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ABSTRACT
Data quality issues are pervasive in real-world applications, posing a
critical concern for the increasing deployment of foundation models
in high-stakes domains. In this paper, we present the first analysis
of how real-world data errors impact the performance of TabPFN,
a recent tabular foundation model achieving state-of-the-art per-
formance on tabular tasks across domains. Pre-trained exclusively
on synthetic and evaluated on curated, benchmark data, its capabil-
ities remain unexplored when considering imperfect datasets; the
prevalent species in the wild of real-world data science. To bridge
this gap, we introduce a novel, extensible experimental framework,
specially designed for assessing the impact of data errors on tabular
foundation models. Building upon well-established benchmarking
and data corruption techniques, our investigation offers action-
able insights into how imperfect data affects nuanced capabilities
beyond predictive performance: in-context learning and internal
representations. Our rigorous experimental evaluation comprising
more than 10K experiments shows that the presence of data errors
affects the representations of not only the corrupted but also the
clean samples. Also, targeted endeavors to clean the context data
can be beneficial, especially for errors on categorical values.
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1 NEW AVENUES FOR DATA QUALITY
Tabular data, structured in rows and columns, forms the founda-
tion for countless applications across domains, including health-
care [4, 24], finance [3, 30], cybersecurity [11], and scientific re-
search [9, 55]. Despite its critical importance in real-world decision-
making, machine learning approaches for tabular data had not ex-
perienced the transformative advances seen in other domains [53],
such as computer vision [6, 20, 28] and natural language process-
ing [12, 40, 57]. Tree-based ensemble methods had maintained their
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position as the go-to approach for tabular tasks for nearly two
decades [13, 27, 41], highlighting the challenges posed by the sig-
nificantly heterogeneous nature of tabular data [51]. The recent in-
troduction of the Tabular Prior-data Fitted Network (TabPFN1) [22]
marks a significant breakthrough in this landscape. As a founda-
tion model for tabular data, TabPFN leverages in-context learn-
ing [10] to address classification and regression tasks. Unlike con-
ventional models, which require individual training for each dataset,
TabPFN undergoes a single pre-training phase on millions of syn-
thetic datasets, enabling it to capture diverse data patterns and
relationships. When evaluated on curated, benchmark datasets,
TabPFN demonstrates unprecedented generalization capabilities,
outperforming state-of-the-art methods while requiring substan-
tially less computational resources [23, 56].

However, real-world tabular datasets are usually far from cu-
rated, benchmark ones. In fact, data quality issues are pervasive in
machine learning workflows [26, 46–48], with research indicating
that organizations lose an average of $12.9 million annually due to
poor data quality [25]. The impact of these issues extends beyond
financial figures, especially in high-stakes domains. Despite its re-
cent emergence, TabPFN has already revolutionized tabular tasks
across numerous such critical domains, including healthcare and
medicine [5, 14, 15, 17–19, 38, 39, 52], industrial fault detection [32],
and environmental monitoring [29]. However, the exploration of
how data quality affects such state-of-the-art foundation models
remains a largely uncharted territory. Our work is therefore mo-
tivated by this fact. Given the ubiquity of data errors in modern
data science, our research aims to equip data practitioners with the
knowledge needed to make informed decisions when deploying
TabPFN in practical applications.
Distinction from existing work. Extensive research has been
conducted to examine how data quality affects traditional machine
learning models [1, 31, 33, 36], demonstrating the impact of various
error types on algorithms like random forests and gradient boosting
machines. However, the emergence of tabular foundation models
like TabPFN, with their unprecedented performance, opens up new
avenues for investigation. Distinct from prior work, our research
goes beyond mere predictive performance, offering novel insights
into how data quality issues influence the nuanced capabilities
of these models, including their internal representations and in-
context learning. To the best of our knowledge, this is the first
systematic investigation at the intersection of data quality and
foundation models that adopts a user-centric lens, mirroring the
challenges of imperfect data faced in real-world deployments.

