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ABSTRACT

Large language models (LLMs) are becoming increasingly popular
in data analytics because of the enhanced capabilities they provide.
This shift introduces LLM-powered queries that rely heavily on
model inference. Such workloads pose new challenges for data-
base management systems, which must still deliver low-latency
performance for complex queries; and current solutions fail to
meet the performance demands of LLM-powered queries. My PhD
research aims to fill this gap by proposing a query-aware, hardware-

conscious optimization framework to efficiently process LLM-powered

queries.
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1 INTRODUCTION

LLMs have emerged as powerful tools for data management [11],
offering processing opportunities for unstructured (text-centric)
[6, 25] and structured (relational) [17] workloads, both separately
and in combination [18, 22, 26]. For unstructured data processing,
LLMs show promising opportunities to be used for interpreting and
synthesizing information from raw text that enables complex doc-
ument processing [25], and multi-modal data analytics [6]. LLMs
also leverage their broad knowledge to infer or fill in gaps in data:
for example, fine-tuned LLMs have been used to impute missing
values in sparse datasets [7], and prompting foundation models on
data cleaning and integration tasks has achieved state-of-the-art re-
sults without task specific training [21]. For structured tables, LLMs
have proven extremely useful for “fuzzy” row-level inference be-
cause they can interpret context and semantics beyond exact string
matching. It is practically relevant for many hard data management
tasks. This semantic capability has been shown to significantly im-
prove some of the most challenging data management tasks, such
as entity and schema matching [27, 28], and data cleaning [19] by
overcoming the limitations of earlier methods that relied solely on
exact string matching.

The promise of LLM-driven inference has led to their integration
in DBMSs. Major cloud warehouses (e.g. Databricks [1], Amazon
Redshift [2], Google BigQuery [3]) now offer LLM-based UDFs for
row-wise operations in SQL. As an example, the following query in
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Figure 1 performs a (i) join operation for movies and their Rotten
Tomatoes reviews, (ii) a filter operation to obtain “Fresh reviews”,
(iii) an LLM call to confirm that the movie is kid-friendly; and (iv)
another LLM call to generate a personalized list of recommended
movies using the movie metadata and the review text. The order in
which these queries execute influences the overall query execution
time.

SELECT LLM("Recommend movies for the user based on
{movie information} and {user reviewl}", m.
movie_info, r.review_content) AS
recommendations

FROM Movies m

JOIN Reviews r ON r.rotten_tomatoes_link =

m.rotten_tomatoes_link

WHERE

LLM("Analyze whether this movie would be suitable
for kids based on {movie information} and {
user review}", m.movie_info, r.review_content)
== "Yes"

AND r.review_type == "Fresh"

Figure 1: Example LLM Query.

Even though LLMs provide enhanced data processing capabili-
ties, scaling to more data points remains the biggest problem. For
instance, running the query in Figure 1 on only 17,000 rows takes
more than 5 hours to complete using local inference on a single
A100 GPU combined with an open-source DBMS. Even if enterprise
inference solutions are used, such as Open AT’s lightweight model
GPT4o0-mini [4], it takes 16 minutes to process the whole dataset.
In contrast, it takes milliseconds to process a million data rows
for relational DBMS. This inefficiency stems from insufficient opti-
mizations for such queries and the need to invoke LLM inference
individually for every row.

Although the data-management community excels at large-scale
processing, integration between LLMs and DBMSs remains unex-
plored, and when LLMs are involved, additional concerns arise.
For instance, enterprise inference solutions require sending data
to third-party providers. For sensitive data, this process creates
legitimate privacy issues. Organizations that want the benefits of
LLMs without compromising confidentiality, therefore, need to host
the model locally. In such settings, LLM+DBMS integrations must
be far more heavily optimized to achieve acceptable performance
on the available data that has already been stored. LLM workloads
are different from conventional SQL queries and diverge from the
conventional OLTP/OLAP scenarios that databases traditionally
optimize for in three fundamental ways:



https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org

(1) Inference computation: Whereas conventional SQL oper-
ations are dominated by CPU-friendly scans and joins, LLM
inference is FLOP-heavy; each transformer layer reduces
to heavy matrix multiplications and memory-intensive at-
tention kernels that achieve near-peak throughput only
on highly parallel GPUs or Al accelerators. Consequently,
inference computations dominate the query latency.

(2) Inference-state reuse: They must manage and cache large
key-value attention states or “prompt modules,” whose
reuse can decrease the time to generate outputs.

(3) Hybrid structured + unstructured access: LLM work-
loads require routinely fetching of external passages or
embeddings during generation.

