
Dynamic Knowledge Graph-based Measurement of DataQuality
Johannes Schrott
Rainer Meindl

Christian Lettner
Software Competence Center Hagenberg GmbH

Hagenberg, Austria
firstname.lastname@scch.at

Stefan Hammer
Magdalena Leitner

Robert Bosch AG
Linz, Austria

ABSTRACT
Graphs are a versatile concept for the representation of intercon-
nected data, such as production processes. In combination with
ontologies that provide context in the form of domain knowledge,
graphs holding data can be seen as knowledge graphs. An inter-
esting use case for knowledge graphs is data quality measurement,
which is highly context-dependent. Consequently, ontologies for a
knowledge graph-based definition of data quality metrics, such as
the Data Quality Definition Ontology (DQD), have been developed.
Unfortunately, context must be encoded as part of the data qual-
ity metric definitions, which limits the reusability of data quality
metrics in other use cases.

Addressing the shortcomings of previous work, we develop a
novel method for dynamic knowledge graph-based parameters for
data quality metric definitions. We further provide an extended
version of DQD that leverages our method to support dynamic
parameters among other optimizations. Based on an example in the
context of a manufacturing company, we highlight the practical
applicability of our approach and discuss future uses of the concept.

VLDBWorkshop Reference Format:
Johannes Schrott, Rainer Meindl, Christian Lettner, Stefan Hammer,
and Magdalena Leitner. Dynamic Knowledge Graph-based Measurement of
Data Quality. VLDB 2025 Workshop: 14th International Workshop on
Quality in Databases (QDB’25).

VLDBWorkshop Artifact Availability:
The source code, data, and/or other artifacts have been made available at
https://w3id.org/dqd/1.0.

1 INTRODUCTION
As an effect of the increasing digitalization of the world, the amount
of data generated in almost all aspects of life is increasing. For ex-
ample, in manufacturing companies the production steps of each
manufactured item are recorded to create digital twins as part of the
so-called “Industry 4.0” [22, 24]. Tracking of the production process
enables detailed analyses, which can lead to insights that allow
to optimize the production process. However, manufacturing data
may have a complex structure, as shown in the following running
example (cf. Figure 4): Products are sequentially assembled on a

This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment. ISSN 2150-8097.

production line by various machines, and each machine provides a
timestamp for each assembly it performs. Although the relational
model [9] is a viable option for representing such data, a high num-
ber of joins leads to inefficient processing of this data. Therefore,
the use of graphs, i.e., a collection of nodes connected by edges,
is typically more efficient for highly interconnected data. How-
ever, the flexibility of graphs (e.g., dynamically evolving schemas)
comes at the cost of data validation issues and hard-to-detect data
quality (DQ) problems [27]. This is unfortunate, since high DQ is
a prerequisite for tasks such as training accurate machine learn-
ing (ML) models [7] and performing meaningful data analyses [6].

A possibility to overcome these challenges of measuring DQ
is to enrich graphs containing data with semantics. We consider
such data graphs as directed edge-labeled graphs that are imple-
mented using the Ressource Description Framework (RDF) [10]
and that are provided with semantics through Web Ontology Lan-
guage (OWL) [34] ontologies (cf. [13, 32] for definitions of ontolo-
gies). Following Hogan et al. [20], we refer to the combination of
graphs that hold data and ontologies that provide domain context
as knowledge graphs (KGs). Consequently, KGs combine data with
context, which makes them suitable for the context-dependent task
of DQ measurements [35].

DQ is often viewed as a multidimensional concept, where each
dimension (e.g., completeness) covers a particular aspect of DQ
[6, 30, 35]. DQ metrics [6, 30] (e.g., the share of missing values) pro-
vide quantitative measurements for a particular dimension. When
assessing the quality of a KG, users have to specify which parts of
the KG are measured by which DQ metric. Various ontologies with
different strengths and weaknesses [2, 11, 15, 16, 29] have been
developed for this purpose, such as the recently published Data
Quality Definition (DQD) Ontology1 [29].

Although current ontologies allow the definition of reusable DQ
metrics and enable a semantic-based assignment of DQ metrics,
they offer only limited possibilities for metric configuration (e.g.,
for setting thresholds) in the form of static values. We refer to such
metric configurations as static metric parameterization. However,
for use cases based on complex data, such as the manufacturing data
mentioned above, static parameterization is not always expressive
enough. For example, a DQ metric that measures whether time-
stamps of performed assemblies are in order cannot be expressed
using static parametrization. Thus, a mechanism that allows metrics
to be parameterized based on the data to be measured is required.
We refer to such a mechanism as dynamic parameterization. The
need for such context-dependent DQ definitions is also mentioned

1https://w3id.org/dqd/0.5 (last visited in June 2025)

https://w3id.org/dqd/1.0
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://w3id.org/dqd/0.5


by Serra et al. [31], who emphasize that this increases the reusability
across use cases.

In this paper, we address existing limitations and contribute as
follows: (1) We present a novel method that enables the dynamic
parameterization of DQ metrics. (2) To facilitate its usability, we
implement our method in DQD, a state-of-the-art ontology for data
quality definitions. Intuitively, values for the parameters of DQ
metrics are dynamically retrieved from the KG based on the data
to be measured. (3) Moreover, we showcase the applicability of our
approach based on a simplified use case on manufacturing data.

The remainder of this paper is structured as follows: Section 2
provides related work in terms of ontologies that enable a KG-
based definition of DQ measurements. Section 3 introduces the
novel method for dynamic KG-based DQ metric parameterization.
Section 4 describes the extension of DQD with support for the new
method as well as further features. The practical application of
the new method is shown in Section 5. A discussion of the effects
of our new method and its impacts on other topics is provided in
Section 6. Section 7 concludes this paper along with future research
directions.