1We use TabPFN to refer to the 2nd version of the model [22]. Some works cite it as
TabPFN v2 to distinguish from [21]. We adopt the naming used by the original authors.
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Contributions. Motivated by TabPFN’s remarkable – yet unex-
plored in the presence of realistic data errors – performance, we
make the following contributions:

• We raise awareness towards a new research avenue at the
intersection of data quality and tabular foundation models
by presenting preliminary information about TabPFN and
the research questions targeted by this work (Section 2);

• We develop and open-source the first experimental frame-
work designed to systematically evaluate the impact of data
quality on tabular foundation models, supporting easy inte-
gration of new datasets, error types, and metrics (Section 3);

• We leverage this framework to conduct an extensive evalu-
ation comprising more than 10 thousand experiments on
67 real-world datasets, 3 realistic error types, 3 corruption
rates, and 3 practice-driven scenarios (Section 3); and

• We reveal how data errors at various rates influence TabPFN’s
embeddings, uncovering actionable insights into the bene-
fits of informed data cleaning decisions (Section 4).

In Section 5 we review related work, before concluding with
future research directions in Section 6. The source code of our
evolving experimental framework is publicly available under an
open source license at https://github.com/Bilpapster/QualiTab.

2 PRELIMINARIES AND RESEARCH
QUESTIONS

This section provides background on TabPFN while motivating
our investigation through targeted research questions (RQs) that
guide our multi-level analysis. We first outline general information
about TabPFN (Section 2.1) to render our work self-contained. We
then focus on more nuanced capabilities: in-context learning for
predictions (Section 2.2) and embeddings extraction through rep-
resentation learning (Section 2.3). For comprehensive details on
TabPFN, we refer readers to Hollmann et al. [22] and Ye et al. [56].

2.1 What is TabPFN?
TabPFN is a foundation model for tabular data that leverages in-
context learning for classification and regression tasks, without
explicit fine-tuning required for each new task. Data practitioners
can easily use it on their own tabular datasets through a few lines
of Python [42] or R [44] code. A service for free GPU inference is
also provided by the authors to registered users [45].

TabPFN was pre-trained once on more than 100 million syn-
thetic tabular datasets generated using causal models to capture
diverse underlying relationships. This pre-training approach elimi-
nates concerns about potential data leakage when evaluating on
real-world datasets, like we do in our study. Extensive evaluations
reveal TabPFN’s exceptional performance not only for tables [56]
but also, startlingly, for time series [23]. Architecturally, TabPFN is
transformer-basedwith a two-way attentionmechanism; one across
features and one across samples. It is designed for small-to-medium
scale tabular data, with operational limits of 10 000 samples, 500
features, and, in case of classification, 10 classes. To ensure these
limitations are met, we apply a principled transformation methodol-
ogy to larger datasets that preserves their essential characteristics,
similar to the one described by Ye et al. [56], as detailed in Section 3.

2.2 In-Context Learning for Prediction
Formally, a tabular dataset is a set D = {(𝑥𝑥𝑥𝑖 , 𝑦𝑖 )}𝑁𝑖=1 of 𝑁 samples
(𝑥𝑥𝑥𝑖 , 𝑦𝑖 ), where, 𝑥𝑥𝑥𝑖 ∈ R𝑑 is represented by 𝑑 features while the label
𝑦𝑖 belongs to a set C = {𝐶1, . . . ,𝐶𝑚} of𝑚 classes (classification) or is
a numerical value (regression). For the training samples𝑋𝑋𝑋 𝑡𝑟𝑎𝑖𝑛 , the
labels𝑦𝑦𝑦𝑡𝑟𝑎𝑖𝑛 are known, while for the test (unseen) data𝑋𝑋𝑋 𝑡𝑒𝑠𝑡 , the
labels𝑦𝑦𝑦𝑡𝑒𝑠𝑡 are unknown. While a typical machine learning model
is trained on𝑋𝑋𝑋 𝑡𝑟𝑎𝑖𝑛 and𝑦𝑦𝑦𝑡𝑟𝑎𝑖𝑛 , producing predictions𝑦𝑦𝑦𝑡𝑒𝑠𝑡 when
presented with𝑋𝑋𝑋 𝑡𝑒𝑠𝑡 , TabPFN follows a different approach [37]. At
its core, the model approximates Bayesian prediction by learning
the posterior predictive distribution 𝑝 (𝑦𝑦𝑦𝑡𝑒𝑠𝑡 | 𝑋𝑋𝑋 𝑡𝑒𝑠𝑡 ,𝑋𝑋𝑋 𝑡𝑟𝑎𝑖𝑛,𝑦𝑦𝑦𝑡𝑟𝑎𝑖𝑛)
for the prior defined by its synthetic training datasets. Its key in-
novation is the use of in-context learning (ICL) [10], a mechanism
that has driven the success of large language models. At inference
time, TabPFN leverages its transformer architecture to process an
entire dataset (𝑋𝑋𝑋 𝑡𝑟𝑎𝑖𝑛 ,𝑦𝑦𝑦𝑡𝑟𝑎𝑖𝑛 , and𝑋𝑋𝑋 𝑡𝑒𝑠𝑡 ) in a single forward pass.
The model conditions on the provided training examples as con-
text to infer the underlying relationships and directly predict𝑦𝑦𝑦𝑡𝑒𝑠𝑡 .
Essentially, the model learns to learn from the provided context,
mimicking a learned approximation of Bayesian inference over the
distribution of synthetic datasets it was trained on.

