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ABSTRACT

Graph databases are increasingly used for analytics tasks that can-
not be served with traditional query languages. Existing solutions
leave much to be desired in terms of expressivity, performance, and
ease of use. During my PhD, I am creating GraphAlg: A language
for graph algorithms that can be integrated into databases. Thanks
to a strong theoretical foundation, GraphAlg is highly amenable
to analysis and optimization. Based on the linear algebra model
of computation, it has a straightforward transformation into rela-
tional algebra. So far I have designed the syntax of the language and
developed an operational semantics based on MATLANG, a formal
language for matrix manipulation. I have also developed a compiler
for GraphAlg, and integrated it into AvantGraph, a state-of-the-art
graph query engine. In the future, I intend to research advanced
optimization techniques, bring GraphAlg support to other database
systems, and formally prove the expressivity of the language.
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1 INTRODUCTION

Graph databases have garnered a large user base in recent years,
owing in part to their convenient interface for graph pattern match-
ing through query languages such as Cypher [7] and, more recent
ISO standard, GQL [11]. Some users also develop a need for more
advanced graph analyses. For example, to find important nodes in
the graph, the PageRank algorithm is often used [13]. Similarly, to
identify communities or clusters of closely related entities within a
social network, algorithms like the Louvain method are frequently
employed [2]. Responding to this demand, some database vendors
now provide functionality for running graph algorithms, ranging
from built-in library functions for common algorithms to plugins
and additional query syntax. Integrating algorithm support into
databases avoids the data wrangling problem: Exporting data, con-
verting it to a common format, and then importing it into another
system. With integrated algorithm support, there is no need to
duplicate potentially massive graphs, nor is there any risk of those
copies becoming outdated. Furthermore, databases are well-suited
for optimizing and efficiently executing these algorithms, thanks
to their existing query processing infrastructure.
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I find that of the few systems with dedicated algorithm support,
their approaches have major shortcomings. For users, this means
they still need to rely on external tools in many cases. An overview
of common approaches is given in Table 1. I briefly discuss the key
problems below.

Key Problem: Fixed set of algorithms. Systems with a built-in
algorithms library are only useful as long as the library provides
the specific algorithm that the user needs. If the vendor does not
provide the necessary algorithm or provides a different variant
of it, the user will need to resort to external tools. To take the
Neo4]J Graph Data Science Library [17] as an example: Its PageRank
implementation has more than 10 parameters to select different
variations of the algorithm, yet it does not allow redistribution of
scores from sinks, which is trivial to do in a custom implementation.

Key Problem: Performance issues. The Pregel [15] and recursive
CTE approaches were slow to execute and had high memory con-
sumption in my experiments. Individual SQL statements in proce-
dural SQL generally show good performance, but the procedural
interpreter adds significant overhead. Given a sufficiently large
dataset, exporting and processing it externally is faster.

Key Problem: Lack of optimization. The optimal execution strat-
egy for algorithms depends on the state of the graph, as is the
case for queries. However, most systems treat algorithms as black
boxes, especially when it comes to query optimization. Even in
procedural SQL implementations, only individual SQL statements
are optimized, without regard for the larger algorithm.

Key Problem: Difficult to write. Recursive common table expres-
sions (CTEs) add recursion to SQL, making it powerful enough to
express graph algorithms. Unfortunately, the unusual semantics
of recursive CTEs makes them notoriously difficult to write [6]. In
practice, they are typically avoided in favor of external tools that
are easier to program [14].

My Proposal: Opening up the DSL approach

I argue that the best approach to algorithm support in databases is
an integrated domain-specific language (DSL). DSLs offer solutions
to all the key problems mentioned before.

e The user can create arbitrary algorithms by composing
high-level primitives.

e The language can be designed to include efficient data-
parallel operations.

e If care is taken to constrain the expressive power of the
language, algorithms can be optimized similar to queries.

e By providing operations tailored to graph algorithms, a DSL
facilitates intuitive and concise implementations.
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Table 1: An overview of existing approaches to graph analytics support in database systems. Algorithms library, Pregel API and
algorithm DSL are solutions tailored to the problem of graph analytics. The other options are more generic tools available
in relational database systems. The listed systems are a representative subset of popular database systems rather than an

exhaustive list.

Approach Key Problems

Available in

Algorithms Library
Pregel API
User-defined operators [18] No optimization
Recursive CTE
Procedural SQL
Algorithm DSL

Fixed set of Algorithms
Performance issues, no optimization

Difficult to write, Performance issues
Performance issues, limited optimization PostgreSQL, Oracle, SQL Server
Only proprietary implementations

Neo4], ArangoDB
Neo4]J, ArangoDB
UMBRA
DuckDB, PostgreSQL

TigerGraph, Oracle PGX

The DSL approach has received some interest from database
vendors, most notably TigerGraph [5] and Oracle PGX [3]. Both
systems are unfortunately unavailable for evaluation, and publicly
available documentation on their implementation is scarce.