2 RELATEDWORK
DQ measurements are typically performed by computing DQ met-
rics that quantitatively assess the fulfillment of various aspects, the
so-called DQ dimensions [6, 30, 35]. Although there are common
DQ dimensions, such as accuracy, completeness, and validity, stan-
dardized definitions are missing [30, 35]. Similarly, multiple DQ
metrics for each DQ dimension have been proposed (see [12] for
examples). Consequently, a common understanding of DQ metrics
and DQ dimensions must be established within organizations to
obtain a consistent view of DQ and its measurements.

Since this paper focuses on RDF-based KGs that follow OWL on-
tologies, this section investigates existing ontologies [29] enabling
the specification of reusable DQ definitions. Even though some
of those ontologies are called “vocabularies”, in this paper they
are referred to as ontologies, as they provide a “specification of a
shared conceptualization” [32]. Given the objective of this paper
(i.e., the dynamic parametrization of metrics for KG-based DQ mea-
surement), we formulate five aspects by which we analyze related
ontologies:

(1) Data type. For which type of data can DQ measurements
be defined?

(2) Structure. Does the ontology use DQ dimensions and met-
rics to structure DQ information, as mentioned above?

(3) Reusability. Does the ontology provide support to reuse
definitions of DQ metrics and dimensions?

(4) Storing results.Where and how can the DQ measurement
results be stored?

(5) Dynamic parameterization. Does the ontology allow to
dynamically parameterize DQ metrics based on data stored
in the KG?

These aspects are analyzed on five ontologies in total, as shown
in Table 1. In addition to the four ontologies mentioned in [29],
an online search has been carried out to cover new developments,
leading to the inclusion of one additional ontology [16].

Apart from the five ontologies investigated, the online search
yielded further results, which are either (i) domain-specific (e.g., Spa-
tial Data Quality Ontology (SDQO) [37]), (ii) rely on the Data Qual-
ity Vocabulary (DQV) for the representation of DQ measurement
definitions (e.g., the Data Quality Assurance Ontology (DQAO) [25]
and BIGOWL4DQ [5]), or (iii) poorly documented, which prohibits
an analysis (e.g., the Image and Data Quality Assessment Ontology
(IDQA) [33]).

As Table 1 shows, all analyzed ontologies enable the reuse of DQ
measurement definitions. However, regarding the other analysis
aspects, the ontologies differ: the Data Quality Management (DQM)
vocabulary [15] uses a slighly different terminolgy by defining so-
called DQ rules that mainly return boolean results, the Dataset
Quality Ontology (daQ) [11] and DQV [2] can only define DQ
measurements on whole datasets, DQD [29] can be applied to data
assets of any type, and DQStream [16] targets data streams. Overall,
none of the discussed ontologies allow the definition of metrics
that depend on dynamic parameters whose values are determined
based on the measured KG.

For relational data, the situation is similar. Although there are
frameworks for measuring DQ on relational data, such as great
expectations2 and deequ3, frameworks like these typically only allow
the definition of static parameters. Dynamic parameterization, e.g.,

2https://greatexpectations.io (last visited in June 2025)
3https://github.com/awslabs/deequ (last visited in June 2025)

Table 1: Comparison of ontologies that allow the definition of DQ measurements

Ontology (1) Data type (2) Structure (3) Reusability (4) Storing results (5) Dynamic parameterization

Data Quality Management
(DQM) Vocabulary [15] RDF-based datasets DQ rules Possible In the RDF-based dataset

to be measured Possible for certain types of rules
Dataset Quality Ontology
(daQ) [11] Whole datasets DQ metrics are associated

to DQ dimensions Possible In RDF graphs Not possible

Data Quality Vocabulary
(DQV) [2]

Whole datasets
(represented using the
Data Catalog Vocabulary
(DCAT) [1])

DQ metrics are associated
to DQ dimensions Possible In RDF graphs Not possible

Data Quality Definition
(DQD) Ontology [29]

Any type of data asset +
parts of them (e.g., one
attribute, one instance)

DQ metrics consist of
statistics and are associated
to DQ dimensions

Possible In an external data store Not possible

DQStream [16] Data streams
DQ factors consisting of
so-called DQ windows are
associated with DQ metrics
and DQ dimensions

Possible As part of the processed
data stream Not possible

2

https://greatexpectations.io
https://github.com/awslabs/deequ


𝑟

Result Machine

computed
on

𝑚

Metric

computed
by app

lied
on

𝑥

Data
Prop. 1

. . .

𝑦Data
Prop. 𝑛

(a) No parameterization

𝑟

Result Machine

computed
on

𝑚stat
Metric

computed
by app

lied
on

𝑥

Data
Prop. 1

. . .

𝑦Data
Prop. 𝑛

𝑣thresh
has

Parameter

(b) Static parameterization

𝑟

Result Machine

computed
on

𝑚dyn
Metric

computed
by app

lied
on

𝑥

Data
Prop. 1

. . .

𝑦Data
Prop. 𝑛

𝑝

Parameterhas
Parameter

“DataProp. 𝑛”
has Value

(c) Dynamic parameterization

Figure 1: Visualization of KG-based DQ measurements on a small sample of the manufacturing data example

through values stored in certain attributes, is not possible. Even
though there is also the need for dynamic parameterization in
this context, developments for the relational model are considered
out of scope, since the focus of this paper is on KGs-based DQ
measurement.

