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ABSTRACT

Time series analytics is crucial for extracting meaningful patterns
from ubiquitous time-varying data. While numerous methods exist,
a significant gap persists in their evaluation and interpretation.
For instance, current time series segmentation measures often fail
to differentiate error types or offer clear interpretability. In this
Ph.D., we tackle the problem of interpretability on time series ana-
lytical methods and evaluation measures. We first introduce two
novel evaluation measures, WARI and SMS, designed to provide a
more nuanced, insightful, and customizable assessment of segmen-
tation quality. Beyond this initial focus on evaluation, the broader
ambition of this PhD thesis is to develop interpretable methods
and unified, meaningful representations for time series, potentially
leveraging graph-based structures, to enable efficient and insightful
execution of various downstream analytical tasks.
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1 INTRODUCTION

Time series data are prevalent across diverse domains, including en-
vironmental monitoring, energy management, and human activity
recognition. The analysis of these temporal datasets supports vari-
ous analytical tasks, such as classification [3], clustering [15], anom-
aly detection [16], motif discovery [18], and segmentation [8]. Time
series segmentation, which involves identifying change points and
underlying states, is crucial for discerning patterns and understand-
ing process dynamics. Despite numerous algorithms from diverse
methodological backgrounds—statistical [8], Markov models [14],
auto-encoders [19], and symbolic representations [5]—evaluating
their effectiveness remains challenging due to limitations in cur-
rent evaluation and interpretation methods. The lack of robust
and interpretable assessment frameworks impedes comprehensive
performance understanding and analyses.

This Ph.D. research aims to develop interpretable methods for
time series analytics. As an initial contribution, this paper addresses
critical deficiencies in the evaluation of time series segmentation.
Existing measures exhibit several limitations: change point-based
metrics, while useful for localizing transitions, may not adequately
reflect the overall quality of the identified segments; point-based
measures, such as the Adjusted Rand Index (ARI), often treat all
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misclassified points uniformly, regardless of the error’s nature or
temporal context, thereby failing to differentiate between quali-
tatively distinct error types (e.g., minor boundary misalignments
versus gross misclassification of entire segments); and current eval-
uation approaches generally lack mechanisms for categorizing error
types, which limits interpretability.

To overcome these issues, we introduce two novel evaluation
measures: WARI (Weighted Adjusted Rand Index) and SMS (State
Matching Score). WARI extends the ARI by incorporating the tem-
poral position of errors, penalizing errors differently based on their
proximity to true segment boundaries. SMS provides a complemen-
tary approach by identifying, categorizing, and allowing differential
weighting of four fundamental error types, thereby enhancing inter-
pretability through a detailed performance breakdown. We describe
in detail these measures, empirically demonstrates their advantages
over existing metrics, and show how they offer a more nuanced and
insightful assessment of segmentation quality. The findings reveal
new perspectives on the performance of state-of-the-art methods.
We conclude by outlining future research directions that build upon
these contributions, aligning with the broader Ph.D. objective of
advancing transparent and interpretable time series methods.

2 TOWARD INTERPRETABLE MEASURES

As an initial contribution of this Ph.D., we addresse critical deficien-
cies in the evaluation of time series segmentation. Therefore, this
section delves into the specifics of time series segmentation, the
challenges in its evaluation, and our proposed measures designed
to offer more interpretable and nuanced assessments.

2.1 Background and Foundations

A real-valued time series of length N and dimension D is a time-
ordered sequence denoted by T = (..., tn), where each t; € RDP
fori=1,...,N. We define a univariate time series as a time series
with D = 1. Moreover, a subsequence of T from index i to j (with
1<i<j< N)isdenoted by Tj; j| = (ti, tis1, ..., t)).

A state sequence S = (sy, ..., sy) associated with a time series
T = (t1,...,tN) is a sequence of the same length, where eachs; € S
is a discrete label representing the latent state of the system at time
step i, and S is a finite set of possible states. In a state sequence, i
(with 0 < i < N) is a change point if s; # s;11.