2.3 Tabular Representation Learning
Beyond its predictive capabilities, TabPFN’s transformer-based ar-
chitecture inherently learns rich representations of tabular data
that can be extracted as embeddings. As input data flows through
TabPFN’s multiple transformer layers, the architecture naturally
generates embeddings at the output of the final layer. Thus, em-
beddings are inherently involved in all model’s operations, includ-
ing making predictions. Given a tabular dataset D = {(𝑥𝑥𝑥𝑖 , 𝑦𝑖 )}𝑁𝑖=1
where each sample 𝑥𝑥𝑥𝑖 ∈ R𝑑 has 𝑑 features, TabPFN can be viewed
as learning a mapping 𝑓𝜃 : R𝑑 → R𝑘 that transforms the origi-
nal 𝑑-dimensional feature vectors into a 𝑘-dimensional embedding
space. The resulting embeddings 𝑒𝑒𝑒𝑖 = 𝑓𝜃 (𝑥𝑥𝑥𝑖 ) ∈ R𝑘 encapsulate the
complex relationships between features observed in the current in-
put, synthesized with the accumulated knowledge acquired during
TabPFN’s pre-training on diverse synthetic data.

These learned embeddings can significantly benefit various down-
stream tasks, unlocking for tables a domain typically considered a
privilege only of other modalities, such as images and text [50]. By
projecting the data into a latent space, more meaningful semantic
information can be captured compared to the raw features [56].
This can lead to improved performance in tasks such as cluster-
ing, dimensionality reduction, and as input features for other ma-
chine learning models. The rich contextual information encoded
within these embeddings, potentially capturing intricate feature
interactions through TabPFN’s attention mechanisms, makes them
a valuable asset for data analysis and modeling.

While extensive analyses on TabPFN’s embeddings demonstrate
highly promising results [22, 56], they only consider high-quality,
curated datasets. This can be misleading for practitioners using
TabPFN as a feature extractor on real-world, imperfect datasets,
expecting to get state-of-the-art performance out of the box. Mo-
tivated by the embeddings’ pivotal involvement in all model’s op-
erations and the pervasive nature of data errors in modern data
science tasks, we pose the research questions of our study:
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Figure 1: High-level overview of the experimental setup.

RQs of current study

RQ1 What is the impact of imperfect data on TabPFN’s inter-
nal representations (i.e., embeddings)?

RQ2 What are the benefits of cleaned context data and how
can they drive informed cleaning decisions?

