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ABSTRACT

Given a stream of evolving graphs, such as those generated by

a bike sharing service, each event can be represented as a tuple

of the form (𝑑𝑒𝑝𝑎𝑟𝑡𝑢𝑟𝑒, 𝑑𝑒𝑠𝑡𝑖𝑛𝑎𝑡𝑖𝑜𝑛, 𝑡𝑖𝑚𝑒 ; 𝑐𝑜𝑢𝑛𝑡). How effectively

can we squeeze insights about user behavior? How efficiently can

we maintain patterns to adapt to recent characteristics? In this

paper, we present a new streaming tensor factorization approach,

namely EntMine, for information-theoretic pattern discovery in

large evolving graphs. Our method has the following properties: it

is scalable: our method scales linearly with the number of events at

any time to maintain important patterns and infer node anomaly

scores; it is accurate: our method outperforms the state-of-the-art

methods by accurately detecting changes in event distribution; and

it is effective: it reveals meaningful seasonal and node-based pat-

terns. Experiments using three real-world shared cycle datasets

demonstrate that our proposed method achieves the highest ac-

curacy in terms of AUC-PR and discovers interpretable seasonal

patterns, while existing methods cannot find them.
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1 INTRODUCTION

Given a stream of evolving graphs, such as those generated by a bike-

sharing service, each event can be represented as a tuple of the form

(𝑑𝑒𝑝𝑎𝑟𝑡𝑢𝑟𝑒, 𝑑𝑒𝑠𝑡𝑖𝑛𝑎𝑡𝑖𝑜𝑛, 𝑡𝑖𝑚𝑒; 𝑐𝑜𝑢𝑛𝑡). How effectively can we un-

cover any patterns in edge (i.e., demand) distributions by leveraging

their graph structural information? Discovering important compo-

nents that well represent the original evolving graphs are essential

to understanding user behavior, allowing us to spot abnormal events

by the deviation from detected components. Considering edge direc-

tions further supports the structured relationships between nodes

in more detail. [5, 16] have addressed edge-based streaming graph

anomaly detection and can handle such sparse events efficiently,

but they can be deceived by unfamiliar connections. Another limi-

tation is that they can find only extreme behaviors because their

criteria for rating anomalies rely on event counts. To address the

aforementioned limitations, we propose a novel streaming tensor

factorization method, EntMine, designed for information-theoretic

pattern discovery in large evolving graphs, enabling streaming
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anomaly detection. Specifically, our contributions are summarized

as follows:

• Scalability: our method scales linearly with the number of

events at any time and maintains important patterns using

constant memory, as mentioned in Lemma 1 and Lemma 2.

• Accuracy: our method surpasses the state-of-the-art base-

lines in detecting distributional changes in streaming graphs,

achieving the best performance consistently in AUC-PR.

• Effectiveness: it uncovers meaningful seasonal and node-

specific patterns in three real-world bicycle datasets which

existing methods fail to detect.

2 RELATEDWORK

Here, we review prior work in three key areas: (1) information-

theoretic approaches for pattern discovery, (2) anomaly detection

in graphs, and (3) streaming tensor and matrix factorization.

Information-theoretic analysis. Information and entropy are fun-

damental concepts in information theory and have been playing

a vital role in machine learning and data mining applications [14].

Our work is closely related to studies that employ entropy for fea-

ture extraction, such as for network intrusion detection [3, 12] and

fault detection [2]. PenMiner [4] introduced an entropy-based ap-

proach to measure the persistence of activities in edge streams over

important communities, referred to as activity snippets.

Streaming graph anomaly detection. Recent deep learning meth-

ods, such as graph neural networks [7], offer expressive modeling

power but suffer from high latency and retraining costs. MIDAS [5]

and its variant [6] combined the chi-square test and the count-min

sketch to detect abnormal micro clusters over edge streams with a

theoretical error bound.

Tensor factorization. Tensor (or matrix) factorization is a power-

ful tool for uncovering latent components that represent “normal”

behavior, thereby enabling unsupervised detection of anomalies.

Recent advancements have enhanced its capability to handle data

sparsity [13], temporal-mode constraints [8, 18], and incorporate

auxiliary information [1, 9]. Streaming approaches [11, 17] have

further extended their applicability to keep track of evolving com-

ponents. However, none of the above approaches consider the dy-

namics of entropy in graph streams.

3 PROPOSED METHOD: ENTMINE

In this section, we propose an efficient online tensor factorization

algorithm, namely, EntMine, that realizes information-theoretic

anomaly detection on evolving graphs.