Prior ETL-centric pipelines such as LOTUS, Palimpzest[16], and
DocETL[25] operate outside the DBMS, focusing on semantic rewrit-
ing or agentic extraction of unstructured documents. They neither
optimize GPU scheduling nor focus on query-plan selectivity. My re-
search, in contrast, aims to keep inference inside the data processing
engine, including the co-design of queries with new GPU-centric
operators for inference operations. The proposed PhD work aims
to develop multiple systems optimizations for to efficiently process
LLM workloads at scale.

2 RESEARCH GOAL

The designed architecture proposes an efficient approach to op-
timize LLM workloads for relational DBMSs and integrate them
efficiently to boost analytics capabilities. Currently, implementa-
tions of LLM+DBMS integrations require the invocation of an LLM
for every row, and existing implementations do not adopt systems
optimizations to alleviate the high computational overhead, which
makes them difficult to apply to large datasets [8, 12, 23]. More-
over, LLM inference is resource intensive and typically orders of
magnitude slower than standard query operations, so executing an
LLM on each row of a large table can bottleneck the entire query.
Further complicating matters are memory constraints (such as the
context-window limits within LLMs). Since current implementa-
tions are not designed for such workloads, a naive integration of
UDFs often leads to timeouts or excessive costs.

This work aims designing an efficient data processing system to
handle SQL queries embedded with LLM calls as in the example
given in Figure 1. Some of the issues can be addressed by careful
engineering designs, but others require new approaches that require
research. We aim to tackle these research challenges through the
following contributions:

(1) Query-aware optimization. We design a query-aware
optimization model that scores each query’s complexity and
routes simple cases to fast, fine-tuned small models while
sending harder ones to larger models, thereby balancing
accuracy, cost, and throughput.

(2) Resource-aware query optimization. We present a resource-

aware query optimizer that coordinates CPU-GPU sched-
uling, batches and shares prompts via KV-cache reuse, and
pipelines multi-query LLM inference to transform local
model calls into a high-throughput operator.

3 CHALLENGES

LLM inference requires too much time and resources to fit smoothly
into the low-latency, high-throughput execution model of a tradi-
tional database query, so new strategies are needed to make LLM-
powered queries practical and efficient. We propose two techniques:
(i) query-aware model optimization to reduce latency by sending
simple queries to small, cheap models and reserving large models
for hard cases. Resource-aware pipelining keeps the large model
but speeds it up through batching, KV-cache reuse, and shared GPU
pipelines. The first design reduces the amount of computation the
system must perform, while the second accelerates the operations
that remain while highlighting the need to control both what gets
executed and how it is executed across CPU-GPU resources.

3.1 Query-aware Optimization

Conventional relational query optimizers are designed to handle
operators such as scans, joins, aggregations whose per tuple laten-
cies lie in the microsecond to millisecond range. In contrast, an
operator that invokes LLM inference can run for minutes. LLM
inference cost is dominated by GPU-intensive matrix multiplies,
attention-memory traffic, and cross-device scheduling. Even when
the model is accessed through enterprise services such as OpenAl
[4] or Anthropic [5], conventional heuristics like join reordering
or index selection have little impact because overall latency is still
governed by inference. This raises an immediate design question:
is a full-scale LLM truly necessary for the call, or could a smaller,
faster model deliver adequate quality?

Recent research shows that fine-tuned small language models can
perform on par with large language models, offering high accuracy
while maintaining low deployment costs for specified tasks [29].
Therefore, an interesting line of research is pushing the LLM’s
capabilities inside the database system to minimize data movement
and leverage the strengths of the DBMSs. The key problem is to
understand when to use a smaller model, when to use a larger
model, and when to use LLMs, also when LLMs are used, which
one to route to.

We propose to adopt query-aware model scaling to address the
challenges. In our design, when the system receives a query, a
computational complexity score is assigned. For lower complexity
difficulty queries, easy queries, a lightweight local model will be
used to generate an output. Then, the output will be assessed to
check if it matches the predefined quality requirements. If it does,
it will be used as the final response. Otherwise, the query will
be routed to a more computationally intensive but higher-quality
model to produce the final result. The rationale is that certain
queries are inherently simpler and can be processed by small models
with no or minor quality degradation.

Adaptive query routing approach can choose between small
cheap models and larger, accurate ones and considers quality for
cost. The approach is referred to as query-aware as it routes queries
based on the complexities of each query. The main goal is to address
the computational burden of models by allowing easy queries to be
processed exclusively by light models that execute faster. This time
saving from handling easy queries enables the system to achieve
higher serving throughput. We visualize our workflow in Figure 2.
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Figure 2: Query-aware routing workflow.