Time series segmentation divides a time series into meaningful,
homogeneous segments. Two main approaches are change point
and state detection, both aiming to capture behavioral shifts.

Change Point Detection. Change point detection identifies an
increasing set of integers {cy, ..., cpm}, where each change point
c1<i<m marks a transition between states. Existing change point
detection methods include profile-based approaches like ClaSP [8],
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Figure 1: Ground truth (top) with four error examples below:
delay, isolation, transition, and missing,.

FLUSS [9], and ESPRESSO [7], statistical methods like PELT [11],
and Bayesian techniques such as BOCD [2].

State Detection. State detection assumes an underlying sequence

of latent states, outputting a predicted state sequence P = (py, ..., pN).

Its goal is to identify recurring patterns by recognizing changes
in the latent state. Approaches include encoder-based methods
(e.g., Time2State [19], E2USD [13]), probabilistic models (e.g., HDP-
HSMM [14]), and rule-based systems (e.g., PaTSS [5]).

Change point detection can be seen as a subproblem of state
detection: change points partition the series, and clustering these
segments assigns state labels (e.g., ClaSP [8] with kMeans cluster-
ing as in [13, 19]). Thus, state detection generalizes change point
detection, and we will therefore focus on this more general task.

2.1.1  Evaluating Time Series Segmentation: Typology of Errors and
Desired Properties. To evaluate segmentation quality against a ground
truth, we define error types.LetR = (ry,...,rn) and P = (p1, ..., pN)
be the real and predicted state sequences, respectively, with states
from a finite set S. An error block is a maximal contiguous interval
[i, j] where py = p; # ri for all k,1 € [i, j]. The atomicity of an er-
ror block [, j] is A ;] = |{ re t k€ [i,j] }| the number of distinct
true states in R(; j}. Based on A[; j], we define a typology of errors
(Fig. 1), where each error block is of exactly one type:

Delay (A = 1): True and predicted states in [, j] are constant. A
neighbor matches the predicted state (e.g., ri—1 = pi—1 = pi)-
Isolation (A = 1): True and predicted states in [i, j] are constant.
Error occurs within a constant true state (i.e., ri_y =7j41 = ;).
Transition (A = 2): Exactly two distinct true states in R[; ;.
Missing (A > 3): Three or more distinct true states in Ry; ;.

This typology is crucial as error severity varies. Moreover, real-
world transitions are often gradual, making sharply defined tempo-
ral boundaries a limited representation. Measures should therefore
penalize errors near true boundaries (delays, transitions) less se-
verely than those within homogeneous regions (missing, isolated).

Desired Properties: To rank error types and ensure meaningful
evaluation, we propose properties for state detection measures.

P1: The measure should be sensitive to the errors length, with larger
errors leading to lower scores.

P2: The measure should account for the temporal structure, penalizing
positions of errors differently.

P3: The measure should be sensitive to the type of error, with different
penalties for different types.

P4: The measure should be interpretable and provide insights into
the quality of the segmentation.

These properties guide measure development but are not strict
axioms; their relative importance can vary. For instance, error
length (P1) might be contextualized by its position (P2) or type
(P3). They therefore serve as principles, not rigid rules.

2.1.2  Existing Measures and Limitations. Several measures exist
for evaluating segmentation, but encounter various limitations.

Change Point Detection Measures. The F1 score, common for
change point detection, combines precision and recall. It matches
predicted change points to ground-truth ones within a margin,
avoiding double-counting. However, choosing the margin is diffi-
cult, and may result in scoring identically qualitatively different
segmentations, violating P1. A margin relative to time series length
(e.g., 1% as in [8]) is often used but remains parameter-dependent.

The covering score measures segment-level similarity using
the average Intersection over Union (IoU) for each ground-truth
segment. For real (R) and predicted (P) state sequences, it is:

1 [rnpl
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However, the covering score can also assign identical scores to
qualitatively different segmentations (having same IoU), failing P1.

