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ABSTRACT
Privacy-preserving record linkage (PPRL) methods facilitate inte-
gration of sensitive data without disclosing plaintext information
among data owners or to third parties. However, PPRL techniques
are notably affected by problems related to data quality. Their typi-
cally rigid matching strategy can deter data custodians from em-
ploying them in practical applications due to potential linkage
quality issues. In this work, we present a framework for studying
PPRL algorithms with respect to their robustness against dataset
variation in order to guide data custodians in selecting suitable
methods. Our framework offers multiple possibilities to create test
datasets for linkage tasks depending on the available input data.
Furthermore, the implementation includes a new synthetic data gen-
erator for creating realistic population records including common
household structures for Germany. At the heart of our contribution
lies the creation and tracking of descriptive tags that outline the
characteristics of datasets across various levels of granularity. We
describe an approach for exploring linkage quality outcomes based
on those record (pair) features which enables researchers to better
comprehend their linkage results and assess those of others.
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1 INTRODUCTION
Record linkage, or entity resolution, identifies different representa-
tions of the same real-world entity, like a person. It is essential in
many data integration tasks with multiple sources, enabling better
data analysis or creation of high-quality machine learning training
datasets. Unique record identifiers are usually unavailable for join
operations, so records are compared pairwise based on their iden-
tifying attributes like first name, last name, and birth date, then
classified as match or non-match.
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Record linkage can impair individual privacy by merging data
that might be misused, leading to legal and organizational restric-
tions [3]. Privacy-preserving record linkage (PPRL) methods fa-
cilitate linking without disclosing sensitive plaintext information
among data owners or to third parties. To protect the identify-
ing attributes, data owners encode this data before sending it to a
semi-trusted linkage unit for matching. Similarity-preserving en-
codings allow for matching records approximately despite errors
or inconsistencies like typographical errors or outdated data. Multi-
ple encoding techniques have been proposed but Bloom filters are
particularly popular in both research and applications due to their
simplicity and scalability [3, 12].

Attribute-level encodings create exploitable frequency patterns
in encoded data, facilitating rather easy reidentification by align-
ing the most common plaintext values with the most common
Bloom filters [28]. Consequently, these encodings are appropri-
ate for data linkages that require a flexible matching strategy to
achieve high-quality outcomes and privacy risks are limited. For
improved attack resilience, attributes are combined into a single
record-level encoding. However, this approach strongly limits the
flexibility of the matching algorithm. The linkage unit may only use
a simple threshold-based classification based on a single similar-
ity score. Despite this simplistic approach, the results of PPRL are
often surprisingly good because the linkage problems are usually
less complex in comparison to other domains, e.g., when linking
commercial products from data sources with differing schemas.

A key challenge in this process is the determination of suitable
encoding and linkage parameters without having information re-
garding the properties of matching and non-matching records. In
conventional record linkage attribute weights are often used during
the comparison and classification step for aggregating the attribute
similarity scores for subsequent threshold-based classification. In
PPRL protocols with record-level encodings, however, the weights
must be applied at the time of encoding. Thereby, the computation
of suitable weights, e.g., based on the probabilistic approach by
Fellegi and Sunter [8], must be done without access to attribute
similarities of potential matches and non-matches. Therefore, PPRL
protocols using such record-level perturbation methods are intrin-
sically less flexible and prone to malconfiguration.

Data custodians striving to identify a suitable linkage strategy
tailored to their specific use case may encounter a lack of insight
for choosing a satisfactory solution. Consequently, they may either
revert to traditional record linkage methods, which necessitate
significant organizational efforts for engagement with fully reliable
third-party entities, or they may abandon their objectives due to
these considerable challenges.
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Usually, entity resolution algorithms are evaluated based on
benchmark datasets from various domains. Nevertheless, consid-
ering their particular application involving sensitive information,
assessing PPRL algorithms on datasets derived for instance from
commercial domains such as Abt-Buy or bibliographic sources like
DBLP and Google Scholar is not advisable [18]. PPRL algorithms are
typically applied on linkage problems where personal identifying
attributes are used for comparison. Naturally, such datasets from
real-world databases are rarely publicly available. Research in this
domain therefore either uses those few datasets which are publicly
available or derived from public sources (in particular temporal
snapshots of voter registries), generate synthetic datasets or use
datasets which the authors have access to based on their affiliation
or special agreements [3]. Although publications frequently offer
synthetic or publicly accessible datasets, this is generally not the
case for real-world linkage problems. The absence of standardized
benchmark datasets makes it challenging to compare the outcomes
of various PPRL algorithms. Our approach facilitates the versa-
tile generation of linkage datasets and the derivation of variants,
thereby enabling a more comprehensive study of PPRL algorithms.