3 EXPERIMENTAL FRAMEWORK DETAILS
In this section, we elaborate on our experimental framework, tai-
lored to assessing the impact of data quality on tabular foundation
models. While we instantiate it for TabPFN, it is carefully designed
to be easily extensible with more datasets, error types, models, and
evaluators. Figure 1 illustrates a high-level overview of the setup.
Hardware. All experiments were conducted utilizing Kaggle’s free-
tier computational resources: 2 Tesla T4 GPUs with 15GB of mem-
ory for a total of 45.7 GPU hours.
Datasets. We utilized the OpenML-CC18 benchmark [8], a widely
adopted collection of 72 curated, real-world classification tabular
datasets across diverse domains. Due to hardware limitations, our
analysis includes the 67 datasets that could be successfully loaded
in memory at inference time. For the subset of datasets exceeding
TabPFN’s operational limits (10K samples, 500 features, 10 classes),
we employed a principled transformation methodology detailed in
Algorithm 1. Our methodology, inspired by the post-hoc divide-and-
conquer technique proposed in [56], aims to preserve the dataset’s
essential characteristics, while transforming it to be directly com-
patible with TabPFN for fair comparisons.
Systematic Data Corruption. To study the impact of realistic
data errors on TabPFN’s internal representations, we systematically
injected errors to the original (clean) datasets, creating corrupted
replicas of them, as shown in Figure 1. For the corruption process,
we utilized Jenga [48], a well-established tool for introducing real-
istic data errors in machine learning datasets. We focus on three

distinct error types (E). (E1) missing values: a generic corruption
simulating absent or unknown data; (E2) scaling: randomly scaling
numerical values by 10, 100, or 1000, mimicking unit conversion er-
rors or pre-processing bugs; and (E3) categorical shift: randomly
swapping categorical values within a column, simulating misclassi-
fications or data entry errors. Since data errors appear in varying
frequency and localization levels, we independently combined all
studied error types with several corruption rates: 10%, 20%, and
40% for samples and𝑚𝑎𝑥 ({20%, 1}) for columns.

Our selection of error types is in line with the recent contribu-
tions by Mohammed et al. [34, 36], which quantify the impact of
data quality on traditional machine learning. Additionally, Schin-
ninger et al. [49] include these errors in their data stream-specific
polluter Icewafl, highlighting the community’s consensus on the
ubiquity of these error types for both static and streaming data.
This choice also allows us to investigate TabPFN’s resilience to
both error types its pre-training has accounted for, such as missing
values [22], and others common in real-world data.
Randomness and Reproducibility. To ensure robust and repro-
ducible results, each experiment was repeated 10 times with 10
distinct random seeds. The same random seed was consistently
used within a single experimental run for any random operations,
such as feature and sample selection in Algorithm 1.
Practice-Driven Scenarios. To set the stage for addressing our
RQs, we investigated three distinct scenarios (S) that mirror how
data practitioners might leverage TabPFN for embedding extraction
in data science tasks. In each scenario, the training data serves as
context for the model to learn underlying patterns, while the unla-
beled test data acts as the query for which embeddings are extracted.
As depicted in Figure 1, there is a one-to-one correspondence be-
tween the samples in the query set and the resulting embeddings.

Based on potential data quality management strategies employed
by practitioners, we defined the following scenarios. (S1) Perfect
Data: Represents a baseline where both the context and the query
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Algorithm 1 Principled Transformation for Large Datasets
Input: Dataset D with 𝑁 samples, 𝑑 features, and𝑚 classes. Output: Transformed

training set D′𝑡𝑟𝑎𝑖𝑛 and test set D′𝑡𝑒𝑠𝑡 compatible with TabPFN’s limits.
1: if𝑚 > 10 then
2: Randomly sample 10 classes C′ ⊂ C.
3: D ← {(𝑥𝑥𝑥𝑖 , 𝑦𝑖 ) ∈ D | 𝑦𝑖 ∈ C′ }.
4: if 𝑑 > 500 then
5: Randomly sample 500 features 𝐹 ′ ⊂ {1, . . . , 𝑑 }.
6: 𝑥𝑥𝑥𝑖 ← {𝑥𝑥𝑥𝑖,𝑗 for all 𝑗 ∈ 𝐹 ′ }.
7: Split D into D𝑡𝑟𝑎𝑖𝑛 and D𝑡𝑒𝑠𝑡 ; drop labels for D𝑡𝑒𝑠𝑡 . ⊲ 70/30 train/test split
8: if |D𝑡𝑟𝑎𝑖𝑛 | > 10𝐾 then
9: Randomly sample 10K samples to keep in D𝑡𝑟𝑎𝑖𝑛 .
10: return D𝑡𝑟𝑎𝑖𝑛,D𝑡𝑒𝑠𝑡 .