State Detection Measures. State detection is often evaluated with
clustering-based measures like the Adjusted Rand Index (ARI),
Normalized or Adjusted Mutual Information (NMI or AMI). We
focus on ARI in this paper, although limitations and proposed solu-
tions applies to NMI and AMI. ARI is derived from the Rand Index
(RI), which measures the fraction of agreeing pairs in segmenta-
tions. Given true (R) and predicted (P) state sequences, and their
unique states Ug and Up, a contingency matrix C = [n;;] is formed,
where n;; is the count of observations in state Ug[i] in R and Up| j]

in P. With E[RI] as the expected RI under randomness, ARI is:
(i
Rl iy (i )’ ARy = R EIRI

@) 1-E[RI]

@

ARI is sensitive to the number of matching temporal points, satis-
fying P1. However, it is point-based and ignores error position or
type. Therefore, two segmentations with different error patterns
of same length (e.g. delay and isolation) yield the same ARI, thus
failing P2 and P3.

2.2 Proposed Measures: WARI and SMS

With existing measures having limitations (failing P1, P2, or P3)
and lacking interpretability (P4), we propose two state detection
measures: WARI, a distance-to-boundary weighted ARI, and SMS
(State Matching Score), which maps predicted to true states and
scores based on error types from Sec. 2.1.1.

2.2.1 Toward Position-Sensitivity: WARI. The Adjusted Rand Index
(ARTI) treats all segmentation errors equally, failing property P2. To
address this, we introduce the Weighted Adjusted Rand Index (WARI).
WARI weights observations based on their distance to true change
points. For each time step i, let d; be the distance to the nearest
ground truth change point. We define a weight w; = 1+ a d;, where
a > 0 (default 0.1) is a user-configurable parameter. When « > 0,
observations far from true change points (i.e., large d;) receive
higher weights. Consequently, errors occurring in the interior of
segments are more penalized than errors near segment boundaries.

To compute WARY, the standard contingency matrix (as described
in Sec. 2.1.2) is adapted. Instead of using simple counts n;;, WARI
employs weighted sums: n;; = ZxkeU,»mVj wg, where wy is the
weight of the k-th observation. WARI is then calculated using these
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Figure 2: Synthetic data examples illustrating various error types and measure responses.

weighted n;; values in the standard ARI formula (Equation 2). This
weighting scheme can similarly be applied to other clustering-based
measures like NMI and AML

2.2.2  Enhancing Interpretability: SMS. While WARI addresses the
issue of error position (P2), it does not inherently handle sensitivity
to error type (P3) or provide deep interpretability (P4). To overcome
these remaining limitations, we introduce the State Matching Score
(SMS), an interpretable and customizable measure.

The computation of SMS involves two main stages. First, an Op-
timal State Mapping procedure aligns the predicted state labels
with the true state labels. This is typically achieved by constructing
a cost matrix where entries represent the negative overlap (or a sim-
ilar cost function) between each predicted state and each true state.
An assignment algorithm, such as the Hungarian algorithm [12],
can then be used to find the mapping that maximizes the total
overlap (minimizes total cost). Special handling may be needed
for predicted states that remain unassigned after this process, for
instance, by mapping them to available true state labels or to new
unique labels if the number of predicted states exceeds true states.

Second, a Scoring step evaluates the quality of the segmentation
based on the mapped predicted sequence. Error blocks are identified
by comparing the mapped predicted sequence to the true sequence,
and each error block is classified according to the typology defined
in Sec. 2.1.1 (delay, transition, missing, isolation). These error blocks
are then penalized based on their length, type, and potentially their
context (e.g., distance to true boundaries for certain error types).
A key feature of SMS is its allowance for custom penalty weights
for each error type, enabling practitioners to tailor the measure to
specific application needs or error sensitivities. While flexible, SMS
remains robust to the choice in these weights, with the total count
and length of errors being the primary driver of the score. The final
SMS score is typically normalized, for example, to a range of [0, 1].