Moreover, linkage quality measures are often provided for the
entire dataset, whichmight include a range of data error types. Thus,
observers cannot assess whether they can expect a similar quality
for their dataset with potentially different properties regarding the
available attributes, missingness, etc. The evaluation should include
a fine-grained report on the performance of a linkage method so
that strengths and weaknesses with regard to certain error types
or other dataset properties can be assessed.

In this work, we present a framework for comprehensive eval-
uation and quality analysis of privacy-preserving record linkage
algorithms in order to support data custodians in choosing suitable
methods and to facilitate further methodological research in this
domain. In particular, we make the following contributions:

• We introduce our framework for evaluating PPRL algo-
rithms by employing a combination of methods for gener-
ating, corrupting, and deriving benchmark datasets.

• We present our methodology for analyzing linkage out-
comes, facilitating a comprehensive comparison and refine-
ment of methods.

• We demonstrate the analytical abilities of our framework
using tag-based process descriptors on illustrative use cases.

Related work
Over the past few decades, numerous techniques for PPRL have
been introduced [3, 12]. Protocols utilizing secure multiparty com-
putation offer formal security guarantees, but they generally have
significant computational demands, especially for fuzzy compar-
isons. Consequently, perturbation-based methodologies are fre-
quently employed in scenarios involving large-scale data linkage.
The initial proposal for utilizing Bloom filter encodings in PPRL
dates back to 2009 [24]. However, the deterministic encoding leads
to frequent bit positions for common plaintext patterns, enabling
frequency attacks, especially in attribute-level Bloom filter (ABF)
where each attribute is represented by a separate bit vector. Fre-
quent plaintext attribute values often match with frequent Bloom
filters which allows to (partially) reconstruct the original records

despite the irreversible hash functions. Various hardening methods
have been proposed to disguise these patterns [11], including au-
toencoders [5], balancing [26], and XOR folding [27]. Encodings
combining quasi-identifying attributes into a single record-level rep-
resentation [7, 25] are highly recommended by the literature [28].
By modifying the number of hash functions 𝑘 , attribute weights
can be integrated taking into account their discriminatory power
and error rate [22].

There are several tools that employ perturbation-based PPRL
methods for either general purposes [10] or specialized medical
applications [15, 23]. However, these tools are primarily confined
to executing linkage operations and lack the capabilities necessary
for generating test datasets or conducting in-depth result analysis
beyond basic quality metrics.

On the one hand, a number of data generators for entity res-
olution tasks exist. Tools like FEBRL [1] create records entirely
from scratch. The newly introduced pseudopeople package facili-
tates the generation of extensive datasets through individual-based
modeling of the US population, which also encompasses household
structures [14]. Others create a corrupted variant with a variety of
error types based on an existing (real-world) input dataset [16]. An-
other group of data creation tools, such as GeCo [4] and Gecko [17],
integrate both the generative and corruptive aspects.

On the other hand, further tools exist to benchmark matching so-
lutions based on profiling test datasets such as [20]. One of the few
tools available for understanding record linkage results is Frost/S-
nowman [13], which has been proposed for comparing linkage
algorithms on certain benchmark datasets or a certain algorithm on
multiple datasets using various metrics. Nevertheless, the platform
lacks features for generating test data or conducting in-depth anal-
ysis of results when dealing with multiple dataset representations
(plaintext and encoded).

To the best of our knowledge, there is no solution yet which
comprises data generation and detailed linkage result exploration
in a holistic framework, in particular with a focus on PPRL.

2 METHOD
2.1 System overview
The overall architecture of our proposed framework is depicted
in Fig. 1. We use the notation R for datasets containing records of
multiple sources. Within a linkage scenario involving 𝐼 sources,
each dataset R𝑖 denotes a database owned by 𝑖 so that R =

⋃
𝑖∈𝐼 Ri.

This paper focuses on two linkage input sources but the framework
is generalizable for multi-party linkage.

On the left side, multiple paths for creating linkage datasets are
provided, depending on the available input data. By utilizing sta-
tistical population data, it’s possible to create synthetic datasets
(𝐷𝐺 ) and corrupt them (𝐷𝐶 ) while maintaining real-world char-
acteristics. Linkage problems can also be generated based on the
corruption of given single-source data or through the selection (𝐷𝑆 )
from multi-source record clusters. Ultimately, the prefinal dataset
can be altered to adjust size and overlap of the data sources (𝐷𝑀 ).