Table 1: Table of symbols.

Symbol Description

ALL evaluation performed on all samples
CC label assignment based on clean/corrupted
CLE evaluation performed on clean (non-corrupted) samples
COR evaluation performed on corrupted samples
CosD cosine distance (1− cosine similarity)
TL label assignment based on true labels (classes)
zED z-normalized Euclidean Distance

data are entirely clean, reflecting an unrealistic yet optimal condi-
tion. (S2) Perfect Context: Simulates a scenario where practition-
ers invest resources in cleaning a subset of their data to provide a
high-quality context for TabPFN. This cleaned context, established
once, can then be used repeatedly for extracting embeddings from
new, potentially imperfect query samples arriving either offline or
in a streamingmanner. (S3) Zero Intervention: Reflects a situation
where practitioners opt to forgo potentially costly or unsuccessful
data cleaning operations [26] for both the context and the query
data. In this case, embeddings can still be extracted offline or on-
line, with the possibility of the context being dynamically updated
(e.g., to include only recent, yet potentially imperfect, samples).
This scenario essentially assesses the extent to which TabPFN’s
extensive pre-training can compensate for the presence of data
errors. We deliberately omit the scenario of a corrupted context
and a cleaned query, considering it an impractical approach as it
would necessitate cleaning every new query while neglecting the
(typically less volatile) context data.

4 FINDINGS AND DISCUSSION
In this section, we present and discuss the key findings from our
experiments, providing answers for our RQs. To help readers better
comprehend our findings, we adopt a three-stage presentation strat-
egy. We start with how we evaluated the impact of imperfect data
on the extracted embeddings (Section 4.1). We then present the eval-
uation results, focusing on patters that are consistently observed
(Section 4.2). Finally, we synthesize these patterns into actionable
key takeaway findings meant for data practitioners (Section 4.3).

4.1 Impact Evaluation Metrics
To evaluate the extracted embeddings, we have used both super-
vised and unsupervised metrics in different variations as follows.

Distance from perfect self. Quantifies the distance between the
current embeddings and the respective ones extracted from the
Perfect Data scenario. We compute two different distance measures
for robust results: cosine and z-normalized Euclidean distance. This
metric directly captures the impact of the presence of data errors,
using the ideal scenario as reference. Higher distance means that
the embeddings are more impacted. We detail our analysis on all,
only clean, and only corrupted samples for fine-grained insights.
Linear Probing. Quantifies the separability of extracted embed-
dings in the latent space by training a linear classifier with default
parameters on them. Due to its simplicity, linear probing is widely
used for evaluating image embeddings [7]. We favor ROC AUC
metric over accuracy to avoid misleading results for imbalanced
datasets. Higher ROC AUC score means that the embeddings can be
more easily (linearly) separated into classes in the latent space; thus
they are potentially more suitable for downstream tasks. Beyond
the true labels (TL, classes), we also use the labels of clean/corrupted
(CC) samples. Intuitively, this provides insights into the separability
of the latent space into clean and corrupted samples.

