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ABSTRACT
We develop scalable algorithms that support decision-making using
vast amounts of data, robustly and transparently. The wealth and
availability of data open new opportunities to power and support
decision-making, but also introduce challenges. Data’s incredible
volume and multimodality—appearing in different forms, such as
text, images, or uncertain predictions—make data-driven decision-
making computationally challenging. Tools used in the decision-
making pipeline, including Machine Learning (ML) models and
constrained optimization solvers, are complex, resource-intensive
and memory-bound, resulting in poor performance and poor trans-
parency. In contrast, we propose efficient, interpretable, and trans-
parent in-database decision-support systems. We explore this land-
scape across three thrusts. First, we design methods to scale sto-
chastic optimization to orders of magnitude more data than modern
solvers can handle. Second, we augment optimization support with
mechanisms to derive solutions that better represent the underlying
data. Finally, we envision mechanisms for provenance auditing in
ML models to enhance their transparency, and detect privacy and
copyright violations during their training.
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1 INTRODUCTION
The unprecedented growth in the size, availability and multimodal-
ity of data has revolutionized a broad spectrum of applications
through enhanced data-driven capabilities [13], while necessitat-
ing fundamental shifts in the way systems and algorithms are de-
signed [14, 29]. Notably, this applies to decision-making. Across a
broad range of domains, including finance [11], transportation [9],
manufacturing [5], and even privacy-sensitive applications such as
healthcare [26] and journalism (as detailed in Section 3); decision-
makers seek optimal decisions based on huge volumes of data given
a complex set of interacting constraints and objectives.

However, traditional decision-making workflows are compli-
cated, uninterpretable, and unscalable. They require slow, error-
prone data movement between the database and main-memory; and
involve complex interplays between the data, predictivemodels, and
in-memory optimizers — each of which present unique challenges.
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Data can be voluminous, stochastic, and multimodal. Predictive
models, which are used to address uncertainty and multimodality
of the data, lack interpretability and transparency [17]— making it
hard for users to trust decisions based on them. In-memory opti-
mizers like Gurobi and IBM CPLEX cannot address the scalability
requirements of modern data-intensive applications [3], nor do
they provide mechanisms to incorporate data-centric considera-
tions such as choosing diverse tuples in a way that better represents
the underlying data.

We democratize data-driven decision-making by proposing declar-
ative SQL-like mechanisms for users to express their decision-
making problems to a database system. To solve these problems, we
develop in-database methods that scalably, interpretably, and trans-
parently derive risk-averse and diverse decisions from uncertain
and multimodal data. In this work, we discuss our results, ongoing
directions, and future vision across three thrusts:
• We design in-database methods for scalable stochastic optimiza-

tion; example applications include portfolio optimization, internet-
scale marketing, and public health. We further discuss possible ex-
tensions for multi-stage explainable decision-making. (Section 2)

• We propose augmenting optimization support with mechanisms
to derive solutions that better represent the underlying data;
example applications include compiling social media posts ex-
pressing diverse viewpoints. (Section 3)

• We envision mechanisms for provenance auditing in ML models
to enhance their transparency, and address concerns on privacy
violations during their training, with further applications to veri-
fying machine unlearning and MLmodel maintenance. (Section 4)

2 SCALABLE DECISION MAKING UNDER
UNCERTAINTY

Uncertainty is inherent in many applications, as data may be sam-
pled from predictive models or simulations. Consider an investor
selecting a stock portfolio, under budgetary and risk constraints.
Values of uncertain attributes such as profits from potential in-
vestments are unknown, but can be simulated via models [30].
The simulations give different scenarios of how each company’s
stock price may evolve. The number of scenarios needed to ac-
curately approximate potential profits and risks typically exceeds
millions [6]. The problem’s scale further increases with the number
of tuples—considering thousands of different holding periods for
each company leads to multimillion-tuple relations. This large-scale
stochastic optimization problem involves millions of scenarios over
millions of tuples—far exceeding the limits of prior solvers [4].

We build scalable in-database tools for stochastic optimiza-
tion [12]. Nonexperts can specify risk-constrained optimization
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(a) Stock Market Data contains
stochastic attributes, e.g., gains.

(b) Models simulate numerous
scenarios of possible future gains.

(c) Stochastic SketchRefine finds near-optimal
portfolios from millions of tuples in minutes.

(d) Its solution indicates how many of
which stocks to buy and when to sell.

Figure 1: Building Stock Portfolios with Stochastic SketchRefine

problems to a database through our SQL extension, the Stochas-
tic Package Query Language (SPaQL+). Our approach treats the
multiplicity of each tuple in the final solution (Figure 1d) as a de-
cision variable, expresses the constraints and the objective in the
query as functions of these decision variables, and incorporates a
set of scenarios to convert the problem to an approximating deter-
ministic Integer Program (IP). A particular challenge is to handle
nonlinear and often nonconvex risk metrics, e.g., VaR [19] and
CVaR [27], during math programming as optimization problems
with nonlinear constraints require significantly higher solver run-
times [12]. We propose Risk Constraint Linearization (RCL), a novel
technique for replacing nonlinear risk constraints by linear ap-
proximations. Our proposed algorithm, RCLSolve, reduces queries
to approximating Integer Linear Programs (ILPs) whose solutions
have a (1−𝜖)-optimality guarantee [12]. While RCLSolve efficiently
handles many scenarios, it struggles on large relations (Figure 1c).