In the center, privacy-preserving record linkage components are
responsible for the encoding (𝐿𝐷𝑂 ) and matching (𝐿𝐿𝑈 ) phases of
a perturbation-based protocol.
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Figure 1: Architecture of our proposed evaluation framework with linkage input creation components on the left side (𝐷𝐺 : Syn-
thetic data generator, 𝐷𝐶 : Data corrupter, 𝐷𝑆 : Selector from multi-source record clusters, 𝐷𝑀 : Linkage problem modifier), the
PPRL services in the center (𝐿𝐷𝑂 : Encoding, 𝐿𝐿𝑈 : Matching) and the result analysis components on the right side (𝐴𝐷 : Dataset-
level evaluation, 𝐴𝑃 : Prediction analysis, 𝐴𝐺 : Group analysis, 𝐴𝑆 : Similarity analysis).

All those components serve as potential sources of descriptive
tags which are gathered in a tag store to facilitate subsequent anal-
ysis by the components on the right side. In addition, ground truth
information for the linkage input is needed for most analysis types
and thus is provided by the data creation components. Basic data-
level analysis (𝐴𝐷 ) of the linkage can be carried out using only the
ground truth of a particular test dataset. The remaining compo-
nents (𝐴𝑃 ,𝐴𝐺 , and𝐴𝑆 ) depend on tags to facilitate a more in-depth
examination.

Our comprehensive framework allows to trace natural or inten-
tionally induced data characteristics through the PPRL algorithm
for a fine grained analysis of the linkage outcome even when ob-
scured by additional noise in this process. Notably, post-linkage
tag inference could not comprise pairs that are eliminated during
the matching’s blocking stage. This is facilitated by using a com-
mon data model throughout the framework to describe such traits,
which we refer to as tags, as described in the next section.

2.2 Tag concept
Tags describe linkage problems based on dataset and outcome char-
acteristics across the dimensions of Granularity, Representation,
Origin, and Type. We denote tags as 𝜏𝑅

𝐺
[𝑂](LABEL,[string],[number])

whereby the origin 𝑂 is included only if relevant.
Granularity Tags describe individual records (𝜏𝑟 ), attributes

(𝜏𝑎), record pairs (𝜏𝑟𝑝 ), attribute pairs (𝜏𝑎𝑝 ), or entire datasets (𝜏𝑅 ).
While all tags include references to the respective dataset, the avail-
ability of references to the respective record(s) and attributes de-
pend on the granularity level.

Dataset representation Tags may originate from the plain-
text data (𝑃 ) or encoded data (𝐸), or describe structural traits (𝑆).

Origin While some pair-level tags such as the similarity emerge
during matching, plaintext records and their attributes are analyzed
in advance. Other (pair-level) tags may be derived beforehand, dur-
ing generation, corruption or selection.

Table 1: Examples of tags provided by different components

Scope of provided tags Examples

𝐷𝐺 Record-level 𝜏𝑆𝑟 (HOUSEHOLD,‘single’)
𝐷𝐶 Pair corruption method 𝜏𝑆𝑟𝑝 (MODIFIER,‘rareNameMove’)

(intention and technique) 𝜏𝑃𝑎𝑝 (TYPO,‘f->d’)
𝐷𝑆 Record and pair-level 𝜏𝑆𝑟𝑝 (YEAR_DIFF,‘0-3’,2)

𝜏𝑆𝑟 (VOTER_GROUP,‘Democrat’)
𝐷𝑀 Dataset-level 𝜏

𝑅
(OVERLAP,‘A-B’,0.2)

𝐿𝐷𝑂 Plaintext (Indiv. and pair) 𝜏𝑃𝑎 (MISSING), 𝜏𝑃𝑎𝑝 (SUBSET )
(Dynamic) encoding param. 𝜏𝐸𝑎 (NUM_HASHES,‘default’,20)

𝐿𝐿𝑈 Encoded data description 𝜏𝐸𝑟 (FILLRATIO,‘aboveAvg’,0.42)
Intermediate results 𝜏𝐸𝑟𝑝 (SIM,‘0.85-0.90’,0.865)

𝜏𝐸𝑟 (BLOCK_SIZE,‘belowAvg’,12)

Type Tags have a label and may include numerical/string
values for detailed description. The content of the values depends
on the tag type. Some tags may only have categorical (string) values.
For tags with numerical values, the string is used for assignments
to predefined intervals or categories for simplified analysis.