4.2 Evaluation Results
Here, we present our evaluation results, focusing on repetitive, con-
sistent patterns across various experimental configurations. Table 1
summarizes the symbols used in this section, while Figures 2 – 4
present comparative evaluation results between the three identified
scenarios. We elaborate on these figures in the rest of the section.
Figure 2 depicts the cosine (cosD) and z-normalized Euclidean
(zED) distances of embeddings from their perfect self, comparing
the perfect context (dashed) and zero intervention (solid) scenarios.
When all (ALL) or only clean (CLE) samples are considered, the
distance gets higher in the presence of more erroneous samples,
which means that the magnitude of impact on the embeddings is
analogous to the error rate. Interestingly, the distance of corrupted
(COR) samples is relatively high even for low corruption rates,
with slight, if any, increases in the presence of more errors. In the
majority of configurations, having perfect context data leads to
reduced distances compared to the zero intervention scenario.
Figure 3 focuses on the separability of the latent space, involv-
ing all scenarios. Here, the green dash-dotted line represents the
baseline, perfect data scenario. The clean samples alone (subfig. a)
tend to retain their separability levels in the presence of scaled or
missing values but struggle for categorical shifts. However, when
considering the corrupted samples alone (subfig. b) or all the sam-
ples as a whole (subfig. c), the separability regarding the true labels
(TL) significantly diminishes as the number of errors increases. The
presence of clean context data yields no significant advantages in
such cases. Interestingly, for all three error types, the separability
between clean and corrupted (CC) samples appears significantly
improved compared to the baseline (subfig. d).
Figure 4 illustrates a fine-grained analysis on the size of clean
context with respect to the separability of the latent space. When
true labels are considered, up to 5K clean samples (dashed) appear
to produce a slightly more separable space compared to 5K or more
samples (solid) for missing and scaled values. However, corrupted
samples seem to be more easily separated from clean ones when a
larger clean context is available, especially for categorical shifts.
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4.3 Synthesized Takeaway Findings
In this section, we synthesize our evaluation results in the form of ac-
tionable takeaway findings (F) for practitioners. Figure 5 illustrates
indicative examples of extracted embeddings in the 2-dimensional
space to provide a complementary, visual perspective and help read-
ers better comprehend our findings. Due to the intertwined nature
of our two RQs, we opt to jointly present our findings for them,
starting from the erroneous samples in F1.

F1. Errors hit different [RQ1 & RQ2, Figures 2, 3]

The representations of erroneous samples tend to get dis-
torted, even with perfect context. The distance of the er-
roneous embeddings from their perfect self is high, even for
lower corruption rates (Figure 2b,e), while the separability di-
minishes significantly (Figure 3b). Cleaning the context tends
to yield slight advantages (see solid and dashed same-colored
lines), which should be considered against the cleaning costs.

While the positive effect of cleaning the context may be lim-
ited for corrupted samples, F2 reveals the other side of the coin:
maintaining imperfect context comes with a hidden cost.

F2. Even clean data pays the price [RQ1, Figures 2, 3, 5]

Imperfect context impacts the model’s embeddings, even
for non-corrupted samples. The more the data errors, the
less similar the non-corrupted samples become to their per-
fect self (Figure 2a, d), which is also reflected on the whole
query set (Figure 2c, f). This makes the latent space less sepa-
rable (Figure 3a, c) and the extracted embeddings potentially
less informative when used as features for downstream tasks.
Visually, this results to a gradual blending of clusters (see left-
to-right transition across subfig. b-e in each row of Figure 5).

Thus, a clean context can yield benefits; yet, it comes with its
own costs. Given that the context can be cleaned once and used for
multiple inferences, F3 attempts to help practitioners quantify the
balance between the costs and the potential benefits.

F3. If to clean, fewer may be enough [RQ2, Figure 4]

A larger size of clean context samples may not neces-
sarily improve the quality of embeddings for unseen new
samples. Contrasting common intuition, as shown in Figure 4,
up to 5K of clean context samples (dashed lines) yield on par,
or even slightly better, evaluation results on average compared
to a larger context size of 5K or more samples (solid lines). Fur-
ther investigation is required to reveal the connection between
the dataset characteristics and cost-effective cleaning.
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Figure 5: Indicative 2D visualizations of embeddings for scaling (top), missing values (bottom), and categorical shift (bottom).

Finally, assuming that cleaning is decided, F4 provides insights
into what to clean. This knowledge could help to get the most out
of cleaning, especially when budget constraints apply.