Based on the shortcomings described above, in Section 3 a novel
method enabling the dynamic KG-based parameterization of DQ
metrics is introduced. Apart from its theoretical introduction, the
method is also implemented as an addition to an ontology. In Sec-
tion 4, we extendDQD to support the new parameterizationmethod,
as it is the only analyzed ontology that (i) follows the structure of
DQ metrics and DQ dimensions and that (ii) allows to perform DQ
measurements on parts of datasets such as instances of a particular
class.

3 DYNAMIC KNOWLEDGE GRAPH-BASED
PARAMETERIZATION

Following the investigation of ontologies, we observe that none of
them allow the definition of dynamically parameterized DQmetrics.
Furthermore, Serra et al. [31] mention the inclusion of context into
DQ metrics as a topic for future research. Therefore, we extend the
definition of DQ metrics [6, 21] to support dynamic KG-based DQ
metric parameters.

From a mathematical perspective, a DQ metric𝑚, can be defined
as an unary function that maps data 𝑑 of type 𝐷 to a DQ result
value 𝑟 from a scale 𝑅 (Equation (1)) [6, 14, 17, 21]. Adhering to
that notation, a DQ measurement is the application of the metric
function𝑚 onto data 𝑑 returning a result value 𝑟 (cf. Equation (2)).

𝑚 := 𝐷 → 𝑅 (1)

𝑟 =𝑚(𝑑) (2)
Since the only argument of𝑚 is 𝑑 , further parameters providing

context to be considered in measurements must be directly encoded
within𝑚, as also described by [31]. For example, consider a DQmet-
ric𝑚 that measures whether a value lies above a certain threshold.
Hence, the threshold must be encoded as part of𝑚,𝑚’s reusability is
limited. Figure 1a shows how unparameterized DQ measurements
can be implemented in the context of RDF- and OWL-based KGs.
The structure of the defined DQ measurement is inspired by the
ontologies introduced in Section 2, whereas the example is based
on the manufacturing data mentioned in Section 1.

Static Parameterization. Based on this unparameterized defini-
tion of DQ metrics, we first extend the definition of DQ metrics
to support parameters 𝑣1, . . . , 𝑣𝑛−1. As an effect of that change, a
DQ metric𝑚stat is an 𝑛-ary function, as shown in Equation (3) and
Equation (4). The first argument, data 𝑑 ∈ 𝐷 , remains unchanged
compared to unparameterized metrics. The remaining 𝑛 − 1 argu-
ments of𝑚stat are the parameters 𝑣1, . . . , 𝑣𝑛−1 ∈ 𝑉 .

𝑚stat := (𝐷,𝑉 , . . . ,𝑉 ) → 𝑅 (3)

𝑟 =𝑚stat (𝑑, 𝑣1, . . . , 𝑣𝑛−1) (4)
The parameters are constant values 𝑣1, . . . , 𝑣𝑛−1 of type 𝑉 that

stay the same for all measurements performed by a DQ metric.
Thus, these parameters are called static. Considering the example
of the threshold metric, it is now possible to provide the threshold
separately as a parameter 𝑣thresh. Figure 1b visualizes such a metric
in the context of KGs and the manufacturing use case.

Dynamic Parameterization. The static parameterization does still
not consider the context provided by a KG. We address this limita-
tion by defining a dynamically parameterized DQ metric𝑚dyn as
an 𝑛-ary metric. Compared to𝑚stat the metric𝑚dyn takes functions
𝑝1, . . . , 𝑝𝑛−1 as arguments that determine a parameter’s value based
on the data 𝑑 ∈ 𝐷 and a value 𝑣 ∈ 𝑉 , as the Equations (5), (6), and
(7) show. Consequently, the dynamic computation of parameter
values passed to a metric𝑚dyn is enabled.

𝑚dyn :=
(
𝐷,

(
(𝑉 , 𝐷) → 𝑉

)
, . . . ,

(
(𝑉 , 𝐷) → 𝑉

) )
→ 𝑅 (5)

𝑝𝑥 := (𝑉 , 𝐷) → 𝑉 (6)

𝑟 =𝑚dyn (𝑑, 𝑝1 (𝑣1, 𝑑), . . . , 𝑝𝑛−1 (𝑣𝑛−1, 𝑑)) (7)
Figure 1c shows how a threshold in a DQ metric can be defined

dynamically for a KG based on a certain ontology. This time, the
metric is parameterized with a function that resolves the parameter
value using a path relative to the node of the KG on which the met-
ric is applied to. Consequently, the metric is tied to a specific class
and its subclasses within that particular ontology. Subsequently,
the metric can be applied on any KG following that ontology. As
an effect, the value of the parameter will change dynamically. Com-
pared to the other kinds of DQ metrics (cf. Figures 1a and 1b), this
kind of DQ metric features an increased reuseability.

3



Statistic

Metric

uses
Statistic

Dimension

has
Metric

Total Score

has
Dimension

Result

computed by

Parameter

has
Parameter

Figure 2: The owl:Classes of DQD and the owl:Object-
Properties between them. The additions of DQD version
1.0 are contained in the grey area.

4 EXTENDING THE DATA QUALITY
DEFINITION ONTOLOGY

The original concept of the Data Quality Definition (DQD)1 Ontol-
ogy (cf. Section 2) was introduced in 2023 alongside an implemen-
tation of the ontology in version 0.5 by Schrott et al. [29].

In this section, we introduce version 1.0 of DQD4, which enables
the definition of (dynamic) parameters (cf. Section 4.1), provides
an application profile (i.e., a guideline of how to use an ontology,
cf. Section 4.2), and contains further refinements (cf. Section 4.3)
that became apparent when using the original version in proof-of-
concept use cases.