Tab. 1 lists the tag scope and examples from the components in
our framework. Our implementation stores all tags in a document-
oriented database using a unified flat data model. However, tags can
also be provided on-demand for ad-hoc analysis without database
persistence.

2.3 Linkage dataset creation
In the following, we describe the components provided by our
framework for creating the input datasets for the PPRL algorithm.
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2.3.1 𝐷𝐺 : Synthetic dataset generation. Synthesizing realistic data
is challenging, as evidenced by ongoing development of new tools.
Such datasets can be generated based on statistical distributions of
name frequencies, age cohorts, and residential addresses etc. These
values may come from public sources like national censuses or from
similar datasets related to the specific use case. We propose a novel
generator tailored for Germany, particularly aimed at tackling the
issue of aligning individuals residing within household structures
in record linkage. These pairs often exhibit a relatively high simi-
larity because of shared surnames and/or locations. The generator
creates datasets in two main stages: individual data generation and
household structure modeling.

Individuals generation The generator utilizes German Cen-
sus data1 to accurately reflect real-world demographics, includ-
ing age, gender, and regional statistics. Dependencies between at-
tributes are modeled with a directed acyclic graph to ensure logical
consistency between attributes, e.g., gender and year of birth influ-
encing the choice of first name. Attributes like name and birthdate,
and address are generated from probability distributions.

Household modeling Household structures are generated
in four phases, each focusing on a specific household type.

Family Households are generated with realistic parent-child re-
lationships. The number of children and the type of partnership
(e.g., married, single parent) are determined using statistical dis-
tributions. Dependencies such as age gaps between siblings and
parents are modeled. Childless Couples are generated based on age
and partnership type distributions. The generator ensures com-
patibility between partners by matching demographic attributes.
Single-Person Households are created using age-based distributions,
ensuring alignment with real-world data. Shared Housings such as
student apartments, are based on grouping individuals with similar
demographic attributes. Gaussian distributions are used to model
age similarity among housemates.

Apart from the actual records, the generator also provides tags
describing the household type of the generated records. This enables
post-linkage analysis of household-related linkage bias.

2.3.2 𝐷𝐶 : Linkage problem creation by record corruption. Based on
a foundational dataset composed of either synthetic or real records,
additional records of other sources are subsequently generated
by inducing typical data quality issues such as typos as well as
missing or replaced attribute values. The goal of our corrupter is
not primarily to simulate authentic compositions of data errors,
but rather to enable the creation of diverse record pair categories
that can be classified as true matches or non-matches. An additional
objective is to assign tags according to the modification applied
to each pair, enabling the analysis of the linkage output for the
expected classification result.

The implementation offers a versatile framework for applying
different types of corruption. At the attribute level, basic manipula-
tions of strings and dates can be applied, such as character swaps or
substitutions to simulate typographical errors, and allows for vari-
ations in dates, like date of birth adjustments. At the record level,
attribute values can be swapped (such as first and last names), sub-
stituted, expanded depending on a specified value distribution (for

1https://ergebnisse.zensus2022.de/datenbank/online/

instance, a name change after marriage or an address change follow-
ing a relocation) or removed to simulate missing values. All modifi-
cations are conditional, making it possible to represent data quality
issues specific to certain groups, such as young adults being more
prone to address changes compared to middle-aged individuals.
Every alteration generates a tag, enabling thorough tracking by the
post-linkage analyzers. Moreover, these modifications are grouped
to simplify the assignment of more general tags 𝜏𝑆𝑟𝑝 [𝐷𝐶 ](MODIFIER).
These tags capture the intended type of pairing, such as an individ-
ual who relocated which affects multiple residential attributes, or
two similar but distinct records with common names, that a human
oracle would likely classify as a match or non-match respectively.

