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ABSTRACT
We present SwellDB, a data system that enables analytical query
processing over tables generated dynamically with Large Language
Models (LLMs). Typically, traditional database systems function
under the closed-world assumption, allowing query execution over
already existing tables. In contrast, SwellDB dynamically generates
the required tables based on input SQL queries and user-defined
table definitions. Powered by an LLM, SwellDB integrates exter-
nal data sources, including diverse datasets, database systems, and
search engines to extract and blend relevant information into a
structured table. Given an input query and schema, SwellDB intelli-
gently selects data sources, synthesizes structured tables according
to the specified schema, and makes them queriable through the
backend execution engine. SwellDB addresses data generation and
integration challenges in several domains such as web search, bioin-
formatics, and finance.
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1 INTRODUCTION
We present SwellDB [3], a data system that follows a new archi-
tecture that generates tables at runtime. Unlike traditional systems
which rely on previously stored tables, SwellDB synthesizes tables
on the fly based on input queries, utilizing Large Language Mod-
els (LLMs) to generate structured data according to user-defined
prompts and schemas. By efficiently integrating data from multiple
sources, including LLMs, file formats, databases, and raw text such
as web search results, SwellDB bridges the gap between structured
query execution and unstructured data retrieval.
Closed-world Assumption. Traditional database systems operate
under the closed-world assumption, where queries are executed
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on pre-existing, structured tables. Structured and queryable data
offers several key advantages. First, database systems enable users
to leverage SQL, a widely adopted and standardized language over
the past decades, for executing analytical queries and retrieving
precise results. Second, structured data facilitates seamless inte-
gration with external services, such as mobile applications and
websites, through a wide range of connectors and APIs. However,
while querying structured data is highly desirable, the vast majority
of data resides in external semi-structured or unstructured sources.
Consequently, end-users are often burdened with developing cus-
tom Extract-Transform-Load (ETL) workflows to create structured
tables, enabling them to query this data using SQL.
Large Language Models. LLMs offer a compelling solution to the
challenges of information integration and table generation. Trained
on vast amounts of data embedded within their weights, LLMs ex-
cel at data generation and augmentation tasks. For example, given
input datasets and a search engine, an LLM can determine how to
utilize these data sources to generate a table with specific content
and schema. LLMs can efficiently answer questions such as which
code or SQL query to execute to retrieve a portion of the requested
data from the input data sources, or which search queries to issue
in order to retrieve data not available in the LLM or input sources.
Additionally, LLMs can serve as preprocessors, transforming un-
structured data (e.g., web-retrieved information) into structured
formats that are queryable with SQL.

Taking these considerations into account, we pose the following
question:

Given a set of input data sources, how can we leverage Large
Language Models to dynamically generate tables of any content

based on an input query?

We address this question by introducing a data system archi-
tecture that enables query execution over dynamically generated
tables, according to the input query. Our system, SwellDB, lever-
ages Large Language Models to tackle the table generation problem
as follows. Given a logical table definition 𝐿 = (𝑃,𝐴), where 𝑃

a natural language prompt that describes the table content and
𝐴 = {(𝑎1, 𝑑1), (𝑎2, 𝑑2), ..., (𝑎𝑛, 𝑑𝑛)} the schema, where 𝑎𝑖 the at-
tribute 𝑖 and 𝑑𝑖 each description, SwellDB interacts with the LLM
to compute a table generation plan. This plan specifies which input
data sources can be used to retrieve portions of the data and how
to utilize the input data sources in order to effectively synthesize a
table that complies with the input query. SwellDB is based on the
following insight. An LLM can be leveraged as a data processing
operator to transform unstructured data into a structured format,
ensuring that the individual extracted chunks of information can
be seamlessly integrated into a unified table. As a result, SwellDB
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enables a paradigm shift from the closed-world to the open-world
assumption in query execution. Instead of restricting queries to pre-
existing tables, SwellDB dynamically generates tables on the fly,
incorporating any relevant information based on the input query.