Dataset and notations. In this paper, we consider an endless event

stream of A(𝑡) ∈ N𝑛×𝑛
, which continuously arrives at every time

point 𝑡 . We assume that the number of nodes 𝑛 is fixed over time,

and each element 𝑎𝑖 𝑗 ∈ A(𝑡) shows the number of directed events;
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thus, A(𝑡) ≠ A(𝑡)𝑇 , ∃𝑡, 𝑡 ∈ {1, 2, . . . ,∞}. We follow the Matlab-like

notation. A𝑖, 𝑗 denotes the (𝑖, 𝑗)-th element of matrix A, whereas
A𝑖,: and A:, 𝑗 denote the 𝑖-th row and 𝑗-th column of A, respectively.
Streaming entropy extraction. The first goal is to extract en-

tropies from a slice of the original stream A(𝑡). Given a distribution

𝑃 = {𝑝1, 𝑝2, . . . , 𝑝𝑛}, where 𝑝𝑖 denotes the probability of the 𝑖-th

outcome, the entropy [10] is defined as 𝐻 (𝑃) = −∑𝑝𝑖 ∈𝑃 𝑝𝑖 log2 𝑝𝑖 ,
with the convention that 0 log

2
0 = 0. We normalize them by the

maximum value, log
2
𝑛, the value when the distribution is uniform.

Since A(𝑡) is the adjacency matrix of a directed graph, we can

calculate entropies for two directions. The procedure vectorizes

the original matrix in two ways, which preserves the structural

relationships of a given graph while relaxing certain connection

information by utilizing entropies. Concerning the sparsity of A(𝑡),
we further propose to augment the number of events for empiri-

cal distributions by introducing the number of lookback steps ℎ.

However, consecutive graphs evolve with several unknown fac-

tors, making it harder to find underlying patterns by mixing their

edge counts. Instead, we assume the periodicity of length 𝑝 , a user-

defined hyperparameter, and exploit the past ℎ seasons. Specifically,

A(𝑖 ) (𝑡) denotes the cumulative sum of the graphs in the past 𝑖

seasons, i.e., A(𝑖 ) (𝑡) = ∑𝑖
𝑗=1 A(𝑡 − ( 𝑗 − 1)𝑝), where 𝑖 = {1, . . . , ℎ}.

Calculating the two-way entropies with each A(𝑖 ) (𝑡) enables the
robust multi-scale analysis of how events distribute. Overall, we

will obtain ℎ-dimensional entropy vectors for 𝑛 nodes at a time

point 𝑡 .

Definition 1 (Entropy matrix). LetH(𝑡) ∈ R𝑛×ℎ
be the slice of

the entropy tensor at time point 𝑡 , where each element is a normalized

entropy, i.e., a nonnegative real value ranging from 0 to 1. We use

H(𝑠 ) (𝑡) and H(𝑒 ) (𝑡) to denote entropy matrices for outgoing and

incoming events, respectively.

It can be incrementally computed without any overhead by re-

taining the most recent events, as defined below.

Definition 2 (Current tensor). Let A(𝑡) ∈ N𝑛×𝑛×ℎ𝑝
be the

current tensor, which is composed of adjacency matrices during the

last ℎ seasons, each of length 𝑝 .

Tensor factorization and online component update. Given

a couple of entropy matrices, H(𝑠 ) (𝑡) and H(𝑒 ) (𝑡), how can we

discover important patterns hidden in them? We propose a factor-

ization model tailored for the coupled matrices as well as periodic

pattern discovery. For simplicity, we first consider approximating

an entropy matrix with three compact matrices as follows.

H(𝑡) ≈ U(𝑡)W(𝑡)V(𝑡)𝑇 . (1)

U ∈ R𝑛×𝑘
+ and V ∈ Rℎ×𝑘+ summarize node and hierarchical patterns

with 𝑘 components. W ∈ R𝑘×𝑘
+ is a diagonal matrix consisting

of 𝑘 multipliers for seasonal adjustments. So, we retain 𝑝 distinct

𝑘-dimensional vectors to produceW for corresponding seasons. We

impose nonnegativity constraints on all the components because

the input entropies are still nonnegative values, and nonnegativity

improves the interpretability of the components. Next, to apply the

factorization to our bi-modal entropy matrices and get more con-

cise yet reasonable components, we take advantage of the coupled

matrix factorization framework. Specifically, the node component is

shared for modeling both of the entropy matrices to reduce the time

and memory complexity to solve and make it easier to understand

their behavior. In contrast, it is a natural assumption that seasonal

patterns on outgoing and incoming events should be modeled sepa-

rately. The hierarchy component should also follow the assumption

because its structure is derived from the seasonal aspect. Therefore,

we define the full parameter set asM = {U,V(s) ,V(e) ,W(s) ,W(e) }
tomodel entropymetricesH(𝑠 ) (𝑡) andH(𝑒 ) (𝑡), simultaneously. Our

goal is to findM(𝑡) that can minimize the errors between the pre-

dicted values byM(𝑡) and the two entropy matrices. We define the

objective function L as follows.