2 GRAPHALG

My vision for algorithm support in databases is based on the fol-
lowing principles:

e Expressive: The database should allow users to define
custom algorithms in a language that can express a wide
variety of graph algorithms.

e User-friendly: That language should offer an intuitive in-
terface for defining these algorithms, with clear operations
whose semantics are easily understood.

o Fully Integrated: Algorithms should be first-class citizens
and be deeply integrated into the database.

e Optimizable: Algorithms should be aggressively optimized,
leveraging the existing query optimization infrastructure
where possible.

GraphAlg is the realization of this vision. It is a domain-specific
language designed for writing graph algorithms that satisfies all the
key principles above. The language has a strong theoretical founda-
tion, building upon the formal MATLANG [4] language for matrix
manipulation. By defining GraphAlg in terms of MATLANG, I ob-
tain a small core language that is highly amenable to analysis and
optimization. I also adopt the linear algebra programming model
from MATLANG. Linear algebra operations such as matrix multi-
plication are widely taught and have well-understood semantics,
making many of the constructs in GraphAlg immediately familiar
to new users.

GraphAlg is fully integrated into the AvantGraph [19] query
engine developed by our team at TU Eindhoven. GraphAlg pro-
grams can be embedded directly into regular Cypher queries. In
AvantGraph, I use a unified intermediate representation (IR) that
encodes both queries and algorithms. After an initial conversion,
there is no distinction between query and algorithm. This has a
number of important benefits.

e All optimization rules for queries are automatically applied
to algorithms, too.

e There is no communication overhead between queries and
algorithms. Passing large intermediates as algorithm pa-
rameters does not add an additional cost.

e No need for a separate algorithm execution backend. In-
stead, the query execution pipeline also handles algorithm
execution.

3 CONTRIBUTIONS SO FAR

My contributions so far can be split into three parts:

(1) A practical version of the MATLANG language that can be
implemented in a real database system.

(2) A compiler to optimize and transform this language into an
extended relation algebra supported by AvantGraph with
minor extensions to the query processing pipeline.

(3) Query optimization strategies for iterative algorithms.

In the following, I describe each contribution in more detail.

3.1 Practical MATLANG

Extensions to MATLANG. Based on my examination of common
graph algorithms from the GAP [1] and LDBC Graphalytics [9]
benchmark suites, I have identified two necessary language primi-
tives that are not included in the original definition of MATLANG.
The first is a loop construct with support for multiple iteration
variables. Although loop constructs for MATLANG have previ-
ously been proposed [8], they are not a good fit for the iterative
algorithms I have studied, such as Single-Source Shortest Paths,
PageRank, Weakly Connected Components, Breadth-First Search
and Label Propagation. Existing loop definitions are, for the pur-
pose of encoding graph algorithms, too limited in one way and
too powerful in another. My novel loop construct addresses this
by allowing multiple iteration variables to be carried over between
iterations but otherwise being very minimal and restrictive. For
example, it is explicitly not Turing-complete and does not guarantee
an observable order between iterations. The design strikes a careful
balance between expressivity and simplicity: Powerful enough to
encode a wide variety of algorithms, yet restrictive enough to allow
for aggressive optimization.

Secondly, certain algorithms require a leader election mechanism
to select a single representative from a set of vertices. This oper-
ation is common in clustering algorithms like Weakly Connected
Components, but it is not representable in standard MATLANG.



The solution is simple: extend MATLANG with a leader-election
operation.

GraphAlg Core. Based on MATLANG with the proposed exten-
sions, I define a minimal language GraphAlg Core that is powerful
enough to express all algorithms in the GAP and LDBC graphalytics
benchmark suites. I provide a complete operational semantics of
the operations. Where MATLANG leaves open certain details of the
language that are not relevant for theoretical analysis, in GraphAlg
Core, these are fully defined so that it is also executable.

GraphAlg. 1 define the syntax of the GraphAlg language for
graph algorithms. It supports all operations in GraphAlg Core, plus
higher-level operations that allow users to define custom algorithms
in an intuitive and concise way. Unlike MATLANG, programs are
written in an imperative style similar to Python. GraphAlg retains
the linear algebra model of computation. An example program is
given in Figure 1.

func WCC(graph: Matrix<s,s,bool>) {

id = Vector<bool>(graph.nrows);

id[:] bool (true);

label = diag(id);

for i in graph.nrows {
alternatives = label;
alternatives += graph * label;
label = pickAny(alternatives);

3

return label;

Figure 1: Weakly Connected Components Algorithm written
in GraphAlg.

3.2 GraphAlg Compiler

I have developed a compiler for GraphAlg programs to parse, opti-
mize, and transform GraphAlg programs into an extended relational
algebra supported by AvantGraph. An overview of the compiler
pipeline is given in Figure 2. The compiler leverages GraphAlg Core
by first simplifying programs to the core language, and only then
performing optimizations or transformations.

