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ABSTRACT

Anomaly Detection (AD) is a fundamental task for time-series ana-
lytics with important implications for the downstream performance
of many applications. Despite increasing academic interest and the
large number of methods proposed in the literature, recent bench-
marks demonstrate that there exists no single best AD method
when applied to heterogeneous time series datasets. This Ph.D.
work addresses this challenge by studying model selection-based
approaches that dynamically select the most suitable anomaly de-
tector based on time series characteristics. Extensive experiments
show that model selection methods consistently outperform indi-
vidual anomaly detectors while maintaining comparable execution
times. To support this, ADecimo is introduced, a web application
that allows users to interactively compare and analyze our frame-
work’s results. In addition, we propose a highly-efficient evaluation
measure, built to scale to billions of data points. Together, these
contributions form the basis of a robust, and fast framework for
next-generation time series anomaly detection.
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1 INTRODUCTION

Time series data are ubiquitous and continuously generated in
virtually every scientific and industrial domain [8]. Notably, the ex-
pansion of Internet-of-Things (IoT) devices has brought up the need
for efficient and effective analysis of zettabytes of time series data
[11]. Among the many analytical tasks for time series, identifying
abnormal or rare events is crucial for the effectiveness of down-
stream tasks. Consequently, Anomaly Detection (AD) has received
ample academic and industrial interest and finds applications across
a wide range of cases.

In recent years, many techniques have been proposed for Time
Series Anomaly Detection (TSAD). Multiple surveys and bench-
marks summarize and analyze the state-of-the-art proposed meth-
ods [7, 10]. Unfortunately, these benchmark and evaluation studies
demonstrated that no overall best AD methods exist when applied
to highly heterogeneous time series (i.e., coming from very different
domains). In practice, we observe that some methods outperform
others on specific time series with either specific characteristics

This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.

Proceedings of the VLDB Endowment. ISSN 2150-8097.

. .
ngQQQ;QQQQQQE =

~ X
QOQ\ \\@ e‘}@* s &é\’v F& & (é@%\w . < F
& & F O PP
— S S
[§) ‘2>Q’ <
Q
w103
q) 102 %
g 10!
|_
- 10°
O-n-
.810 1
gl072
© > o
a ,&o‘<$é Qfoo% é”@ (y\,@o////\e
i, N\ & £ Q QO A
C «o Qib <<0 S (/(9 Q ?'Q & Q@ o(b

@‘a" ‘be’c)
Model

Figure 1: Summary of our evaluation of model selection meth-
ods on the TSB-UAD benchmark [10]. The top plot presents
an AD accuracy measure, while the bottom part compares ex-
ecution times (note the logarithmic y-axis). We highlight our
model selection methods: best for k=1 (blue) and k=4 (green),
compared to 12 AD methods (grey) and the Averaging Ensem-
ble (Avg Ens) baseline (orange).

(e.g., stationary or non-stationary time series) or anomalies (e.g.,
point-based or sequence-based anomalies).

To overcome the above limitation, ensembling solutions have
been proposed [1] that consist of running all existing AD methods
and averaging all anomaly scores. Figure 1 shows that this solution
(in orange), namely the Averaging Ensemble (Avg Ens), outperforms
all individual existing techniques in the TSB-UAD benchmark (in
grey) [3, 10]. However, as shown in Figure 1, such solutions re-
quire running all methods, resulting in an excessive cost that is not
feasible in practice.

Additionally, evaluating such models introduces a second ma-
jor challenge. Traditional, point-based evaluation measures, often
adapted from Information Retrieval (IR), fail to capture the tem-
poral structure of anomalies in time series [9]. A recent work [2]
introduced Volume Under the Surface (VUS), a next-generation,
time series-specific measure designed to overcome these shortcom-
ings. While effective, its computational cost makes it impractical
for large-scale benchmarking or real-time applications.