L(M(𝑡)) =
∑︁

𝑟 ∈{𝑠,𝑒 }
∥H(𝑟 ) (𝑡) − U(𝑡)W(𝑟 ) (𝑡)V(𝑟 ) (𝑡)𝑇 ∥𝐹 (2)

This is a coupled matrix/tensor factorization problem [1] over the

node components U(𝑡) and can be solved by using gradient-based

optimization techniques. In a streaming setting, we assume the two

components U(𝑡) and V(𝑡) smoothly evolve, i.e., U(𝑡) ≈ U(𝑡 − 1)
and V(𝑡) ≈ V(𝑡 −1), while the seasonal componentsW(𝑡) is similar

to the past same season, i.e., W(𝑡) ≈ W(𝑡 − 𝑝). Letting 𝛾 > 0 be

a small learning rate, the gradient update to one of 𝑘 components

unew or vnew is given by differentiating Equation (2) with respect

to the corresponding parameters as:

unew ← uprev +
𝛾

2

∑︁
𝑟 ∈{𝑠,𝑒 }

(H(𝑟 ) − UprevW
(𝑟 )
prev

V(𝑟 )
prev

𝑇 )v(𝑟 )
prev

𝑤
(𝑟 )
prev

,

v(𝑟 )
new
← v(𝑟 )

prev
+ 𝛾 (H(𝑟 ) − UprevW

(𝑟 )
prev

V(𝑟 )
prev

𝑇 )𝑇 uprev𝑤 (𝑟 )prev
,

where 𝑟 ∈ {𝑠, 𝑒}. Then, we apply the element-wise max operation

with zeros to the updated components to preserve nonnegative con-

straints, and then normalize them. With these updated components,

the seasonal component is updated as: 𝑤
(𝑟 )
new
← 𝑤

(𝑟 )
prev
· ∥unew∥ ·

∥v(𝑟 )
new
∥, 𝑟 ∈ {𝑠, 𝑒}. Based on the above formulas, we can keep track

of better components by updating them from previous ones. How-

ever, the problem is that, at time point 𝑡 , the relationship between

U(𝑡 − 1), V(𝑡 − 1), and W(𝑡 − 𝑝) is not reliable anymore because

the seasonal component is outdated unlike the other two compo-

nents, which are frequently updated during the last 𝑝 − 2 period.
So, we avoid using the previousW(𝑡 − 𝑝) directly. EntMine first

estimates the temporal Wtmp to fix the outdated seasonal patterns.

Subsequently, it updates the previous U and Vwith the pre-updated

Wtmp Then it updatesWtmp again with the updated U and V. These
alternating updates enable our EntMine to adapt to recent patterns

effectively.

Theoretical Analysis.We now present the time and memory com-

plexities of EntMine. The key advantage is that both of the com-

plexities are constant with regard to a given tensor length, even if it

evolves without bound. We let 𝑧 (·) denote the number of non-zero

elements of a given matrix/tensor.

Lemma 1. The time complexity of EntMine is O(ℎ𝑧 (A(𝑡)) +
𝑘 (𝑧 (H(𝑠 ) (𝑡)) + 𝑧 (H(𝑒 ) (𝑡))) + 𝑘2 (𝑛 + ℎ)) per time point.

Proof. Omitted for brevity. □

Lemma 2. The memory complexity of EntMine is O(𝑘 (𝑛 + 2ℎ) +
𝑘2 + 𝑧 (A(𝑡))) per time point.

Proof. Omitted for brevity. □



Consequently, the time and memory complexities of EntMine

are independent of the tensor stream length, enabling efficient

streaming anomaly detection while capturing significant patterns

based on entropies.

