} |
| |

@
1: Reduction to specific SMO set
SMOs of current batch i |
@ I {RENAME, ADD, DELETE, ADD } !

1, RENAME), (9, ADD), (

permutations ! ]
operators and SMOs ! , DELETE), !

@ s ©y, 2, ADD), ...

I11: Input tuples to decision tree

o
decision tree
ooo

Figure 5: Conceptual workflow — uncertain change in the
form of all possible SMOs affecting the schema are reduced
to the set of actual SMOs which were applied to the schema
between batches (I). All combinations of operators and SMOs
are formed (II) and serve as input for the decision tree (III).

The first case of robustness is achieved when the operator is
not property-based (1). For instance, as presented in Table 1 an
operator for detecting duplicates works record-wise and will always
be schema robust, because it works horizontally. The next node
splits the decision tree in half, based on whether the operator is
indifferent, i.e., not directly affected by the SMO in the tuple. We first
look at the lower left half of the tree. If the operator is indifferent,
and the SMO is not ADD, then the operator is robust (2). If the SMO
is indeed ADD, but the operator is not context-sensitive, then it
is robust again (3). If it is context-sensitive, but the newly added
property cannot be used as additional context, the operator is robust
(4). In the case that it can benefit from additional contextualization
in order to increase data quality, adaptation needs to happen in
order to achieve robustness (5).

At this point, we present examples for the cases thus far, in order
to ease comprehension.
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Figure 6: Decision tree — encapsulating the different cases of schema robustness. For each input consisting of an operator SMO
tuple, a decision is made as to whether the operator is robust to the SMO (green, north east lines) or whether an adaptation is

required (red, north west lines).

(1) De-duplication operator working record-based.

(2) Outlier handling operator working on property Temperature
is not affected by the SMO RENAME Sensor-ID TO ID (see Fig-
ure 3b).

(3) Operator for handling a wrong datatype, i.e., cannot utilize
additional context.

(4) While an operator for missing value imputation of property
Pollutionis context-sensitive, the added property Manufacturer
(see Figure 3a) is not suitable.

(5)Building on example (4), this time the new property is Location,
which can be used to increase the data quality achieved by the
missing value imputation operator.

We now look at the lower right part of the decision tree, i.e., the
operator is affected by the SMO. If the SMO is RENAME an adaptation
needs to be performed (6). If the SMO is DELETE and the operator
is either single (7) or multi (8) property based, then it is robust. If
it is context-sensitive, robustness depends on whether the property
under cleaning or the property providing additional context is
deleted. The former results in a robust operator @ the latter needs
adaptation, to deal with the new circumstances .

We now present examples for the remaining cases.

(6) Any Operator working on property Sensor-ID is affected by
the SMO RENAME Sensor-ID TO ID, as can be seen in Figure 3b.
(7) An operator for handling a wrong datatype simply becomes
inactive when the property under cleaning is deleted.

A functional dependency between two properties becomes

obsolete when one of them is deleted, resulting in a robust opera-
tor. Take for instance the functional dependency Sensor-ID —

Location, as shown in Figure 2. If either one of them is deleted,

an MP-type operator such as one dealing with functional depen-
dencies is robust.

@ A context-sensitive operator for imputing missing values in

property Pollution uses additional context provided by Location.
If Pollution (property to be cleaned) is deleted, the operator is

robust, because it becomes obsolete. This example is shown in

Figure 7.

Building on example (9), this time Location (context prop-
erty) is deleted, which was used to calculate a group mean used

for imputation. The operator needs to adapt, e.g. make use of a

fallback in order to deal with the removed context property. Again,
this example is presented in Figure 7.

We have shown in which cases of schema evolution specific
types of data cleaning operators are robust or not. It has become
clear that for some operators (especially context-sensitive ones)
the adaptation ranges from mere functionality of the pipeline (e.g.
fallback to the mean of Pollution when Location is deleted) to
ensuring data quality (e.g. by adapting the operator with another
context property). This emphasizes our definition of robustness
in Section 4. Consequently, we deduce that adaptation is a spec-
trum ranging from assuring functionality to satisfying the highest
possible data quality. At the functionality end, the spectrum cov-
ers concepts and techniques that ensure pipelines and operators



continue to work under a changing schema. At the data quality
end, it includes self-adaptation capabilities that enable pipelines to
readjust themselves to maintain the highest possible data quality.
The following section presents practical examples from across this
adaptation spectrum.

"Pollution": "32.3",
"Location": "countryside",
b

{

"Pollution": "none",
"Location": "city",

b

@ Impute Pollution by Location group mean

DELETE:
Property?

Property Context
@ to be cleaned Property
A

DELETE Pollution DELETE Location

{

"Location": "countryside", "Pollution": "32.3",

L b
{ {

"Location": "city", "Pollution": "none",

b b

Nothing to impute Location group mean

not available

Figure 7: An operator imputes missing values for property
Pollution. Context is provided by the property Location to
increase data quality. Depending on whether Pollution or
Location is deleted, the operator is either robust or needs to
adapt.