To illustrate the differences between measures, Fig. 3 presents
a qualitative comparison of segmentation results from SOTA al-
gorithms E2USD and Time2State on a MoCap dataset time series.
Traditional measures like ARI marginally favor E2USD, despite
its segmentation exhibits several isolated errors and is qualita-
tively less accurate overall. In contrast, Time2State produces a
more consistent segmentation, primarily with delay and transition

errors. The proposed SMS, along with WARI, correctly identify
Time2State’s output as the better segmentation. Notably, SMS pro-
vides an interpretable diagnostic of error types, a capability absent
in conventional measures.

2.3 Preliminary Results

We empirically evaluate our measures using 6 segmentation meth-
ods (E2USD [13], Time2State [19], HDP-HSMM [14], TICC [10],
ClaSP [8] with kMeans, and PaTSS [5]), which are applied to 5
diverse datasets (PAMAP2 [17], USC-HAD [20], UCR-SEG [6], Ac-
tRecTut [4], MoCap [1]). We use a standard Intel Core i7 CPU
with 32GB of RAM and set a time limit of 24h for each dataset.
SMS weights for delay, transition, missing and isolation are set
arbitrarily to 0.1,0.3,0.5 and 0.8 respectively. We then compare
algorithm performance according to ARI, WARI and SMS using
pairwise Wilcoxon sign rank tests (with @ = 0.05), treating each
time series as a test instance.

2.3.1 Evaluating the Evaluation Measures. Complementing the qual-
itative example, a synthetic experiment (Fig. 2) systematically eval-
uates the sensitivity of ARI, WARI, and SMS to error length, posi-
tion, and type. All measures satisfy P1 (error length sensitivity), as
scores decrease with growing error sizes (Fig. 2(a)). WARI and SMS
address P2 (position sensitivity) by penalizing isolated errors more
heavily, unlike ARI which remains insensitive to position (Fig. 2(b)).
Finally, only SMS fulfills P3 (type sensitivity), by distinguishing
between delay and transition errors, for instance (Fig. 2(c)).

2.3.2 Impact on State of the Art. Apart from ClaSP and PaTSS,
that could not run under the time and memory limits for dataset
PAMAP2 (comprising very long time series), algorithm rankings re-
main largely consistent across measures, with Time2State ranking
first for multivariate data and ClaSP for univariate, while TICC and
HDP-HSMM generally rank lower. SMS offers novel insights (Fig. 3),
revealing that neural and probabilistic methods like Time2State,
E2USD, and HDP-HSMM tend towards isolated errors, whereas
ClaSP, TICC, and PaTSS show more missing and delay errors. These
varied error patterns highlight diverse segmentation behaviors.
Looking ahead, SMS’s interpretability can guide model refinement;
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analyzing error types can inform parameter tuning (e.g., adjust-
ing cluster parameters to mitigate specific errors) and algorithm
development, thereby enhancing evaluation and design processes.

3 CONCLUSIONS AND FUTURE RESEARCH

This work lays a foundation for more nuanced time series segmen-
tation evaluation by formalizing an error typology and proposing
desirable properties for measures. The introduction of two new
measures, WARI and SMS, addresses limitations of existing meth-
ods and offers novel insights into segmentation quality. Looking
ahead, we aim to build upon this work, exploring two main ideas.

3.1 Tuning Encoding-based Methods with SMS

First, we will investigate the potential of SMS to guide hyperparam-
eter tuning for encoding-based segmentation methods. The detailed
error feedback from SMS can inform adjustments to encoder archi-
tectures, representation learning objectives, or clustering param-
eters to minimize specific, undesirable error types (e.g., reducing
missing errors by encouraging finer-grained segmentations or pe-
nalizing isolated errors by promoting smoother transitions).

3.2 Interpretable Graph-based Representations

Second, we will broaden the scope to encompass other critical time
series analysis tasks. A key direction will be the development of
unified and semantically rich representations for time series data,
potentially leveraging graph-based structures. The goal is to create
representations that are not only effective for various downstream
tasks (like segmentation, classification, anomaly detection) but are
also inherently interpretable. This aligns with the overarching goal
of this PhD thesis: to move toward more transparent and under-
standable time series analytical methods.
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