4.1 Implementation of (Dynamic)
Parameterization

For the implementation of the (dynamic) KG-based parameteriza-
tion of DQ metrics, DQD is extended with new classes and proper-
ties (cf. Figure 2).

The parameter functionsmentioned in Section 3 are implemented
in DQD in the form of the dqd:Parameter OWL class. The param-
eter 𝑑 of the parameter function is inferred from the application
of the DQ metric, and the values 𝑣 are realized as OWL data type
properties dqd:hasPath and dqd:hasParameterValue. The literal
value of dqd:hasPath, a SPARQL Property Path [18], is used to re-
solve the actual value of the parameter relative to the class to which
the metric is applied on. In contrast, dqd:hasParameterValue’s
literal is treated as a static value. Thus, DQD version 1.0 supports
not only dynamic but also static parameterization of DQ metrics.
For the connection of parameters to DQ metrics, the OWL object
property dqd:hasParameter has been added.

Following [29] and by incorporating DQD’s new additions, the
definition of a (dynamically) parameterized metric that follows
DQD consists of two steps. First, a DQ metricM needs to be cre-
ated by forming a subclass of dqd:Metric, as described in [29].
Second, to ensure that different parameters can be identified when
computing a metric, for each parameter of M, a subproperty Px
of dqd:hasParameter has to be defined. The domain of these sub-
properties must beM, the range has to be dqd:Parameter.

4https://w3id.org/dqd/1.0 (last visited in June 2025)

Metric M
subclass

of

m

instance of

C
applied
on

. . .

p1
P1

p𝑛
P𝑛

Parameter

instance of

instance of

P1 and P𝑛 are subproperties of the
object property dqd:hasParameter

. . .has path

. . .hasparameter value

Figure 3: Visualization of dynamic and static parameteriza-
tion of DQ metrics in DQD

To apply a metric M to the nodes of a class C in a KG, M
must be instantiated to a metric instance m. By using the ob-
ject properties Px, which denote the parameters’ roles, this met-
ric instance m is connected to instances p𝑥 of dqd:Parameter.
These parameter instances p𝑥 reference literal values by using the
dqd:hasParameterValue and dqd:hasPath data type properties.

A visualization of a DQ metric that is dynamically and statically
parameterized and applied to a class C is shown in Figure 3. A larger
example in the context of the manufacturing use case is provided
in Section 5 and visualized in Figure 4.

4.2 Application Profile
Application profiles (APs) declare how terms defined in ontologies
should be used in a certain use case [19]. As described in [29], an
application profile (AP) is part of DQD’s concept to ensure the
correct usage of DQD. In contrast to DQD version 0.5, DQD’s new
release now provides an implementation of the AP in the form of
Shapes Constraint Language (SHACL) [23] shapes provided in a
separate file. SHACLwas chosen over Shape Expressions (ShEx) [3],
since SHACL provides better violation reporting and also supports
reasoning on the RDF graphs, which is not the case for ShEx.

The shapes contained in the AP were partly created automat-
ically [26] using Astrea [8] and were partly defined manually as
well. In its current form, the AP (i) encourages users of DQD to
provide a sufficient amount of metadata when defining DQ metrics,
it (ii) ensures that ranges of DQ values are defined consistently over
a hierarchy of DQ metrics, and it (iii) checks whether properties
have correct values, e.g., each result holds exactly one result value.
The AP is distributed separately from DQD and is available for
download online5.

4.3 Further Adaptions
Alongside the implementation of the dynamic parameterization
(cf. Section 4.1), we introduce further adaptions to DQD that stream-
line the usage of parameters and address observed limitations of
the original version.

To keep the ontology as consistent and concise as possible, all
data properties that model metric parameters specific to certain
DQ dimensions have been removed in favor of the dqd:Parameter

5https://w3id.org/dqd-ap/1.0 (last visited in June 2025)
4

https://w3id.org/dqd/1.0
https://w3id.org/dqd-ap/1.0


is applied on

is applied on

Machine X
Machine

Machine Y
Machine

has
successor Machine Z

Machine

has
successor

Production Line
Line

consists
ofcons

ists
of consists of

Assembly X1
Assembly

performs

Assembly Y1
Assembly

performs

Assembly Z1
Assembly

performs

A1
Product

uses

B1
Product

uses

C1
Product

produces uses

D1
Product

use
s

E1
Product

produces uses

F1
Product

use
s

G1
Product

produces

𝑡1
has

time
stam

p 𝑡2
has

time
stam

p 𝑡3
has

time
stam

p

Metric
GreaterThan

Metric

subclass
of

GTZ

ins
tan
ce

of

GTY

insta
nce

of

Instance of
Parameter

should be
lower

parameter† sho
uld

be

low
er

par
am
.†

Instance of
Parameter

shouldbe greaterparameter†

sho
uld

be
gre
ate
r

par
am
ete
r†

ˆperforms/ˆhasSuccessor/
performs/hasTimestamp

has path

hasTimestamp

has path

† : subproperty of “has parameter”

Figure 4: Exemplary visualization of a dynamically parameterized DQ metric and the KG it is applied to. Names written in
monospace denote classes.

class (cf. Section 4.1). This concerns, e.g., the properties dqd:has-
ValidityPattern and dqd:hasCustomNullValue of DQD version
0.5. Even though this change breaks compatibility with some met-
rics defined in DQD version 0.5, it ensures a consistent definition
of arbitrary parameters.