T have integrated the GraphAlg compiler into AvantGraph. Users
can embed GraphAlg programs in Cypher queries, and AvantGraph
executes them as part of the query. I use a unified representation for

Optimize

Extended
Relational
Algebra

GraphAlg

GraphAlg Core

Simplify Transform

Figure 2: High-level overview of the GraphAlg compiler
pipeline.

both queries and algorithms in AvantGraph, so the query optimizer
has full visibility into algorithms and can optimize them just like
regular queries.

3.3 Query Optimizations for Algorithms

Apart from adding loop support in query plans, few changes to
AvantGraph were required to facilitate algorithm execution. How-
ever, to obtain the best possible performance, I have found that it
is beneficial to also include additional query optimization rules. In
particular, I find that aggregation is common in graph algorithms
and, therefore, worth paying special attention to.

Loop-Invariant Code Motion. Moves computation outside the
loop if it is independent of all loop iteration variables. My optimiza-
tion moves query plan subtrees at pipeline breakers (often aggrega-
tions). This avoids additional caching of intermediate results (the
pipeline breaker is doing the caching anyway) and prevents pulling
out very cheap pipelines.

Loop Accumulation. It is common for algorithms to populate a re-
sult matrix over multiple iterations, writing additional entries each
run. Rather than building a new intermediate result from scratch
at every iteration, it is more efficient to preserve the aggregation
state across iterations and accumulate the new entries into it. I have
developed an optimization rule to detect this case automatically,
without requiring annotations in the source program.

Bounded Key Range Aggregation. In query plans generated from
GraphAlg programs, aggregations by vertex are often among the
most expensive operations. Vertex identifiers are integers assigned
and managed internally in AvantGraph, so the range of possible
identifiers is known at query optimization time. I define a special-
ized table data structure to exploit these properties, outperforming
standard hash tables, particularly in scenarios where the majority
of vertices have an associated aggregate value.

4 RESEARCH PLAN

I have identified three opportunities for future research building
upon my original concept of GraphAlg.

4.1 Cross-Optimization

The unified representation for queries and algorithms allows query
optimization across the boundary between query and algorithm.
My current implementation already does this for simple cases such
as predicate pushdown or join ordering. There are more complex
cases, particularly those that involve loops, that the current system
does not optimize yet. An example is the imposing of a filter on the
output of a shortest path algorithm, as shown in Figure 3.

The naive way of executing this query would be to first compute
all shortest paths and then apply the filter to remove paths with a
high cost. A more efficient strategy is to instead push the filter into
the algorithm, and skip exploring paths with a high cost entirely. If
many shortest paths exceed the maximum cost, this optimization
will be highly beneficial.



WITH ALGORITHM SSSP (...)
CALL SSSP(..)

YIELD source, target, cost
WHERE cost < 100

RETURN source, target, cost;

Figure 3: Single-Source Shortest Path algorithm with a maxi-
mum distance filter.

4.2 GraphAlg support in other DBMS

While the current version of GraphAlg is tightly integrated with
AvantGraph, I expect many potential users prefer to stick with an
existing DBMS they know well. With graph query support included
in the latest SQL standard [10], this system may even be relational
rather than graph-native. Since GraphAlg compiles to relational
algebra, I believe it is feasible to port GraphAlg to many other
DBMS, and bring algorithm support to them this way.

4.3 Graph algorithm primitives

While I have empirically verified that GraphAlg can express a vari-
ety of algorithms, there is no formal proof of any particular class of
algorithms that it can encode. It is possible that there exist less com-
mon but important algorithms that cannot be written in GraphAlg,
or that they can only be expressed in a way that is inefficient to
compute.

Thus, the challenge remains to formalize a minimal set of graph
operations that are provably sufficient to express a meaningful class
of algorithms. This class should be a set of algorithms that can be
seen as ‘realistic’ in terms of time and space complexity for running
on large-scale graphs. If such a set of operations can indeed be
formalized, I envision it would form an ideal basis for user-defined
algorithm support in many systems, even beyond databases.

5 APPLICATION

GraphAlg is developed in the context of the SciLake! project. As
part of this project, AvantGraph will host the OpenAIRE graph [16],
a large scientific knowledge graph containing hundreds of millions
of publications. The OpenAIRE graph currently relies on the BIP!
Ranker [12] tool to enrich the publication data with research im-
pact indicators based on the citation graph. Impact indicators are
computed based on different algorithms, typically derivatives of
PageRank or simple citation counts.

With the graph already available in AvantGraph, GraphAlg is
ideally suited to compute these indicators, replacing a complex
pipeline running on a large cluster with a simpler and more efficient
query with an embedded algorithm. Project partners are also able
to experiment with their own custom algorithms using GraphAlg.
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