4 EXPERIMENTS

In this section, we compare the performance of the proposed Ent-

Minemethodwith the state-of-the-art streaming anomaly detection

methods. We design experiments to answer the following questions:

Q1. Scalability: Does our method scale linearly? Q2. Anomaly de-

tection accuracy: How accurate is our method? and Q3. Real-world

discoveries: How does it detect abnormal drifting patterns? We

implemented our algorithm in Python (ver. 3.13.0) and conducted

all experiments on an Intel Xeon Platinum 8268 2.9GHz 24-core

CPU with 512GB of memory, running Linux.

Real-world datasets. We collected three public transportation

datasets spanning three years, from January 1, 2022: NYC-SC
1

(NYC CitiBike ride trips between 1328 stations), WDC-SC
2
(Capi-

tal Bikeshare ride trips between 380 stations), and TEB-SC
3
(Bay

Wheels ride trips between 285 stations), from three different re-

gions of the United States. For each dataset, we selected a subset

of stations (i.e., nodes) that were used as sources and destinations

on at least 90% of the days during the observation period. Then,

we sum up edge counts on an hourly basis and assume weekly

periodicity, i.e., 𝑝 = 168 over the streams, resulting in the sparsity

(i.e., the ratio of nonzero elements to the tensor size) of the three

datasets being 99% after preprocessing.

Q1. Scalability. To evaluate the scalability of our methods, we

measure the execution time for each time point in Figure 1. For

each dataset, the time complexity scales linearly with the number of

events as mentioned in Lemma 1. The result suggests that EntMine

can be applied to large real-world datasets because it is scalable

enough to decompose an input matrix within millisecond scales,

assuming that the data arrive every hour.
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Figure 1: EntMine scales linearly.

Q2. Accuracy.Here, we evaluate the accuracy of EntMinewith the

state-of-the-art methods for streaming anomaly detection. Due to

the lack of ground-truth labels for anomalies in real-world datasets,

we make synthetic data that can simulate significant distribution

shifts over time, such as the difference between holiday and normal

seasons. The data creation procedure is as follows. (1) We randomly

select 15 cut points of a data stream from the beginning points of

seasons with length 𝑝 = 100 to obtain ground-truth labels. (2) To

simulate node-specific preferences, we randomly draw 𝑝 multino-

mial distributions from theDirichlet distributionwith the parameter

1
https://citibikenyc.com/system-data

2
https://capitalbikeshare.com/system-data

3
https://www.lyft.com/bikes/bay-wheels/system-data

Table 1: EntMine spots abnormal pattern shifts accurately:

it consistently outperforms its competitors in terms of the

AUC-PRaveraged from ten runs (higher is better). Bold scores

indicate the best performances.

SYN-A SYN-B SYN-C

Entropy-based Average entropy 0.32 ± 0.07 0.14 ± 0.03 0.40 ± 0.09

Count-based

Average degree 0.33 ± 0.08 0.13 ± 0.02 0.33 ± 0.09
MIDAS 0.33 ± 0.04 0.18 ± 0.06 0.74 ± 0.06
SSMF 0.82 ± 0.05 0.76 ± 0.07 0.83 ± 0.07

Proposed

EntMine-F 0.40 ± 0.08 0.16 ± 0.04 0.40 ± 0.08
EntMine-S 0.95 ± 0.03 0.86 ± 0.07 0.97 ± 0.01
EntMine 0.96 ± 0.02 0.95 ± 0.03 0.99 ± 0.00

𝛼𝑖 = 1,∀𝑖 ∈ {1, . . . , 𝑛} for each node. (3) To generate A(𝑡) by using

the set of multinomial distributions, we repeat drawing a category,

which corresponds to a destination, until the total count reaches

a specified limit for each node and each time point. (4) We iterate

steps 2 and 3 to simulate segment-specific patterns. (5) Finally, we

randomly add 1 to 5% of elements in the entire data stream as noise.

The synthetic data is thus specified by the stream length (i.e., the

density of the anomalies) and the number of events per time point.