Another removal concerns the value-partition subclasses of
the class dqd:Dimension, representing individual DQ dimensions.
Since DQ dimensions are not standardized, as discussed in [28],
pre-created dimensions are no longer part of DQD. Instead, users of
DQD must create the instances of dqd:Dimension themselves, e.g.,
based on an organization-wide agreement. Similar to dqd:Metrics,
the dqd:Dimensions can be reused via dqd:Suites (cf. [29] for an
explanation of the suite concept). This ensures that only agreed
DQ dimensions are available when using DQD, which was not
supported so far.

Apart from the handling of DQ dimensions, we further improve
the handling of DQ results in DQD version 1.0. While it is still pos-
sible to store results in an external data store, such as a time series
database, and to use DQD as metadata, there is now a possibility
to represent DQ measurement results using DQD. Instances of the
dqd:Result class (i) reference a single literal value that denotes
the value of the DQ measurement result (dqd:hasDQValue) and
(ii) reference an instance of the metric used for the computation
of this value (dqd:computedBy). This referenced metric instance
transitively references the part of the KG for which the DQ result
value was computed.

5 APPLICATION IN PRACTICE
We applied the new version of DQDwith dynamic parameterization
of DQ metrics in our manufacturing use case (cf. Section 1). The
use case is kept generic and could be part of any manufacturing
company as part of Industry 4.0 initiatives. It considers a production
line consisting of threeMachines 𝑋 ,𝑌 , and𝑍 . The machines sequen-
tially perform Assemblies of Products. Products assembled by one
machine may be used as a part in an assembly of the next machine.
Each assembly contains a timestamp of when it was performed. The

part with horizontal lines in the background in Figure 4 visualizes
the KG, which can also be downloaded in the form of turtle files6.

In order for the KG to be valid, the timestamps of the assemblies
must have the same order as the machines performing the assem-
blies. For example, an assembly performed by Machine X must
happen earlier than an assembly performed by Machine Y, which
reuses the product assembled at Machine X.

Based on that description, we use DQD in version 1.0 to imple-
ment a dynamically parameterized DQ metric. The part of Figure 4
with vertical lines in the background shows the classes and in-
stances that are created in order to implement the use case. It is
visible that the “GreaterThanMetric” has two dynamic parameters:
the path of one resolves to the timestamp of the assembly of the ma-
chine it is applied to (shown in green), whereas the path of the other
one resolves to the timestamp of the assembly at the predecessing
machine (shown in violet). In blue, individual instances GT𝑛 of the
“GreaterThanMetric” and their application to the machines X and Y
are shown. Exemplarily, the path resolving is visualized for GTY.
As an effect of the dynamic parameterization, this metric can be
also applied to other KGs that follow the same ontology.

Although we demonstrated our novel method in only one use
case that could be associated to the DQ dimension “validity”, our
method is general enough to be transferred to other domains and
DQ dimensions as well. For example, a completeness metric consid-
ering custom use case-dependent null values, such as NaN, None,
or -1, or regular expression-based metrics for dynamic syntax
checking in the dimension “syntactic correctness” could be cre-
ated without effort.

6 DISCUSSION
In this section, we discuss the effects of the proposed method for
KG-based DQ metric parameterization and its impact on topics
different than DQ.

6Please find the files for the example as part of DQD’s documentation at
https://w3id.org/dqd/1.0

5

https://w3id.org/dqd/1.0


Advantages. As highlighted in Section 5, our novel method and
its implementation in DQD version 1.0 enable the definition of
DQ metrics that are dynamically parameterized using the data
to be measured. Such metrics could not be defined by existing
developments that rely on static parameterization, i.e., use fixed
values. Based on our contributions, possibilities for new DQmetrics
that could not have been defined otherwise arise.

FAIRness. The FAIR principles are a set of guiding principles that
ensure the Findability, Accessibility, Reusability, and Interoperabi-
lity of (meta)data [36]. As mentioned in [29], using DQD for the
representation of DQ definitions is beneficial to the fulfillment of
the FAIR principles. In particular, the introduction of our novel
method to DQD facilitates the interoperability and reusability for
(generic) DQ metric definitions that can be contextualized using
parameters.

For example, the “GreaterThanMetric” described Section 5 and
shown in Figure 4 could easily be reused in other use cases. Only
the adaption of the paths that are passed as parameters and refer
to the parameter values to be used is necessary. Using DQD for the
definition of the metric ensures that the semantics of the definition,
including the parameters, remain clear at any time. Thus, interop-
erability and reusability of the metric definition can be guaranteed.

Integration with other Ontologies. Since DQD is the only ontology
that allows to perform DQ measurements on parts of datasets such
as instances of a particular class, it is used for the implementation
of the dynamic KG-based parameterization. However, as described
in Section 2, there exist also other ontologies for DQ, which mostly
focus on whole datasets. Integrating dynamic parameterization
with those ontologies therefore seems to be challenging and opens
up potential for future work. First ideas of how solutions to this
can look like are mentioned as part of the Data Quality Manage-
ment (DQM) Vocabulary [15]. However, DQM is only capable of
computing Boolean measurements.

Further Data Models. Onemotivation for this paper was the reuse
of context provided by KGs. Nonetheless, it seems promising to
transfer the dynamical parameterization to further data models,
such as the relational model. As mentioned in Section 2, existing
frameworks for measuring DQ on relational data include great
expectations and deequ. However, upon investigation, these frame-
works support only static parameterization, not dynamic. Thus,
adding our concept of dynamic parameterization could greatly im-
prove the expressive power of such a framework. For example, the
values of parameters could be, e.g., based on the values of certain
attributes. Nevertheless, the method then loses some of its power,
since semantics are not present in the relational data model.