3.2 Resource-aware Query Optimization

When leveraging LLM-based operations in privacy-sensitive set-
tings, local inference is essential. This requires GPU resources to
serve models, and given the computational characteristics of LLM
workloads, careful coordination between CPU and GPU operations
becomes critical. As shown in Figure 1, the query consists of four
distinct operations, yet existing systems lack mechanisms to deter-
mine their optimal execution order. To address this gap, we propose
a query optimization framework that jointly considers CPU-GPU
resource allocation and execution ordering, aiming to improve both
resource utilization and overall query efficiency.

In these scenarios, the optimizer must consider explicitly about
batching, key-value reuse, and prompt overlap, elevating latency-
cost trade-offs to first-class planning primitives. Promising direc-
tions revolve around exposing both data-flow selectivity and model-
level economics to the planner. In this setting, a GPU-aware cost
model can estimate latency and cost for every plan alternative by
accounting for matrix-multiply FLOPs, KV-cache hit probabilities,
and GPU utilization. Then, the optimizer can apply prompt-sharing
and batching rewrites that coalesces tuples with overlapping text
segments, enabling reuse of attention states and reducing the prefill
cost.

This design not only maximizes throughput but also unlocks
deeper multi-query optimization: duplicate prompts from separate
SQL statements share the same prefill stage. Shared KV caches
aim to avoid recomputation, and speculative partial decodes aim
to satisfy multiple queries with the same prefix while eliminating
redundant matrix multiplications. Also, sequence-pipeline paral-
lelism can be used to process several queries concurrently. Each call
is split into (i) token prefill, (ii) attention-based decode steps, and

(iii) lightweight post-processing. With this design, a scheduler inter-
leaves micro-batches from many queries on the same GPU, similar
to vectorized CPU engine processes tuples through its pipelines.

4 LONG TERM RESEARCH DIRECTIONS

Our design presents an efficient method for optimizing LLM work-
loads in relational DBMSs, and its integration into full-scale systems
opens several promising avenues for future research. In this section,
we will describe the open research problems that we have identified
and how we plan on addressing them in the long term.

ML systems community proposed various caching optimizations
to accelerate LLM inference. Relevant work includes Prompt Cache,
which reuses modular attention states across prompts that share
overlapping text segments (such as system prompts or document
context) [13]. Also, semantic caching is proposed to save the embed-
ding and answer of each past LLM query, then serves that cached
answer whenever a new query’s embedding is semantically simi-
lar enough, eliminating redundant model calls and thus reducing
latency and cost [24].

In the long term, we plan to investigate how semantic and prompt
caching can further accelerate the execution of LLM-powered queries.
By returning results directly from cache whenever a new query’s
embedding matches a stored one, semantic caching can avoid un-
necessary LLM calls or round-trips to base tables while comple-
menting our optimizer. Exploring this direction also encourages
us to re-examine classic data-management tools such as indexing,
materialized views, and view-maintenance policies to adapt them
for the workloads dominated by LLM inference.

5 RELATED WORK

Recently retrieval-augmented generation (RAG) has been widely
used to overcome the narrow context windows of language mod-
els. By fetching only the most relevant data from large datasets,
RAG allows LLMs to remain within prompt-length limits while
still grounding their output in the necessary information [14, 15].
We are not concerned with using LLMs for RAG operations. In-
stead, we aim to optimize the DBMS+LLM interaction by enabling
LLM-powered SQL queries to be performed efficiently.

LLMs are also gaining significant attention for being applied to
structured tabular data tasks [10]. Recent studies have proposed
LLM-driven approaches for automatically generating new table
columns or features [20], for inferring and enriching existing data
in tables [9] and data cleaning [19]. We are not concerned with
using LLMs for such tasks, instead, our proposal aims to execute
LLM-powered queries performantly.

To efficiently process LLM-powered SQL queries at scale, re-
searchers introduce optimizations like prompt prefix-sharing and
row-reordering [17]. Also, declarative systems have been proposed
to optimize LLM-powered analytical queries, they process unstruc-
tured and structured data together [22, 26], and use declarative
querying primitives to process data with LLMs. Our work diverges
by embedding model calls inside the relational optimizer and propos-
ing GPU-aware plan rewrites. Whereas the above systems treat
inference latency as fixed and external, we make it variable and
optimizable, introducing novel state-sharing and batch-scheduling
mechanisms. Our design complements these systems to efficiently



support their workloads as it is orthogonal to these solutions, and
can be adopted with such frameworks.

6

CONCLUSION

This paper outlines the key research challenges in integrating large-
model inference into relational DBMSs. We present a potential
query-aware optimization strategy that can toggle between small
and large models under user-defined quality bounds and discuss
how GPU-level batching, KV-cache reuse, and prompt sharing can
improve end-to-end latency without sacrificing accuracy. Our imme-
diate next step is to build a working prototype of the query-aware
optimizer, integrate it with an open-source engine, and evaluate
how far hardware-aware LLM-query optimization can extend the
performance of LLM-powered SQL workloads.
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