We thus propose Stochastic SketchRefine [12], a divide-and-
conquer framework that partitions large relations into groups of
correlated tuples with similar values and stochastic properties. It
first solves the problem over the representatives of each partition
to obtain an intermediate ‘sketch’ solution, and ‘refines’ the sketch
solution by sequentially replacing selected representatives with
tuples from their partitions, using RCLSolve to solve each subprob-
lem. By significantly reducing the number of decision variables
RCLSolve needs to handle at a time, Stochastic SketchRefine can
solve optimization problems with a (1 − 𝜖)2-optimality guarantee
on multimillion tuples relations, far exceeding the limits of prior
approaches [4] (Figure 1c).

Solutions generated by Stochastic SketchRefine, e.g., that of Fig-
ure 1d, prescribes single-stage decisions—buy certain stocks today
and sell them after certain durations. However, many applications
requiremulti-stage anticipatory decision-making. For exam-
ple, if current forecasts predict stock prices to drop, the sensible
decision is to defer purchases, and buy stocks at their anticipated
lowest prices. Furthermore, profits from short-term investments can
help build capital for future high-yield purchases that are currently
beyond the user’s budget. Market behaviour is subject to frequent
changes [28], meaning current decisions should be amenable to
future recourse. Going forward, we will thus work onMulti-Stage
Stochastic SketchRefine, which will support multi-stage antici-
patory decision-making on similarly large scales.

We further envision generating causal explanations behind
the decisions prescribed by our algorithms. Results like that of
Figure 1d may advocate for purchasing shares of relatively lesser

known companies. Generating succinct explanations behind why
the algorithm recommends them can enhance a user’s trust on the
results, and help engineers debug the scenario-generating models.
Explanations may help uncover phenomena like correlation (e.g.,
avoiding buying positively correlated stocks to reduce risks), antici-
pation (e.g., deferring purchases due to anticipated price reductions),
future plans (e.g., short term investments for capital building), and
recourse (e.g., selling current shares for better alternatives).

Further work can explore how SPaQL+ can be modified to make
our methods more accessible to non-experts, and evaluate whether
LLMs can generate SPaQL+ queries from natural language text.

3 DIVERSE AND REPRESENTATIVE
EMBEDDING SELECTION

Consider a news service compiling social media reactions to a hotly-
discussed topic. They can use a package query [3] to select a set
of tweets such that the total length and number of selected tweets
stay within given thresholds, while maximizing their total views
(Figure 2b). However, a simple selection of the most viewed tweets
may appear repetitive and ignore unpopular viewpoints. The editor
may prefer packages with more diverse tweets that include the full
range of opinions (i.e., have greater coverage over the set of tuples).

We thus want to be able to systematically trade off the objective
value (total views) to achieve greater diversity and coverage of
opinions (Figure 2). However, incorporating diversity and coverage
constraints into our package query framework is highly nontrivial.
Our approach uses high-dimensional vector representations of mul-
timodal data such as tweets. Existing models can be used to create
such vector embeddings in a way that ensures the representations
of similar items are located closely in the vector space [23].

Diversity constraints can now be formalized within the frame-
work of max-min diversification: we define the diversity of a pack-
age as the distance between its closest embeddings [1]. Given the
embeddings of each data point, we can identify sets comprising
points that are close together and add additional constraints speci-
fying that only one point per set can appear in the final solution.
Existing max-min diversification approaches accomplish this by
either (i) forming balls around every tuple, constraining the number
of tuples taken from each ball to be at most 1, and using trial and er-
ror to find the optimal ball radius [1, 18], or (ii) constructing a graph
with edges between nearby embeddings [32], and requiring that no
two adjacent tuples can be included in the result. These approaches
add a huge number of constraints to the ILP, considerably slowing
down the solver. To avoid this issue, we view constraint generation
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(a) Social Media content offer diverse view-
points on different topics.

(b) “How the internet reacted to the Arab
Spring”—An editor wishes to compile
tweets on a topic as front-page news.

(c) Highly viewed tweets will be repetitive and not cover the full
range of opinions. We return pareto-optimal collections of tweets
that trade-off total views for more diversity and coverage. Our tech-
nique enforces these requirements with many fewer linear con-
straints in ILPs than the prior art, reducing runtime significantly.