To address the aforementioned challenges, we propose two dis-
tinct but complementary contributions: (1) a robust model selection
framework for TSAD, and (2) a highly efficient evaluation measure.
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These components work hand-in-hand: the former introduces a
new direction for robust time series anomaly detection, while the
latter enables fast evaluation at scale. Together, they lay the foun-
dation for building fast, accurate, and scalable TSAD systems. Our
past and present work, in the context of my PhD research, includes
the following:

e Choose Wisely: In our initial work [12], we introduced a frame-
work that reframes the TSAD task as a time series classification
problem. This approach enables learning which detector to se-
lect for a given time series based on time series characteristics.
To evaluate our method, we compare 16 different families of
classifiers (with a total of 128 configuration) on the TSB-UAD
benchmark [10], and we propose the first extensive experimental
evaluation of model selection for TSAD. Our results demonstrate
the effectiveness of data-driven model selection.

o MSAD: We extended the model selection approach into the
MSAD (Model Selection for Anomaly Detection) framework.
Unlike its predecessor, MSAD supports combining multiple de-
tectors for a single time series. This not only boosts overall perfor-
mance (Fig. 1), but also significantly enhances robustness under
Out-of-distribution (OOD) scenarios.

e ADecimo: To make our framework accessible and interpretable,
we developed ADecimo [4], a web-based tool that allows users to
inspect results on the TSB-UAD benchmark or upload their own
time series for analysis.

e Fast Evaluation at Scale: We develop a highly optimized ver-
sion of the time series-specific evaluation measure VUS [2],
achieving massive speed-ups through algorithmic redesign and
GPU acceleration (Fig. 3). This new version maintains the theoret-
ical guarantees of the original measure, while making it practical
for large-scale benchmark evaluations and integration into Deep
Learning (DL) pipelines.

2 BACKGROUND AND RELATED WORK

Time Series. A time series T € R" is a sequence of real-valued
numbers [T1, Ty, . .., Ty ], where n = |T| is the length of T, and T; is
the i point of T. We focus typically on subsequences, which are
continuous subsets of T of length ¢ starting at position i, defined
as Tip = [Ti, Tit1, - - ., Tive—1]. A dataset D is a set of time series,
which can vary in length, and its size is denoted as |D|.

Anomaly Score Sequence. For a time series T € R", an AD method
(or detector) D returns an anomaly score sequence St. In most
applications, the anomaly score has to be the same length as the
time series.

Anomaly Detection Accuracy. For a time series T € R", an AD
method (or detector) D returns an anomaly score sequence D(T) =
St. The labels L € [0, 1]™ indicate with 0 or 1 if the points in T are
normal or abnormal, respectively. We define Acc : R"” x {0,1}" —
[0, 1] as an accuracy function, for which Acc(D(T), L), namely the
accuracy score, indicates how accurate D is.

Anomaly Detection Methods. Over the years, a wide range of AD
algorithms have been proposed for diverse types of time series, and
applications. They can be grouped into the following families:

e Distance-based methods: These analyze subsequences by com-
paring distances to a given model to detect anomalies.

e Density-based methods: These detect recurring or isolated be-
haviors by evaluating the density of points or subsequences into
a specific representation space.

e Prediction-based methods: These predict future values, or recon-
struct the input, and use the prediction, or reconstructing error,
as an anomaly score.

Despite the diversity of approaches, recent benchmark studies [10]
have consistently shown that there is no single best detector across
heterogeneous datasets.

Ensembling and Model Selection. To address the lack of a univer-
sally best detector, ensemble methods have been proposed. One of
the most widely used is the Averaging Ensemble (Avg Ens in Fig. 1),
which assumes access to M detectors. Each detector outputs an
anomaly score sequence, and these are aggregated (e.g., by simple
averaging) to produce a single score. This strategy has shown strong
empirical results across heterogeneous datasets [4, 12], however,
ensembling methods come with a high computational cost.

Therefore, the only scalable and viable solution for solving AD
over very different time series collected from various domains is
to propose a model selection method that selects, based on time
series characteristics, the best AD methods to run. This topic has
been tackled in several recent research works related to AutoML
(Automated Machine Learning) for the general case of AD [15] and
also for time series [6]. Nevertheless, existing AutoML solutions
require (i) a universal objective function among models, which is not
applicable to AD methods; (ii) a predefined set of features, which is
difficult to obtain for time series due to varying lengths and the lack
of standardized featurization solutions; (iii) running multiple AD
methods several times, which is prohibitively expensive in practice;
or (iv) labeled anomalies, which (in contrast to classification tasks)
are difficult to obtain. Therefore, more work is needed to make
AutoML solutions applicable to TSAD.