2.3.3 𝐷𝑆 : Selection from existing record clusters. The previousmeth-
ods for generating data face the challenge of choosing suitable
parameters to accurately mimic real-world errors. The usefulness
of these test datasets largely depends on whether the initial as-
sumptions regarding the dataset’s characteristics are appropriate,
including data quality issues. An alternative method employed in
the literature involves utilizing historical data to simulate linkage
issues across diverse temporal snapshots. This method naturally
incorporates real-world characteristics of outdated data. Databases
of registered voters, such as the one in North Carolina (NCVR), are
frequently utilized as linkage benchmark datasets [3]. Based on
the NCVR data, Panse et al. [19] provide a database for large-scale
record linkage tasks, containing clusters of historical records shar-
ing the same voter ID. We developed a dataset generator enabling
the selection of subsets considering the degree of duplicate dirtyness
or the snapshot time (𝑡 ) span within these record clusters. Table 2
shows an example of such a cluster from NCVR where different
record pairs could be selected for inclusion in the linkage dataset,
depending on the desired composition. For example, a higher mini-
mal time span between selected records typically results in more
challenging match candidates.

Table 2: Example record cluster of a certain individual from
temporal snapshots of a voter registry grouped by voter ID.

VoterID Snapshot t First name Middle n. Last name YOB Zip City

XY123

2008-11-04 VANESA M. PATEL 1977 27253 GRAHAM
2009-10-07 VANESA MARIE PATEL 1977 27253 GRAHAM
2012-11-06 VANESA MARIE PATEL 1977 27215 BURLINGTON
2019-10-08 VANESA MARIE TAYLOR 1977 27215 BURLINGTON

2.3.4 𝐷𝑀 : Dataset size and overlap modifier. This component aims
to create test datasets with varying sizes and levels of overlap among
sources. Variations in size are crucial for studying scalability aspects.
Greater overlap in general facilitates higher linkage quality. When
the dataset contains true matching pairs for many of the records,
the likelihood of false positive classifications decreases because
genuine duplicates tend to have a higher similarity than random
pairs. The overlap is typically not known prior to the linkage. Thus,
conducting experiments on datasets with varying degrees of overlap
permits an examination of the effects of these unknowns on the
linkage result. The component is part of our implementations of𝐷𝐶

and 𝐷𝑆 . However, it may also be utilized separately in combination
with an external linkage input creation tool.
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2.4 Linkage protocol execution
The PPRL algorithm relies on components for data owners (𝐿𝐷𝑂 )
and linkage unit (𝐿𝐿𝑈 ). Both provide tags during the process, e.g.,
when calculating parameters dynamically, such as attribute weights
unique to each record. These neither can be determined on plaintext
before linking nor afterwards from the final linkage outcome.

2.4.1 𝐿𝐷𝑂 : Encoding at data owners. The original plaintext is irre-
versibly converted using cryptographic hash functions. Similarity-
preserving encodings such as Bloom filters allow for matching
records with data quality issues. The plaintext values are parsed
to (overlapping) substrings (𝑞-grams) which are each mapped to
positions in a bit vector of fixed size using 𝑘 keyed hash functions.
Identical q-grams map to the same bit positions, so a high overlap
of q-grams results in similar Bloom filters and thus enables fuzzy
comparison.

Our implementation comprises a variety of such encoding tech-
niques which allows to test the effect on the linkage outcome (see
also section 3.3). Furthermore, our data owner module contains
an analyzer component for plaintext records, allowing to capture
aspects such as attribute lengths or missingness in tags for usage
in the linkage result analysis.

2.4.2 𝐿𝐿𝑈 : Privacy-preserving matching. Encoded records are pair-
wise compared and classified. Blocking or filtering techniques miti-
gate the quadratic complexity of comparing every record between
sources [2]. Bloom filter similarities are measured using normalized
set similarity measures such as the Dice or the Jaccard coefficient.
A similarity score above the threshold classifies the record pair
as match, or as non-match otherwise. Due to this rather simple
matching approach in PPRL, insights on influencing factors of the
encoding technique on the similarity score are very valuable for
method development. Thus, apart from tags describing the encoded
dataset, 𝜏𝐸𝑟𝑝 (SIM) is provided, encompassing the record pair similar-
ity which is crucial for certain analysis types as outlined below.

The implementation of the components described in the previous
sections is based on extensions of the service-oriented PPRL archi-
tecture with 𝐿𝐷𝑂 and 𝐿𝐿𝑈 in [21]. 𝐷𝐺 and 𝐷𝑆 are implemented
as dedicated web services, enabling configuration-file-based cre-
ation and export of linkage datasets as CSV files or JSON objects.
These generated datasets or datasets from external sources can be
imported into the data owner services in both formats as well.

𝐷𝐶 and𝐷𝑀 are integrated into the data owner service to facilitate
in-place experiments based on different data quality scenarios using
a single data source as reference. The dataflow between the services
is orchestrated by a protocol manager service which enables flexible
automated workflows of dataset creation, PPRL protocol execution
and result analysis.