We set 𝑛 = 50 and created 3 sets of synthetic data, A, B, and C, with

parameter sets {(5000, 20), (10000, 20), (5000, 40)}, respectively.
Baselines. As the simplest baselines, we incrementally computed

the average degree/entropy, and then reported the squared error

between the local degree/entropy calculated at each time point and

the average as an anomaly score. MIDAS [5] is a micro-cluster-

based anomaly detection method for edge streams. We chose it

because its latest extension was proposed to incorporate rich edge

attributes, and it is equivalent to MIDAS without them. Following

the original paper, we set two hash functions for the CMS data

structures, and set the number of CMS buckets to 2719. SSMF [13] is

an online tensor factorization approach that can detect regime shifts

by changing seasonal components. We also compare EntMine with

its variants to evaluate how well each component works. EntMine-

F is a special case of EntMine when the number of lookback steps

ℎ = 1, which means it only considers local entropies computed at

each time point, while the original EntMine uses ℎ = 9. EntMine-

S updates each component in M(𝑡) once at each time point to

validate the effectiveness of our pre-update strategy for seasonal

components. For these tensor factorization approaches, we set the

learning rate to 0.3 and the number of components 30 initialized

by non-negative CP decomposition [15]

Results. Table 1 summarizes the results of the anomaly detection,

where each method processed each synthetic data stream 10 times

to report node anomaly scores. The performance metric is the area

under the precision-recall curve (AUC-PR). As expected, EntMine

outperforms its baselines for all datasets, and specifically, improved

up to 25.4% in terms of the average AUC-PR. In the ablation study,

EntMine-F failed to spot the correct cut points because local en-

tropies can fluctuate over time. Since EntMine-S requires more

graphs than EntMine to update itself sufficiently, it reported false

positives after the ground truth cut points, resulting in the second

best in the comparison. In conclusion, our method accurately de-

tects anomalies based on our proposed coupled tensor factorization

approach and efficient update strategy.



Figure 2: EntMine uncovers interpretable components: one

set of the components of NYC-SC: (left) seasonal components

of departure and destination views in the top and bottom,

respectively, and (right): a heatmap of the node component.

Q3. Real-world Discoveries. In this section, we demonstrate the

effectiveness of EntMine on real-world datasets. Figure 2 shows

one of the decomposed components of NYC-SC. We can see a series

of seasonal components for the departure exhibit weekday patterns

including peaks every morning and every evening. In contrast, one

for the destination shows strong peaks every morning. This com-

ponent suggests a commuting pattern: in the mornings, bicycles

arrive from various locations and are returned at stations related to

this component, while in the evenings, bicycles are rented from this

location and returned elsewhere. The heatmap based on the node

component values shows increased values at stations near ferry

terminals and train stations. This implies that many users utilize

shared bicycles in the morning to reach transportation hubs on

their way to work, and in the evening to return home, which aligns

with common commuting behavior. By jointly decomposing cou-

pled entropy matrices, EntMine successfully captures the shared

structure in such station components and two distinct temporal

dynamics of their usage.

© CARTO, © OpenStreetMap contributors

0.05

0.1

0.15

0.2

Anom

Figure 3: Visualization of

anomaly scores for TEB-

SC at 2024-07-28 4 a.m.

Figure 3 shows the heatmap of

node anomaly scores for the TEB-SC

dataset on July 28th, 2024, at 4 a.m.–

the time when the largest anomaly

score was observed. Notably, the San

Francisco Marathon was held on this

day, starting at 5:15 a.m., with the

start location (Embarcadero at Mar-

ket, indicated by blue arrow), located

near the top three most anomalous

stations (indicated by orange arrows).

This suggests an unusual distribution of activity likely caused by

marathon participants or their supporters. For comparison, we also

analyzed the same dataset by MIDAS, but it ranked this time point

as only the 160141st most anomalous. This contrast highlights the

effectiveness of our entropy-based method in detecting meaningful

anomalies that are overlooked by existing count-based approaches.

5 CONCLUSION AND FUTUREWORK

In this paper, we present a new streaming tensor factorization

approach, namely EntMine, for information-theoretic pattern dis-

covery in large evolving graphs. Our method has the following

properties: it is scalable: our method scales linearly with the num-

ber of events at any time to maintain important patterns and infer

node anomaly scores; it is accurate: our method outperforms the

state-of-the-art methods by accurately detecting changes of event

distribution; and it is effective: it reveals meaningful seasonal and

node-based patterns hidden in Experiments using three real-world

shared cycle datasets demonstrate that our proposed method can

efficiently factorize evolving graphs at any time, and achieved the

highest AUC-PR score, and discover interpretable seasonal patterns,

while existing count-based methods fail to find out them.

We are considering the following future works. Other domains.

We used only three shared-cycle datasets for real-world discoveries.

Althoughwe can gain interesting insights from them,we don’t think

our method can be applied solely to shared-cycle datasets. We’re

considering using EntMine to incorporate more diverse datasets

and gain deeper insights from them.Classification.We’re trying to

classify the nodes and reveal their hidden similarities to efficiently

grasp their properties and make them more interpretable.
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