Figure 2: Scalable, Diverse and Comprehensive Tweet Selection

as a clique cover problem [16]. Consider three embedded tweets,
all of which are mutually within a small distance 𝜏 of each other.
Instead of redundantly adding three different constraints for each
edge, we exploit the fact that they form a subclique, and add a single
linear constraint, 𝑥1 +𝑥2 +𝑥3 ≤ 1, where 𝑥𝑖 is the multiplicity of the
𝑖-th tuple in the relation. Solving clique-cover problems on dense
networks is time-consuming [2], so we first sparsify the graph by
identifying a near-minimal set of norm balls that cover nearly all
pairs of neighbouring embeddings. Each ball represents a linear
constraint in the ILP, so reducing their number reduces the ILP’s
number of constraints, which allows us to get solutions faster. Pairs
of neighboring points that are not covered by a common ball then
form edges in the aforementioned graph. We use existing clique
cover approximators [8] to find subcliques on this significantly
sparsified graph, and add one linear constraint for each subclique.

Coverage constraints require that for every embedding, at least
one embedding (including itself) with distance within a threshold
𝑟 from it must appear in the solution. During tweet selection, this
ensures that every opinion, no matter how atypical, gets some rep-
resentation in the final collection. This requirement can be naively
expressed in the ILP by adding a linear constraint for each tuple
requiring the solver to take at least one embedding from an 𝑟 -radius
ball centered around it. We formulate a novel linear transformation
of this naive set of constraints, which allows coverage requirements
to be expressed by far fewer linear constraints, allowing packages
to be produced in much lower runtime.

Overall, our constraint-reduced ILP formulation reduces the
number of constraints in the ILP and the runtime required to solve
them by orders of magnitude in thousand-tuple relations (Figure 2c).
We are working on methods to reduce the number of variables in
the ILP to scale diverse decision-making on larger relations. In
particular, we are exploring approaches to integrate our constraint
reduction techniques with Progressive Shading [21], the current
state of the art solver for processing traditional package queries,
which can scale to billions of tuples. Integrating Progressive Shad-
ing with the additional information provided by high-dimensional
embeddings and the additional requirements imposed by diversity
and coverage constraints remains an open challenge.

We are further investigating indexing and parallelization tech-
niques to accelerate our approaches on vector databases. Our prob-
lem setting raises interesting avenues for creating novel vector

indexing techniques. In contrast to existing vector indexes which
are built to answer nearest neighbour queries approximately [24],
we require an index that exactly identifies every embedding within
a norm ball. To this end, we are currently formulating the 𝐿∞-index,
a sound filtration mechanism that finds neighboring embeddings
in 𝐿𝑝 metric spaces using trivially parallelizable operations.

4 DATA PROVENANCE ON ML MODELS
Machine learning (ML) classifiers can help further tailor the re-
sulting packages based on user preferences. For example, they can
detect hate speech in social media responses, which package query
solvers can then filter out using base predicates. However, the opac-
ity of the training history of these models raises privacy concerns.
Existing approaches to address them require extensive interven-
tions to training procedures [31], are heuristic by nature and hence
inaccurate [7, 10], and/or are application-specific [22]. We thus
wish to create robust tools to detect privacy infringement during
model training. Given black box access to a model’s inferences,
and differentially private access to the set of data points 𝑇 that
the model trainer claims were used during its training, our en-
visioned algorithm determines a lower bound on the probability
that the model was not trained on any of the user’s ‘protected’
data points 𝑃 . We posit that the presence of these protected data
points in the training set will cause perturbations in the decision
boundary that cannot be explained by the claimed training data
alone (Figure 3c). To detect these perturbations, our approach will
carefully issue queries to the model to determine where its decision
boundary passes through (Figure 3b). Once the decision bound-
ary’s corridor is sufficiently restricted by a set of observations 𝑂 ,
it will derive 𝑃𝑟 (𝑂 |𝑀 (𝑇 ∪ 𝑃)) − 𝑃𝑟 (𝑂 |𝑀 (𝑇 )), where 𝑃𝑟 (𝑂 |𝑀 (𝑆))
indicates the probability of inferences 𝑂 being observed from a
model𝑀 trained on a dataset 𝑆 . A large difference between the two
probabilities indicates a higher chance of the model being trained
on sensitive information. Inferring these probabilities is an open
challenge for which we plan to explore ideas from model behaviour
attribution [25], and decision boundary characterization [15]. This
framework can also be modified to verify if ML models have truly
unlearnt data [33] and detect when the amount of data drift justifies
retraining models [20]. For further possible applications, we wish
to explore model debugging, and analyzing updates to a database
from an ML provenance auditing lens.
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(a) An ML classifier can learn different decision
boundaries from a given training dataset based on
its training algorithm and hyperparameter settings.

(b) Our oracle queries the model to narrow down
the passage through which the decision boundary
passes.

(c) Unexpected protrusions in the decision bound-
ary unexplained by the ‘claimed’ training data raise
the probability of the model having access to ‘hid-
den’ data points during training.

Figure 3: Detecting if a model was trained on private/copyrighted information

5 SUMMARY
We present our work on augmenting in-database support for scal-
ably, transparently, and explainably taking risk-averse, diverse, and
representative decisions. Our work combines aspects of Operations
Research, Optimization, Machine Learning, and Data Management
in novel ways. We thus encourage cross-disciplinary discussions
and collaborations on the open challenges that remain to realize
our vision of creating fully democratized, scalable and transparent
decision-making tools.
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