2.5 Linkage result analyzer
This section outlines the analytical capabilities of our framework
which are implemented as a Python-based Streamlit application
using the frameworks’ RESTful interfaces for retrieval of the link-
age outcome and its descriptive tags. Additionally, CSV export is
supported, facilitating customized analysis utilizing external tools.

2.5.1 𝐴𝐷 : Dataset-level measures. To assess the overall quality of
linkage, we apply the conventional performance metrics recall, pre-
cision, and F1-score. In the absence of ground truth, these metrics
can be estimated in an unsupervised manner based on similarity
graphs [9]. In addition to the usual confusion matrix, we differenti-
ate between two types of false positives: FPs(ingleton), which are FP
links where both records are true non-matches or singletons, and
FPd(uplicate), which encompass all FP where at least one record is
a true duplicate. High FPd/FP ratios suggest inadequate or missing
postprocessing in linkage scenarios involving clean sources without
internal duplicates.

2.5.2 𝐴𝐺 : Group-based quality analysis. This component utilizes
the tags provided by the data creation and linkage modules. The
linkage outcomes are categorized by these tags to calculate quality
measures for each subset. Examining the outcomes of a benchmark
dataset allows observers to more effectively determine if these
results might be applicable to their use case, even when using a
different composition of records and types of data quality issues.
We present an example for this analysis in Sec. 3.1.

2.5.3 𝐴𝑃 : Prediction-based analysis. This component is similar to
the previous approach but reversed. It provides tools to outline
and contrast the characteristics of specific groups in the outcome.
By categorizing elements within the confusion matrix, such as
exploring prevalent trends among FP or FN pairs, we can pinpoint
systematic deficiencies in the linkage method [6]. Furthermore, we
can categorize by match predictions to examine possible systematic
disparities between records considered as matches or non-matches.
These effects might arise from issues with the linkage algorithm in
addressing data quality problems effectively within specific groups
of records. Thus, 𝐴𝑃 can also be applied in situations where the
ground truth for the linkage problem is unavailable.

2.5.4 𝐴𝑆 : Similarity analysis. This component enables an in-depth
examination of the outcomes grounded in 𝜏𝐸𝑟𝑝 (SIM). Similar to previ-
ous methods, one can utilize either single tags or collections of tags
to study the similarity distribution across the respective groups. It
shows how effectively pairs can be distinguished either asmatch or
non-match using the threshold-based classification models of PPRL
with record-level encodings. Additionally, this module enables the
examination of how similarity scores of specific record pairs vary
with different encoding and matching techniques.

3 USE CASES
In this section, we provide illustrative examples of how our frame-
work can be used for studying PPRL methods.

Our framework enables evaluation of PPRL algorithms based on
workflow definitions including dataset creation and linkage proto-
col orchestration. Figure 2 shows an example of such a workflow.
First, a synthetic dataset is created and subsequently modified to
produce record variants that are either supposed to be matches
(here: ID 44) or non-matches (here: ID 43 and ID 45). Afterwards,
a Bloom-filter-based linkage is conducted using the encoding and
matching modules. The tags derived in this process can be used for
different analysis types, as described in the following sections.
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Step 0: Definition of the experiment workflow incl. configurations for 𝐷𝐺 , 𝐷𝐶 , 𝐿𝐷𝑂 , 𝐿𝐿𝑈

Step 1: Generation of a synthetic dataset with household structures using 𝐷𝐺 .

ID First name Last name Date of birth Zip City

42 PAUL POLLMANN 1979-10-25 73102 BIRENBACH
43 THOMAS POLLMANN 1978-04-10 73102 BIRENBACH

Step 2: Creation of modified/corrupted records using 𝐷𝐶 (here: based on record 42).

ID First name Last name Date of birth Zip City

44 PAUL POLLMANN-MEIER 1979-10-25 73102 BIRENBACH
45 PAULA HOFFMANN 1979-10-25 74629 PFEDELBACH

Step 3: Import of generated linkage input dataset to 𝐿𝐷𝑂 and encoding.

Step 4: Transfer of encoded dataset to 𝐿𝐿𝑈 and matching.

Step 5: Detailed evaluation based on collected tags and partially using ground truth.

Tag store collects tags created during steps 1-4 (here: only tags related to record 42).

ID0 ID1 Origin Attribute Label StringValue Num.