6 VISION OF SELF-ADAPTIVE DATA
CLEANING

In this section we take a look at the adaptation spectrum and its
practical characteristics. The spectrum is shown in Figure 8. As with
all self-adaptive systems following the MAPE-K framework [23],
we first need information about if and what type of change hap-
pened. In our case, this information is about schema evolution, as
represented by the set of SMOs. As stated earlier, gaining this infor-
mation is not within the scope of the present work. The next steps
are to analyze the changes and develop a plan. Our workflow and
the decision tree help with analysis, but a plan for achieving the
specified adaptation goal, in our case functionality and data quality,
still needs to be produced. Lastly, the plan needs to be executed.
During all phases, the system has access to knowledge, e.g. different
older versions of the schema and their associated pipelines, meta-
data in the form of data profiles or operator configurations. We

developed a preliminary solution based on a graph representation,
implemented in Neo4;j? in order to store and access this knowledge.
In the following, we focus on the planning and execution phases.

functionality

—— Fallback Implementation
—— Schema Abstraction Layer
—— Meta Programming

— Schema and Pipeline Versioning

Adaptation

—— Contextualization of New Properties

— Automatic Code Generation
data quality

Figure 8: Adaptation spectrum - ranging from functionality
to data quality

It is generally true, that the adaptation solutions presented here
become increasingly complex the more they try to exceed the func-
tionality end and try to assure or even increase data quality. Going
from top to bottom on the spectrum, we present different techniques
and provide examples to illustrate our ideas.

Fallback Implementation: A data cleaning operator, highly
customized for a specific schema will fail more easily under evolu-
tion. Therefore, it is advisable to implement fallback alternatives to
make the operator more self-adaptive.

Schema Abstraction Layer: Instead of hard-coding the schema
information, e.g. property names into the operator source code, an
abstraction layer can be used. If the schema changes, this layer can
be changed, making the system more flexible and adaptable. This
abstraction may also provide further functionality, such as aliases.
For instance, if the name of a property changes to one which was
used before and is known to the system, it is recognized as an alias
and it can be normally accessed by all associated operators. Tools
like Apache Avro? provide such functionality.

Meta Programming;: Utilizing meta programming in the form of
decorators or meta classes can be a valuable approach for adaptation.
For example, operators can be marked with a decorator which
enables them to validate arguments containing schema information
against inferred schema evolution. Other forms are imaginable, e.g.
constructing very flexible operator meta classes which can react to
a specific set of changes. The main limitation of this approach is
that this only works for known, predefined types of change. Our
own preliminary findings support this claim.

Schema and Pipeline Versioning: Using a database for storing
metadata, especially a versioned history of the schema [16] and
the associated pipelines, can make the system more adaptable. For
instance, if a new batch arrives with a different schema compared
to the last one, such a database can be checked and if the schema
is known, the corresponding pipeline can be reinstated, instead of
adapting the current one. To achieve such functionality in an effi-
cient manner, it is advisable to use an abstraction layer for pipeline
definitions, as we have presented with ALPINE [28].

Shttps://www.neodj.com/
“https://avro.apache.org/
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Contextualization of New Properties: As stated in Section 4, a
functioning operator may not produce the highest quality data. We
presented a case in which an operator can benefit from additional
contextual properties to increase its cleaning quality. This is the first
type of adaptation which is truly dynamic. Investigating whether or
not a newly added property can be used as context for an existing
operator cannot be predetermined.

Automatic Code Generation: Pipelines can react to any type of
change through new code. Techniques exist for applying or generat-
ing such code automatically. Code can be changed almost arbitrarily
through semantic patches, as long as change can be represented
by a pattern. An example of a system using semantic patching for
schema evolution is DeBinelle [32]. Another example is the use
of model-driven development in which the functionality of a sys-
tem is abstracted into a model first. Second, specific mapping rules
translate the model into code®. This split of the system into abstract
model and specific implementation allows for easier adaptation,
since the whole process can be done on the model level.

In this section we showed different approaches for adaptation
which can be used to make data cleaning pipelines self-adaptive. Uti-
lizing these concepts and techniques not only makes the pipelines
more fail proof, but also ensures the highest possible data quality.

7 CONCLUSION AND OUTLOOK

In this paper we developed the concept of robustness of data clean-
ing operators and pipelines towards schema evolution. We pre-
sented a categorization of data cleaning operators w.r.t. their inter-
action with the schema. We created a decision tree which defines
exact cases for data cleaning operators affected by schema evolution.
This tree can be used during the analysis phase of the MAPE-K-loop.
Furthermore, we presented a vision on how to achieve self-adaptive
capabilities. Our contribution is the first of its kind and lays the
foundation towards gracefully evolving, self-adaptive data cleaning
pipelines. Our approach transforms uncertainty into clarity for the
basic SMOs ADD, DELETE and RENAME while ensuring the highest
possible data quality.

In future work, we plan to look at other SMOs including multi-
type SMOs such as COPY, MOVE, and SPLIT. We also want to tackle
the challenge of inferring the set of SMOs that occurred between
batches. Furthermore, we want to investigate context-sensitive
operators, since they have the potential to increase data quality
through self-adaptation. We also plan to test and benchmark the
various adaptation mechanisms presented in the last section.
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