Evaluation Measures. Evaluating anomaly detectors over time
series is non-trivial, and a variety of measures have been proposed.
They can be grouped into the following categories:

e Threshold-Dependent Measures: They require converting
continuous anomaly scores into binary predictions using a thresh-
old. Popular measures include precision, recall, and F1-score,
which assess the overlap between predicted anomalies and ground-
truth labels. However, their performance is sensitive to the choice
of threshold, and they often fail to capture partial overlaps be-
tween predicted and actual anomaly regions [14].

e Threshold-Independent Measures: To overcome these limi-
tations, threshold-independent measures have been developed.
The most widely used are the Area Under the Precision-Recall
Curve (AUC-PR) and Area Under the Receiver Operating Charac-
teristic Curve (AUC-ROC). While these measures provide a more
holistic view of a model’s performance, they still fail to account
for the temporal nature of anomalies.

e Time series-specific Measures: To address these shortcom-
ings, time series-specific measures have been proposed, such as
Volume Under the Surface (VUS) [2]. This family of measures
evaluates the detection performance over a range of tolerance
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Figure 2: Proposed architecture of the model selection frame-
work MSAD

and latency parameters. However, the original VUS implemen-
tation suffers from high computational complexity, making it
impractical for large-scale benchmarking. Our work builds upon
VUS, proposing a redesigned and highly efficient version that
enables fast and scalable evaluation.

3 PAST WORK: MODEL SELECTION FOR TSAD

In this section, we outline our contribution to the problem of model
selection for TSAD. We propose a novel framework that refor-
mulates model selection as a time series classification task. This
approach enables us to learn which AD method performs best based
on the characteristics of the input time series. Our contribution
includes: (i) a generic and extensible framework for model selec-
tion in TSAD, (ii) an extensive evaluation of a wide range of time
series classifiers, and (iii) an interactive web-based application for
visualizing and analyzing model selection results.

3.1 Choose Wisely

Time series classification has shown promising results in both cross-
domain settings [5] and domain-specific applications such as health-
care [13]. Driven by such examples, we propose an approach to
turn TSAD into a time series classification problem that will help
identify the most suitable anomaly detector for a given series.

We begin by constructing a classification dataset, where each
time series is labeled with the anomaly detection method that per-
forms best on it, selected from a pool of 12 detectors. Classifiers are
then trained to predict the optimal detector based solely on the in-
put time series. In our initial work [12], we conducted an extensive
evaluation of this strategy, testing over 128 classifier configurations
across 16 families, including both feature-based and deep learning
models. The results demonstrated that model selection not only
improves performance over individual detectors but does so while
remaining comparable in execution time.

3.2 MSAD

Model Selection for Anomaly Detection (MSAD) is an extension of the
approach mentioned above. While the previous version predicted
a single detector for each time series, MSAD can predict multiple

good detectors as long as weights on how to combine them with a
simple weighted average approach.

The framework’s architecture, shown in Figure 2, operates in
three main stages:

o Preprocessing: Each time series is segmented into non-overlapping
subsequences of fixed length. These segments are used as inputs
to classification models, ensuring compatibility across models
that require uniform input sizes.

o Classification: A set of classifiers, ranging from feature-based
models to deep learning architectures (including convolutional
and transformer-based networks), are trained to predict the most
suitable anomaly detector. When multiple detectors are selected
(top-k setting), the output probabilities serve as weights for com-
bining anomaly scores.

o Score Aggregation: Using either a voting or averaging strategy,
detector scores are combined to produce a final anomaly score for
the input time series. This allows for flexible trade-offs between
accuracy and execution time by varying the parameter k, which
controls the number of detectors combined.