42 43 𝐷𝐺 RELATION SIBLING
42 44 𝐷𝐶 MODIFIER DOUBLE_LAST_NAME
42 44 𝐷𝐶 LASTNAME EXTENDED
42 45 𝐷𝐶 MODIFIER SIMILAR_BUT_OTHER_PLACE
42 45 𝐷𝐶 FIRSTNAME REPLACEMENT ‘similar’ 0.80
42 45 𝐷𝐶 LASTNAME REPLACEMENT ‘similar’ 0.63
42 45 𝐷𝐶 CITY REPLACEMENT ‘similar’ 0.50
42 45 𝐷𝐶 ZIP REPLACEMENT ‘dependsOnAttribute:CITY’
42 𝐿𝐷𝑂 FIRSTNAME LENGTH ‘belowAverage’ 4
42 𝐿𝐷𝑂 FIRSTNAME REL_FREQ_RANK VERY_FREQUENT 0.002
42 𝐿𝐷𝑂 CITY REL_FREQ_RANK VERY_RARE 0.851
42 45 𝐿𝐷𝑂 FIRSTNAME MINOR ‘->s’
42 43 𝐿𝐿𝑈 SIM ‘0.70-0.75’ 0.716
42 44 𝐿𝐿𝑈 SIM ‘0.85-0.90’ 0.872
42 45 𝐿𝐿𝑈 SIM ‘0.75-0.80’ 0.763
42 𝐿𝐿𝑈 BF_FILLRATIO ‘0.35-0.40’ 0.387

42 𝐿𝐿𝑈 FIRSTNAME BF_FILLRATIO ‘0.35-0.40’ 0.398
42 45 𝐿𝐿𝑈 FIRSTNAME SIM ‘0.85-0.90’ 0.894

Figure 2: Application of the experimental framework using the data creation path 𝐷𝐺 ->𝐷𝐶 : The steps for generating the linkage
input datasets, executing the PPRL protocol and subsequent result analysis are illustrated on the left using example records.
The table on the right shows corresponding tags, describing plaintext and encoded records as well as record pairs. The lower part
of the table illustrates selected tags from another experiment using the same dataset but a different (attribute-level) encoding.

3.1 Group-specific linkage quality analysis
While dataset-level linkage quality measures (𝐴𝐷 ) allow to assess
and compare the overall performance of PPRL algorithms, group-
based analysis (𝐴𝐺 ) reveals possible quality issues for certain sub-
sets (see Fig. 3). The upper result shows that the chosen linkage
algorithm excels at identifying duplicates that differ by zero or one
attribute, though it struggles when error rates are higher. Since at-
taining a high recall for records that are highly similar or identical is
straightforward, this distinction enables focusing on the more com-
plex cases, thereby disregarding the proportion of trivial matches
that might lead to an overall high quality measure. The bottom
result demonstrates that the linkage method employs encodings
capable of handling slight attribute variations, such as typos, as
well as expansions, like double last names or initials of first names.

Figure 3: Group-based quality assessment using 𝜏𝑃𝑟𝑝 [𝐿𝐷𝑂 ] for
the number of differing input attributes (top) and 𝜏𝑃𝑎𝑝 [𝐿𝐷𝑂 ]
for descriptions of fine-grained corruption types (bottom).

3.2 Prediction-based analysis
To investigate potential biases in the linkage outcome, it is advan-
tageous to examine the distributions of specific tags by prediction
type (𝐴𝑃 ), as depicted in Fig. 4. Differences in the distributions
are not necessarily indicators of systematic linkage flaws if these
reflect real-world differences between records belonging to the

match or non-match group. Nevertheless, it is improbable that rare
or common names, or low fill ratios, which correlate with shorter
plaintext values, belong to this category. Therefore, methodological
adjustments such as integration of value-specific attribute weights
should be considered.

Figure 4: Prediction-based analysis on distributions of at-
tribute frequencies (left, 𝜏𝑃𝑎 [𝐿𝐷𝑂 ) and Bloom filter fill ratios
(right, 𝜏𝐸𝑟 [𝐿𝐿𝑈 ]) indicates correlation of common names with
false positives and of low fill ratios with false negatives.