2 OVERVIEW
Before presenting the technical details, we illustrate a representative
use case that SwellDB addresses. Assume that we have a dataset
in some local or remote storage that contains genetic mutations,
consisting of the 𝑠𝑎𝑚𝑝𝑙𝑒_𝑖𝑑 and𝑚𝑢𝑡𝑎𝑡𝑖𝑜𝑛 columns. The end-user
needs to retrieve all genetic mutations that are related to cancer.
Since the only available information is the mutation codes, this
task would consist of three steps: (1) extract all mutation codes
from the dataset, (2) find the associated disease(s) of each mutation
and (3) keep the ones that are related to cancer and filter-out the
rest. Figure 1 visualizes this pipeline in SwellDB. During step 1,
the 𝑚𝑢𝑡𝑎𝑡𝑖𝑜𝑛 column is extracted by issuing an SQL query (this
assumes that this dataset is loaded in some SQL query engine). In
step 2, for each of the mutations SwellDB issues search queries
to retrieve the associated protein and disease from the web. The
results are fed into an LLM, which extracts a table that contains
the 𝑝𝑟𝑜𝑡𝑒𝑖𝑛 and 𝑑𝑖𝑠𝑒𝑎𝑠𝑒 columns. Finally, in step 3 the resulting
table is synthesised by combining the intermediate results to form a
single table, and by keeping only the rows related to cancer (green
colored).

2.1 Architecture
Figure 2 illustrates SwellDB’s architecture, which consists of the
following components:
Catalog. The catalog keeps track of the registered tables to the
system and their metadata. For each table, the catalog stores its
description as a natural language prompt, and a set of attributes
with their descriptions.
Table Generator. The Table Generator is the backbone of SwellDB,
consisting of the LLM API and the Table Planner. The LLM API,
implemented using LangChain1, integrates seamlessly with widely
used LLMs such as DeepSeek2, OpenAI’s GPT3 and Ollama4. The
Table Planner constructs a generation plan for each table definition.
This plan outlines the steps to create the table, interacting with
the LLM as needed. For instance, the planner may query the LLM
to determine whether a specific column can be generated from
input datasets or requires direct LLM computation. The final table
is constructed by executing the plan using the LLM for individual
operations and the query engine for integration.
Query Engine. The query engine supports SwellDB in two key
ways. First, it acts as the primary interface for executing SQL queries.
Second, it integrates intermediate results of the table generation
pipeline into a unified table. Intermediate results are represented as
PyArrow Tables, and the query engine uses SQL operations, such
as joins, to blend these results into the final table. SwellDB’s query
engine uses Apache DataFusion5, an embedded, in-memory query
engine. However, we provide a more abstract query engine API for
1https://www.langchain.com/
2https://www.deepseek.com/
3https://openai.com/
4https://ollama.com/
5https://datafusion.apache.org/

easy integration with more DataFrame-compatible query engines,
such as DuckDB 6 and Spark SQL 7.
Data Source API. The Data Source API allows developers to add
custom drivers for integrating external data sources with SwellDB.
It supports two types of data sources.
Unstructured Data Sources. These ingest diverse formats, such
as text or HTML/XML, and rely on the LLM to transform data into
structured PyArrow Tables for integration.
Structured Data Sources. These require predefined schemas (e.g.,
database systems, CSV, or Parquet). Structured sources are more
efficient, as the planner can directly generate SQL queries for data
extraction, bypassing additional transformation steps by the LLM.
A structured data source is loaded in SwellDB’s backend query
engine such that it can be queried using SQL.