Data Quality versus Product Quality. Product and data quality are
two related but different concepts. Data quality provides insights
into whether data has beenmeasured and processed correctly, while
product quality refers to whether an entity has been manipulated
correctly. Product quality can be high even though data quality
is low, but without a high level of data quality, it is impossible to
determine product quality [4]. In this paper, we focussed on data
quality, although metrics for product quality could be defined using
the DQD version 1.0 as well.

7 CONCLUSION AND OUTLOOK
In this paper, we introduced a novel method for the dynamic pa-
rameterization of data quality (DQ) metrics based on knowledge
graphs (KGs). By providing data in combination with context, KGs
are an ideal basis for DQ measurements. However, existing on-
tologies for DQ definitions do not make use of context so far. To
overcome this limitation of previous works, we introduced a new
method that allows DQ metrics to be dynamically parameterized
based on KGs. By including context in the arguments of a DQmetric,
the reusability of a DQmetric across different use cases is increased.
The novel method is implemented as part of a new version of the
Data Quality Definition Ontology (DQD)4 and has been applied to
an example with manufacturing data in order to show its relevance
to Industry 4.0 use cases.

In terms of future research, we identified (1) the integration of
dynamic parameterization with other ontologies, (2) the transfer of
dynamic parameterization to other data models, and (3) the devel-
opment of a sound concept for sharing metric definitions to further
increase interoperability as promising further tasks that need to be
investigated. Another suggestion for future work is (4) the investi-
gation of the large-scale computation of DQ measurement results
based on KGs and dynamically parameterized metrics. To achieve
this, a dedicated software framework could be developed.

ACKNOWLEDGMENTS
The research reported in this paper has been funded by the Federal
Ministry for Innovation, Mobility and Infrastructure (BMIMI), the
Federal Ministry for Economy, Energy and Tourism (BMWET), and
the State of Upper Austria in the frame of the SCCH competence
center INTEGRATE (FFG grant no. 892418) in the COMET - Com-
petence Centers for Excellent Technologies Programme managed
by Austrian Research Promotion Agency FFG.

REFERENCES
[1] Riccardo Albertoni, David Browining, Simon J DCox, Alejandra Gonzales Beltran,

Andrea Perego, and Peter Winstanley. 2024. Data Catalog Vocabulary. https:
//www.w3.org/ns/dcat#

[2] Riccardo Albertoni and Antoine Isaac. 2016. Data on the Web Best Practices:
Data Quality Vocabulary. https://www.w3.org/TR/vocab-dqv/

[3] Thomas Baker and Eric Prud'hommeaux. 2019. Shape Expressions (ShEx) 2.1.
Primer. https://shex.io/shex-primer/index.html

[4] Donald Ballou, RichardWang, Harold Pazer, and Giri Kumar Tayi. 1998. Modeling
Information Manufacturing Systems to Determine Information Product Quality.
Management Science 44 (1998), 462–484. Issue 4. https://doi.org/10.1287/mnsc.
44.4.462

[5] Cristóbal Barba-González, Ismael Caballero, Ángel Jesús Varela-Vaca, José A.
Cruz-Lemus, María Teresa Gómez-López, and Ismael Navas-Delgado. 2024.
BIGOWL4DQ: Ontology-driven approach for Big Data quality meta-modelling,
selection and reasoning. Information and Software Technology 167 (2024), 107378.
https://doi.org/10.1016/j.infsof.2023.107378

[6] Carlo Batini and Monica Scannapieco. 2016. Data and Information Quality:
Dimensions, Principles and Techniques. Springer, Cham, Switzerland. https:
//doi.org/10.1007/978-3-319-24106-7

[7] Lukas Budach, Moritz Feuerpfeil, Nina Ihde, Andrea Nathansen, Nele Noack,
Hendrik Patzlaff, Felix Naumann, and Hazar Harmouch. 2022. The Effects of Data
Quality on Machine Learning Performance. http://arxiv.org/abs/2207.14529

[8] Andrea Cimmino, Alba Fernández-Izquierdo, and Raúl García-Castro. 2020. As-
trea: Automatic Generation of SHACL Shapes from Ontologies. In The Semantic
Web, Andreas Harth, Sabrina Kirrane, Axel-Cyrille Ngonga Ngomo, Heiko Paul-
heim, Anisa Rula, Anna Lisa Gentile, Peter Haase, and Michael Cochez (Eds.).
Springer, Cham, Switzerland, 497–513. https://doi.org/10.1007/978-3-030-49461-
2_29

[9] E. F. Codd. 1970. A Relational Model of Data Large Shared Data Banks. Commun.
ACM 13, 6 (1970), 377–387.