3.3 Effect of encoding technique on similarity
In perturbation-based PPRL, the encoding choice is crucial for sep-
arability ofmatches and non-matches based on the record similarity.
For studying the suitability of an encoding, we apply 𝐴𝑆 on 𝜏𝑃𝑟𝑝 for
two data quality scenarios DIRTY and TIME created by different
configurations of 𝐷𝐶 , see Fig. 5. The histograms display similar-
ity distributions for various high-level modification types. Results
from the DIRTY scenario indicate initial separability of matches
and non-matches. The distribution of pairs with exchanged first
and last name significantly overlaps with pairs having a similar
but typo-free name and a different address. Therefore, a threshold-
based classifier predicting non-match for these pairs will struggle to
detect matches with swapped name fields. Data custodians should
choose a modified encoding method with relaxed attribute salting
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to address this issue. The TIME scenario output suggests an overly
high last name attribute weight, causing false negatives for some
pairs with replaced last names.

Figure 5: Similarity analysis for different data quality scenar-
ios using 𝜏𝑃𝑟𝑝 [𝐷𝐶 ]: On the left (DIRTY ), true matches suffer
from missing and erroneous data while on the right (TIME),
true matches are affected by outdated data.

In Fig. 6, we compare different encoding configurations using his-
tograms of attribute-level Bloom filter similarities, using 𝜏𝑃𝑎 (LEN),
with and without hardening techniques. Such analysis allows to
study possible side-effects of encoding variations which aim pri-
marily at improving the attack resilience. A single threshold as
classification model is only feasible if there is low overlap and a
common decision boundary between non-matching and matching
values across input variations like length.

Figure 6: Similarity analysis for comparing encoding tech-
niques using 𝜏𝑃𝑎 [𝐿𝐷𝑂 ]: Usage of hardening techniques may
lead to improved (middle) or worse (right) separability of
non-matches (red) from matches (green) for short input val-
ues when compared to plain Bloom Filter encodings (left).

4 DISCUSSION
The variety of dataset creation methods enables choosing the best
approach for each use case. Generally, using real-world datasets R
is preferred since they don’t require generator and corrupter mod-
ules parametrization. Dataset size and overlap can be modified to
assess scalability and align the problem with the expected number
of matches for the intended use case. The selection component
can also be used for assessing PPRL methods in scenarios where
datasets are not representative for the entire population, such as
the case of linking a student database with records from a local
residents’ registration office in a certain city. The corrupter module
allows to simulate various data quality scenarios to assess their

impact on linkage outcomes, using a single-source dataset Ri as
input, such as a data owner’s database. If no real-world dataset Ri is
available, the generator component can synthesize databases that
mimic real-world characteristics. It should be noted that our imple-
mentation for creating German population records requires further
evaluation in that regard, which was out of scope for this work.
Furthermore, the corruption methodology enables researchers to
construct datasets with particular characteristics that are in the
focus of newly developed PPRL encoding techniques, such as the
adaptability to value frequencies.

Our framework is designed with perturbation-based PPRL in
mind, focusing in particular on Bloom filter encodings. However,
the proposed evaluation framework can be applied to alternative ex-
ternally managed linkage protocols by retrieving plaintext records
from the data owner services, executing the external linkage proto-
col, and subsequently importing the linkage results to the linkage
unit module, potentially accompanied by descriptive tags.

The analytical components of our framework facilitate compre-
hensive insights into PPRL algorithms and the comparative eval-
uation to study applicability in given real-world scenarios. These
methods depend on tags, which must be provided by data gener-
ation and linkage algorithm modules. Consequently, we seek to
augment existing tools for data generation and corruption by in-
corporating descriptive tags in their outputs, thereby facilitating
their integration within our framework. Enhancing transparency
on potential sources of linkage bias in PPRL constitutes an initial
step towards achieving a more cohesive integration between the
data linkage process and the subsequent data analysis. While our
work focuses on analyzing the linkage quality, it is worthwhile to
extend the framework to study privacy aspects of encodings as well
including assessment of risks related to reidentification attacks.

5 CONCLUSION
We introduced a novel comprehensive evaluation framework for
privacy-preserving record linkage. It offers multiple modules to
create versatile benchmark datasets for linkage tasks depending
on the available input data. Analyzing linkage quality outcomes
based on record (pair) characteristics, or tags, enables researchers
to better comprehend their linkage results and evaluate those of
others. This also aids data custodians in selecting suitable PPRL
methods for specific applications and datasets. We anticipate that
gaining a clearer understanding of their possibilities and limitations
will enhance confidence in these methods.

In future work, we intend to integrate further linkage benchmark
datasets in our selection component for more general use. In addi-
tion, we will employ our framework to study adaptive encoding
techniques that align the decision boundaries of various groups of
pairs.
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