To evaluate the effectiveness of our framework, we conduct
extensive experiments on a large and heterogeneous benchmark
comprising 1980 time series and 12 AD methods. We assess per-
formance in both supervised (in-distribution) and unsupervised
(out-of-distribution) settings. The key results are as follows:

o Model selection methods consistently outperform individual de-
tectors and even the Averaging Ensemble baseline in terms of
accuracy.

o Selecting and combining a small number of detectors (k > 1)
yields improved performance with significantly reduced execu-
tion time compared to ensembling all detectors.

e Deep learning classifiers, particularly convolutional architec-
tures, demonstrate the highest selection accuracy and robustness
across domains.

o In out-of-distribution evaluations, model selection approaches
maintain strong performance, validating their generalization
capabilities.

To support reproducibility and further exploration, we release
all experimental data and provide ADecimo, a web application that
allows users to browse, compare, and analyze the performance of
model selection methods across the benchmark.

3.3 ADecimo

To facilitate exploration and application of our model selection ap-
proach, we developed ADecimo [4], an interactive web application
designed to bridge the gap between complex experimental results
and practical usability. The system enables three primary modes of
interaction. First, users can explore benchmark-wide performance
results to identify the best model selection strategies for their do-
main. Second, they can dive into individual time series and visually
compare the selected detector’s output against all others, enabling
intuitive validation of the selection’s quality. Third, users can up-
load their own time series and test pre-trained model selectors on
real or synthetic data.
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Figure 3: Runtime per time series for various evaluation
measures when applied to the entire TSB benchmark.

4 FUTURE WORK

Next-Generation TSAD Evaluation Measures. A core component
of TSAD research is the ability to evaluate detectors in a way that
accurately captures the temporal nature of anomalies. Existing mea-
sures are often threshold-dependent or adapted from domains such
as information retrieval, limiting their applicability to TSAD. We are
currently developing a highly efficient, next-generation evaluation
measure, based on the recently proposed VUS measure [2]. This
new measure retains the expressive power of VUS while drastically
reducing its computational cost by leveraging algorithmic redesign
and hardware acceleration.

In Figure 3, we present preliminary results on the full TSB-UAD
benchmark, which includes nearly 1,900 time series of varying
lengths (up to 600k points). Our lightweight CPU-based version,
denoted VUS — PR, is already up to two orders of magnitude faster
than the current implementation of VUS (note that the y-axis, indi-
cating the runtime per time series, is in logarithmic scale). Moreover,
our highly optimized, GPU-based version is consistently up to three
orders of magnitude faster and closely matches the runtime perfor-
mance of AUC-PR while providing the full functionality of VUS.
In the continuation of this research, we will provide a detailed
analysis of the implementation and the performance of our new
evaluation measure, and release them as part of an open-source
TSAD evaluation toolkit. Additionally, we plan to make it scalable
to billion-point time series. By making time-aware evaluation prac-
tical at scale, we aim to pave the way for more ambitious model
development and benchmarking.

Reinforcement learning for TSAD. While deep learning has trans-
formed fields like computer vision and NLP, its impact on TSAD has
been more limited. Recently, DL-based model selection frameworks
have unlocked new directions of research in the domain of TSAD.
While this has shown promising results, it is inherently a proxy task
as the classifier learns to predict the best detector(s) rather than
directly optimizing anomaly detection quality. To overcome this
limitation, we plan to explore reinforcement learning frameworks
and design reward functions that use feedback from evaluation

measures, enabling learning directly from actual anomaly detection
performance. In this context, RL offers the flexibility to incorporate
additional objectives, such as computational efficiency, into the re-
ward function. This could enable model selection systems to jointly
optimize for both detection accuracy and detector runtime, making
them more practical for real-world deployment.

Building a knowledge base for TSAD. TSAD has seen a lot of im-
provement in recent years, and model selection with DL approaches
aim to push even more the performance barrier. However, little
attention has been given to explaining the anomaly detection pro-
cess in time series. Towards this direction, we intend to construct a
data-driven repository that maps time series and anomaly charac-
teristics to detector performance, offering insight into why certain
methods work better on specific data types.

Together, these next steps aim to move TSAD closer to robust
systems that can scale to real-world applications.
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