6

https://www.w3.org/ns/dcat#
https://www.w3.org/ns/dcat#
https://www.w3.org/TR/vocab-dqv/
https://shex.io/shex-primer/index.html
https://doi.org/10.1287/mnsc.44.4.462
https://doi.org/10.1287/mnsc.44.4.462
https://doi.org/10.1016/j.infsof.2023.107378
https://doi.org/10.1007/978-3-319-24106-7
https://doi.org/10.1007/978-3-319-24106-7
http://arxiv.org/abs/2207.14529
https://doi.org/10.1007/978-3-030-49461-2_29
https://doi.org/10.1007/978-3-030-49461-2_29


[10] Richard Cyganiak, David Wood, and Markus Lanthaler. 2014. RDF 1.1 Concepts
and Abstract Syntax. https://www.w3.org/TR/rdf11-concepts/

[11] Jeremy Debattista, Christoph Lange, and Sören Auer. 2014. daQ, an Ontology
for Dataset Quality Information. In LDOW2014, Vol. 1184. CEUR Workshop
Proceedings, Seoul, Korea. https://ceur-ws.org/Vol-1184/ldow2014_paper_09.
pdf

[12] Lisa Ehrlinger, BernhardWerth, andWolframWöß. 2018. Automated Continuous
Data Quality Measurement with QuaIIe. International Journal on Advances in
Software 11, 3 & 4 (2018), 400–417. https://www.iariajournals.org/software/soft_
v11_n34_2018_paged.pdf

[13] Christina Feilmayr and Wolfram Wöß. 2016. An analysis of ontologies and their
success factors for application to business. Data & Knowledge Engineering 101
(2016), 1–23. https://doi.org/10.1016/j.datak.2015.11.003

[14] Norman E. Fenton and James Bieman. 2015. Software metrics: a rigorous and
practical approach (3 ed.). CRC Pr, Boca Raton, FL, USA.

[15] Christian Fürber and Martin Hepp. 2011. Towards a vocabulary for data quality
management in semantic web architectures. In Proceedings of the 1st International
Workshop on Linked Web Data Management. ACM, Uppsala, Sweden, 1–8. https:
//doi.org/10.1145/1966901.1966903

[16] Sandra Geisler, Christoph Quix, Sven Weber, and Matthias Jarke. 2016. Ontology-
Based Data Quality Management for Data Streams. Journal of Data and Informa-
tion Quality 7, 4 (2016), 1–34. https://doi.org/10.1145/2968332

[17] Tom Haegemans, Michael Reusens, Bart Baesens, Wilfried Lemahieu, and
Monique Snoeck. 2017. Towards a Visual Approach to Aggregate Data Quality
Measurements. In MIT International Conference on Information Quality. Little
Rock, AR, USA. https://ualr.edu/informationquality/p04-iciq2017-towards-a-
visual-approach-2/

[18] Steve Harris and Andy Seaborne. 2013. SPARQL 1.1 Query Language. https:
//www.w3.org/TR/sparql11-query/#propertypaths

[19] Rachel Heery andManjula Patel. 2000. Application Profiles: Mixing andMatching
Metadata Schemas. Ariadne 25 (2000). http://www.ariadne.ac.uk/issue/25/app-
profiles/

[20] Aidan Hogan, Eva Blomqvist, Michael Cochez, Claudia d’Amato, Gerard de
Melo, Claudio Gutierrez, Sabrina Kirrane, José Emilio Labra Gayo, Roberto
Navigli, Sebastian Neumaier, Axel-Cyrille Ngonga Ngomo, Axel Polleres, Sab-
bir M. Rashid, Anisa Rula, Lukas Schmelzeisen, Juan Sequeda, Steffen Staab,
and Antoine Zimmermann. 2021. Knowledge Graphs. Synthesis Lectures on
Data, Semantics, and Knowledge 12, 2 (2021), 1–257. https://doi.org/10.2200/
S01125ED1V01Y202109DSK022

[21] IEEE. 1998. Standard for a Software Quality Metrics Methodology. Technical
Report 1061-1998. Institute of Electrical and Electronics Engineers.

[22] Gertrude Kappel, Christian Brecher, Matthias Brockmann, and István Koren.
2022. Internet of production: entering phase two of industry 4.0. Commun. ACM
65, 4 (2022), 50–51. https://doi.org/10.1145/3514093

[23] Holger Knublauch and Dimitris Kontokostas. 2017. Shapes Constraint Language
(SHACL). https://www.w3.org/TR/shacl/

[24] Heiner Lasi, Peter Fettke, Hans-Georg Kemper, Thomas Feld, and Michael Hoff-
mann. 2014. Industry 4.0. Business & Information Systems Engineering 6 (2014),
239–242. https://doi.org/10.1007/s12599-014-0334-4

[25] Dong Joon Lee, Besiki Stvilia, Fatih Gunaydin, and Yuanying Pang. 2025. Devel-
oping a data quality assurance ontology for research data repositories. Journal
of Documentation 81, 7 (2025), 63–84. https://doi.org/10.1108/JD-09-2024-0212

[26] Kashif Rabbani, Matteo Lissandrini, and Katja Hose. 2022. SHACL and ShEx in the
Wild: A Community Survey on Validating Shapes Generation and Adoption. In
Companion Proceedings of the Web Conference 2022 (Virtual Event, Lyon, France)
(WWW ’22). Association for ComputingMachinery, New York, NY, USA, 260–263.
https://doi.org/10.1145/3487553.3524253

[27] Rubab Zahra Sarfraz. 2024. Towards Semi-Supervised Data Quality Detection
in Graphs. In VLDB 2024 Workshop: 13th International Workshop on Quality in
Databases (QDB’24). VLDB Endowment, Guangzhou, China, 6. https://vldb.org/
workshops/2024/proceedings/QDB/QDB-2.pdf

[28] Johannes Schrott. 2024. Constraint-based Measurement and Aggregation of Data
Quality. Master’s thesis. Johannes Kepler University Linz, Linz, Austria.

[29] Johannes Schrott, Rainer Meindl, Christian Lettner, Wolfram Wöß, and Lisa
Ehrlinger. 2024. DQD: The Data Quality Definition Ontology. In Metadata and
Semantic Research, Emmanouel Garoufallou and Fabio Sartori (Eds.). Springer,
Cham, Switzerland, 291–297. https://doi.org/10.1007/978-3-031-65990-4_27

[30] Laura Sebastian-Coleman. 2013. Measuring data quality for ongoing improvement:
a data quality assessment framework. Morgan Kaufmann, Waltham, MA, USA.