2.2 Table Generation
The table generation process is the cornerstone of SwellDB. The
table generation is split into smaller operations by the table planner.
Each plan operator is responsible for creating a subset of the table
columns using the LLM and the input data sources. The results of
all operators are PyArrow Tables that share one or more common
keys, referred to as base columns. In the final step, the individual
outputs are joined using those columns, defined as a parameter
named base_columns.
Planning. Once a table is defined, the table planner analyzes the
table definition (prompt and attributes) along with the connected
input data sources (if any). The output of this step is a table gener-
ation plan that describes which and how the input operators and
data sources will be used to synthesize the final table. Algorithm 1
represents a simplified version of SwellDB’s planner. The input
to the planner is a logical table definition 𝐿 = (𝑃,𝐴) where 𝑃 the
prompt and 𝐴 = {(𝑎1, 𝑑1), (𝑎2, 𝑑2), .., (𝑎𝑛, 𝑑𝑛)} the set of attributes
and their descriptions, and a list of operators 𝑂 (e.g. 𝐿𝐿𝑀𝑇𝑎𝑏𝑙𝑒 ,
𝐷𝑎𝑡𝑎𝑠𝑒𝑡𝑇𝑎𝑏𝑙𝑒 or 𝑆𝑒𝑎𝑟𝑐ℎ𝑇𝑎𝑏𝑙𝑒). The output table plan will consist
of one or more of these operators. The planner will iterate through
all the given operators. For each operator 𝑜𝑝 ∈ 𝑂 , the planner will
generate a prompt to ask the LLM which columns in 𝐿.𝐴 can be
generated by operator 𝑜𝑝 . The resulting columns are stored in the
𝑜𝑝_𝑐𝑜𝑙𝑠 variable. Finally, an instance of 𝑜𝑝 is created with the cur-
rent 𝑟𝑜𝑜𝑡 as its child, and 𝑜𝑝_𝑐𝑜𝑙𝑠 as its assigned columns. Once we
reach the last operator, we assign it all the remaining columns.
Materialization. This step executes the table generation plan ob-
tained by the previous step, in order to create the final table ma-
terialization, which contains the actual rows. In the final step all
operators are materialized as PyArrow Tables 8, and they are inte-
grated using the join method on the provided base_column keys.

2.3 DataFrame Interface
SwellDB provides a Python interface that is inspired by DataFrames.
We use Apache Arrow as our object representation format for easy
integration with most frameworks of the same ecosystem. While

6https://duckdb.org/
7https://spark.apache.org/sql/
8https://arrow.apache.org/docs/python/generated/pyarrow.Table.html
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Mutation Data

sample_id mutation

S001 BRCA1 c.68_69delAG
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SELECT mutation 
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Figure 1: Table Generation Example
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Figure 2: SwellDB Architecture

all of the intermediate results as well as the final table are repre-
sented as PyArrow Tables, the integration with other DataFrame-
based frameworks is straightforward since the Table class pro-
vides a 𝑡𝑜_𝑝𝑎𝑛𝑑𝑎𝑠 () method which converts the table to a Pandas
DataFrame. As a result, SwellDB tables can be directly integrated
with any such framework. Figure 1 depicts an example in which
SwellDB is used to generate a table that contains all of the U.S.
states on the fly, using less than 10 lines of code.

3 RELATEDWORK
Large Language Models (LLMs) have revolutionized data manage-
ment, opening new research directions for integrating LLMs into

Algorithm 1: SwellDB’s Planner
1 Function PlanTable(𝑇 , 𝑂):

/* 𝐿: The logical table definition */

/* 𝑂: The input operators */

2 𝑟𝑜𝑜𝑡 = 𝑁𝑜𝑛𝑒

3 while !𝑂.𝑖𝑠𝐸𝑚𝑝𝑡𝑦 () do
4 𝑜𝑝 = 𝑂.𝑝𝑜𝑝 ()

/* Generate a prompt that asks the LLM which columns

𝑜𝑝 can handle */

5 𝑐𝑜𝑙𝑠_𝑝𝑟𝑜𝑚𝑝𝑡 = 𝑜𝑝.𝑔𝑒𝑡_𝑝𝑟𝑜𝑚𝑝𝑡 (𝐿)
6 if !𝑂.𝑖𝑠𝐸𝑚𝑝𝑡𝑦 () then
7 𝑜𝑝_𝑐𝑜𝑙𝑠 = 𝑙𝑙𝑚(𝑐𝑜𝑙𝑠_𝑝𝑟𝑜𝑚𝑝𝑡)
8 𝐿𝐴 = 𝐿𝐴 − 𝑜𝑝_𝑐𝑜𝑙𝑠
9 else

/* If 𝑜𝑝 is the last operator, assign it all the

remaining columns */

10 𝑜𝑝_𝑐𝑜𝑙𝑠 = 𝐿𝐴

/* Create an instance of the operator */

11 𝑟𝑜𝑜𝑡 = 𝑜𝑝.𝑖𝑛𝑖𝑡 (𝑐𝑜𝑙𝑠 = 𝑜𝑝_𝑐𝑜𝑙𝑠, 𝑐ℎ𝑖𝑙𝑑 = 𝑟𝑜𝑜𝑡)