F4. If to clean, do it smartly [RQ1 & RQ2, All Figures]

Different error types have different impact on TabPFN’s
embeddings. While categorical shifts (top row of Figure 5,
purple in the rest figures) seem to have the greatest impact
on the internal representations (Figure 3), providing a (large
enough) clean context leads to the highest performance in-
crease (see solid and dashed purple lines in Figure 4). On the
other hand, abnormally scaled values (middle row, orange)
seem to trigger some inherent outlier detection mechanism
(see the rightmost, heterogeneous cluster in the middle row
of Figure 5f). This is also revealed by the nearly perfect sep-
aration of the latent space into clean and corrupted samples
(see orange lines in Figure 3d); separability not observed in
the baseline (green). This behavior, however, makes scaled val-
ues the hardest error to mitigate via clean context (Figure 4).
Finally,missing values (bottom row, blue) is the error type
that TabPFN presents to be the most robust against across the
majority of experimental configurations, while still impacting
the representations compared to the ideal, baseline scenario.

Based on the task at hand and data profiling results, informed
cleaning endeavors could be applied to selectively address specific
error types that can have the greatest positive effect on the per-
formance of the downstream task. Further investigation on more
error types and larger corpora of datasets is required to advance
this research line towards model- and task-aware data cleaning.

5 RELATEDWORK
Recent research has increasingly focused on the crucial interplay be-
tween data quality and the value it brings to downstream tasks [2],
raising concerns about the complexity of assessing intangible bene-
fits like knowledge gained from data [35]. Our work touches this

from a practical standpoint by investigating what TabPFN actually
learns from the input data, using extracted embeddings as a proxy.

The vast majority of existing work has primarily investigated the
impact of data quality on the predictive performance of traditional
machine learning models. Li et al. [31] provided the first system-
atic analysis on the impact of data quality issues on classification
tasks. Abdelaal et al. [1] extended the scope towards data cleaning,
investigating the impact of combinations of error detection and
correction techniques on machine learning tasks in the presence
of various data errors. Mohammed et al. [33, 36] further advanced
this research line with an extensive evaluation and a practical tool
targeting data quality for traditional machine learning applications
in multi-error scenarios. In contrast, our study uniquely examines
the effects of data errors on the more nuanced, internal represen-
tations learned by emerging tabular foundation models, offering
insights into their less tangible, yet pivotal capabilities.

Our work also relates to the growing interest in learning from
imperfect data, overviewed by Karlaš et al. [26], as a potentially
more practical alternative to costly or infeasible exhaustive data
cleaning. We contribute to this direction by systematically evaluat-
ing three distinct scenarios: an ideal baseline, a strategy of cleaning
the context data only, and a scenario with zero intervention. This
allows us to explore the trade-offs associated with different levels of
cleaning efforts when leveraging tabular foundation models. Finally,
contrasting with studies focused on ideal pre-training data, such
as the one by Wen et al. [54] for time-series data, our research ex-
amines the practical, resource-efficient use of the readily available
TabPFN by data practitioners facing real-world quality challenges
in downstream tasks.

6 CONCLUSION AND FUTUREWORK
In this work, we presented the first systematic framework for assess-
ing the impact of realistic data errors on tabular foundation models.
Focusing on TabPFN, we studied how its learned representations
are affected by errors of various types, at varying rates, and across
different scenarios encountered in practice. Our extensive experi-
mental evaluation demonstrates that, although errors significantly
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distort the representations of corrupted values, clean data also pays
the price, leading to a less separable latent space overall. Among the
studied data errors, different error types appear to have different
impact, potentially informing targeted data cleaning strategies.

This study opens up new avenues at the intersection of data qual-
ity and tabular foundation models, yet covers a limited spectrum
of potential investigations. We have identified three orthogonal
extension directions: models, datasets and error types. In particular,
since we first conducted our evaluations, new tabular foundation
models have emerged, such as TabICL [43], highlighting the vibrant
evolution of this research area. As part of future work, we plan to
incorporate such models in our experimental framework with the
view to enrich and generalize our takeaway findings. Using a larger
corpora of tabular datasets, such as the very recently introduced
TabArena [16], could also advance this research line towards the
same direction. Additionally, investigating more error types, such
as constraint violations, and covering more data quality dimensions,
such as consistency and timeliness, could be of great benefit to the
broader data science community. Finally, an alternative promis-
ing research direction could be the application of our findings to
the development of error detection and data cleaning techniques,
potentially leveraging properties of the latent space produced by
tabular foundation models.
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