[31] Flavia Serra, Verónika Peralta, Adriana Marotta, and Patrick Marcel. 2024. Use of
Context in Data Quality Management: A Systematic Literature Review. Journal of
Data and Information Quality 16, 3 (2024), 1–41. https://doi.org/10.1145/3672082

[32] Rudi Studer, V.Richard Benjamins, and Dieter Fensel. 1998. Knowledge engi-
neering: Principles and methods. Data & Knowledge Engineering 25, 1-2 (1998),
161–197. https://doi.org/10.1016/S0169-023X(97)00056-6

[33] Thomas Schrader. 2013. Image and Data Quality Assessment Ontology. https:
//bioportal.bioontology.org/ontologies/IDQA

[34] W3C OWL Working Group 2012. OWL 2 Web Ontology Language Document
Overview. https://www.w3.org/TR/owl2-overview/

[35] Richard Y. Wang and Diane M. Strong. 1996. Beyond Accuracy: What Data
Quality Means to Data Consumers. Journal of Management Information Systems
12, 4 (1996), 5–33. http://www.jstor.org/stable/40398176

[36] Mark D.Wilkinson, Michel Dumontier, IJsbrand Jan Aalbersberg, Gabrielle Apple-
ton, Myles Axton, Arie Baak, Niklas Blomberg, Jan-Willem Boiten, Luiz Bonino
da Silva Santos, Philip E. Bourne, Jildau Bouwman, Anthony J. Brookes, Tim
Clark, Mercè Crosas, Ingrid Dillo, Olivier Dumon, Scott Edmunds, Chris T. Evelo,
Richard Finkers, Alejandra Gonzalez-Beltran, Alasdair J.G. Gray, Paul Groth,
Carole Goble, Jeffrey S. Grethe, Jaap Heringa, Peter A.C ’t Hoen, Rob Hooft,
Tobias Kuhn, Ruben Kok, Joost Kok, Scott J. Lusher, Maryann E. Martone, Al-
bert Mons, Abel L. Packer, Bengt Persson, Philippe Rocca-Serra, Marco Roos,
Rene van Schaik, Susanna-Assunta Sansone, Erik Schultes, Thierry Sengstag,
Ted Slater, George Strawn, Morris A. Swertz, Mark Thompson, Johan van der
Lei, Erik van Mulligen, Jan Velterop, Andra Waagmeester, Peter Wittenburg,
Katherine Wolstencroft, Jun Zhao, and Barend Mons. 2016. The FAIR Guiding
Principles for scientific data management and stewardship. Scientific Data 3, 1
(2016), 160018. https://doi.org/10.1038/sdata.2016.18

[37] Cemre Yılmaz, Çetin Cömert, and Deniz Yıldırım. 2024. Ontology-Based Spatial
Data Quality Assessment Framework. Applied Sciences 14, 21 (2024), 10045.
https://doi.org/10.3390/app142110045

7

https://www.w3.org/TR/rdf11-concepts/
https://ceur-ws.org/Vol-1184/ldow2014_paper_09.pdf
https://ceur-ws.org/Vol-1184/ldow2014_paper_09.pdf
https://www.iariajournals.org/software/soft_v11_n34_2018_paged.pdf
https://www.iariajournals.org/software/soft_v11_n34_2018_paged.pdf
https://doi.org/10.1016/j.datak.2015.11.003
https://doi.org/10.1145/1966901.1966903
https://doi.org/10.1145/1966901.1966903
https://doi.org/10.1145/2968332
https://ualr.edu/informationquality/p04-iciq2017-towards-a-visual-approach-2/
https://ualr.edu/informationquality/p04-iciq2017-towards-a-visual-approach-2/
https://www.w3.org/TR/sparql11-query/#propertypaths
https://www.w3.org/TR/sparql11-query/#propertypaths
http://www.ariadne.ac.uk/issue/25/app-profiles/
http://www.ariadne.ac.uk/issue/25/app-profiles/
https://doi.org/10.2200/S01125ED1V01Y202109DSK022
https://doi.org/10.2200/S01125ED1V01Y202109DSK022
https://doi.org/10.1145/3514093
https://www.w3.org/TR/shacl/
https://doi.org/10.1007/s12599-014-0334-4
https://doi.org/10.1108/JD-09-2024-0212
https://doi.org/10.1145/3487553.3524253
https://vldb.org/workshops/2024/proceedings/QDB/QDB-2.pdf
https://vldb.org/workshops/2024/proceedings/QDB/QDB-2.pdf
https://doi.org/10.1007/978-3-031-65990-4_27
https://doi.org/10.1145/3672082
https://doi.org/10.1016/S0169-023X(97)00056-6
https://bioportal.bioontology.org/ontologies/IDQA
https://bioportal.bioontology.org/ontologies/IDQA
https://www.w3.org/TR/owl2-overview/
http://www.jstor.org/stable/40398176
https://doi.org/10.1038/sdata.2016.18
https://doi.org/10.3390/app142110045

	Abstract
	1 Introduction
	2 Related Work
	3 Dynamic Knowledge Graph-based Parameterization
	4 Extending the Data Quality Definition Ontology
	4.1 Implementation of (Dynamic) Parameterization
	4.2 Application Profile
	4.3 Further Adaptions

	5 Application in Practice
	6 Discussion
	7 Conclusion and Outlook
	Acknowledgments
	References