12 return 𝑟𝑜𝑜𝑡

database systems. Several works have explored how LLMs can be ef-
ficiently incorporated into query execution, with a predominant fo-
cus on integrating declarative languages with LLM invocations [7]
for hybrid querying, as seen in systems like SWAN [11], Thala-
musDB [5], BlendSQL [4], Palimpzest [6], and LOTUS [10]. These
systems optimize declarative querying by supporting tasks such
as data augmentation (e.g., generating new columns) and enabling
semantic operations (e.g., joins and filters with predicates defined in
natural language). However, they operate on pre-existing structured
datasets. Galois [8] introduces an alternative paradigm where LLMs
function as a storage layer for SQL execution. While this eliminates
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from swelldb import SwellDB, OpenAILLM

swelldb: SwellDB = SwellDB(OpenAILLM(model="gpt-4o"))

table_builder = swelldb.table_builder()
table_builder.set_content("US States")
table_builder.set_schema("state_name str, region str")

tbl = table_builder.build()

# Explore the table generation plan
tbl.explain()

# Table plan
# LLMTable[schema=['state_name', 'region']

# Create the table
table = tbl.materialize()

# Output (top 5 rows)
state_name region

0 Alabama South
1 Alaska West
2 Arizona West
3 Arkansas South
4 California West

Figure 3: Table generation code snippet

reliance on external databases, it remains constrained by the LLM’s
internal knowledge and lacks integration with external structured
or unstructured data sources. Beyond-the-database querying has
also been explored in prior crowdsourced systems like CrowdDB [2]
and DECO [9], though these approaches depend on user-provided
data rather than autonomous LLM-based extraction. Evaporate [1]
further advances LLM-powered data retrieval by generating extrac-
tion scripts for heterogeneous data lakes. SwellDB distinguishes
itself by introducing a dynamic table generation model that con-
structs relational structures on the fly, tailored to input SQL queries.
Unlike systems that enhance existing tables, SwellDB synthesizes
tables by intelligently selecting and blending data from multiple
sources, including LLMs, structured databases, and web search
results. This approach bridges the gap between structured query
execution and unstructured data retrieval.

4 CONCLUSIONS AND FUTUREWORK
We presented SwellDB, the data system that generates tables at run-
time. SwellDB introduces a paradigm shift from the closed-world to
the open-world assumption, enabling SQL-based database systems
to issue analytical queries over any data format, or requested table.
Compared to previous approaches that attempt to integrate LLM
invocations into a query engine, SwellDB is GenerativeAI-native,
built from the ground up to fully leverage the latest advancements
of LLMs. SwellDB is still at a very early stage, yet providing very
promising results and addressing real-world data integration prob-
lems. Our next steps include the following.
Optimizer — Similarly to traditional data systems, SwellDB uses

a table generation plan which consists of a pipeline of physical
operators that have to be executed in a specific order to generate
different parts of the requested logical table. This happens by split-
ting the initial logical table into smaller ones with disjoint column
sets, and assigning each one to the proper physical operator. Since
the intermediate results are merged using a join operator, it is clear
that the way in which we split the logical table, as well as the order
in which we execute these steps will have a significant effect on the
performance, as well as the monetary cost of the table generation
process. We are working towards a table generation planner to
minimize the cost of this process.
Multi-LLM Table Generation — SwellDB performs several LLM
invocations in different table generation steps, starting from the
planning and optimization steps, to the critical path of its executor.
We aim to make this component more modular and pick different
LLMs for each task. For instance, simpler tasks could be performed
using lightweight models that require fewer reasoning capabili-
ties, while bigger models can be used for more complex generation
tasks. This will allow SwellDB to minimize the table generation
costs without compromising the output quality.
Data Source — We envision SwellDB as a data source for multiple
state-of-the-art database systems that support pluggable storage,
such as Postgres, MariaDB, Presto, or Spark SQL. We aim to de-
velop an API that will allow the easy integration with such database
systems in order to enable them to dynamically generate tables.
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