
Single-Source Regular Path Querying in Terms of Linear Algebra
Georgiy Belyanin

Saint-Petersburg State University
Saint-Petersburg, Russia
belyaningeorge@ya.ru

Rodion Suvorov
Saint-Petersburg State University

Saint-Petersburg, Russia
suvorov.53245324@gmail.com

Semyon Grigorev
Saint-Petersburg State University

Saint-Petersburg, Russia
s.v.grigoriev@mail.spbu.ru

ABSTRACT
Two-way regular path queries (2-RPQs) allow one to use regular
languages over edges and inverted edges in edge-labelled graph
to constrain paths of interest. 2-RPQs are (partially) adopted in
different real-world graph analysis systems and have become a
part of the GQL ISO standard. However, the performance of 2-
RPQs on real-world graphs remains a bottleneck for wider adoption.
Utilisation of high-performance sparse linear algebra libraries for the
algorithm implementation allows one to achieve significant speedup
over competitors on real-world data and queries.

We propose a new breadth-first-search-based algorithm that lever-
ages linear algebra for evaluating single-source regular path queries.
We integrate it into the LAGraph graph processing algorithm in-
frastructure and provide in-depth performance comparison on the
large real-world knowledge bases. Additionally, we present exten-
sive analysis of its performance across different query types using
synthetic data, comparing it with various databases and other linear
algebra-based approaches.

VLDB Workshop Reference Format:
Georgiy Belyanin, Rodion Suvorov, and Semyon Grigorev. Single-Source
Regular Path Querying in Terms of Linear Algebra. VLDB 2025 Workshop:
Large Scale Graph Data Analytics.

VLDB Workshop Artifact Availability:
The source code, data, and/or other artifacts have been made available at
https://github.com/SparseLinearAlgebra/la-rpq.

1 INTRODUCTION
Language-constrained path querying [7] is a way to search for paths
in an edge-labeled graphs where constraints are expressed in terms
of a formal language. The language restricts the set of valid paths:
the sequence of labels along a path must form a sentence belonging
to the language. Regular languages are the most popular class of
constraints used as navigational queries in graph databases.

Queries that employ regular languages to specify constraints are
called regular path queries or RPQs. First introduced in 1989 by
Alberto O. Mendelzon and Peter T. Wood [28], RPQs have been
intensively studied. Different extensions of RPQs are studied too:
two-way RPQ or 2-RPQ that extends the alphabet of RPQs by the
inverse of relationship symbols [12], conjunctive RPQ or CRPQ
that allows one to check several (parallel) paths [13]. Regular path
constraints and their extensions have been (partially, in some cases)

This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment. ISSN 2150-8097.

adopted in numerous graph analysis systems and query languages,
including Cypher [20] and PGQL [34]. Moreover, RPQ is part of the
ISO standard for the GQL graph query language [23], and the core
of SPARQL 1.1 RDF query language [1].

Despite their long history of theoretical and applied research, as
well as real-world adoption, RPQs (and related extensions) remain in
the focus of research. One of the important directions is the implemen-
tation and optimization of RPQ evaluation algorithms [8] to achieve
better performance in real world cases, and performance-targeted
solutions are still actively developed [5, 6, 27]. Thus, designing new,
efficient algorithms for RPQ evaluation remains an active challenge,
as highlighted by Angela Bonifati et al in [8]. Various approaches
have been proposed to enhance RPQ evaluation performance, rang-
ing from specialized indexing techniques [5, 26] to parallel and
distributed computing models [18, 21, 29, 37].

Sparse linear algebra has emerged as a powerful paradigm for
high-performance graph analysis, championed by the GraphBLAS
community [24]1. A vast number of graph analysis algorithms, such
as PageRank or triangle centralities, can be expressed in terms of
linear algebra2 and the respective implementations demonstrate
promising performance in real-world cases [30]. Even more, it has
been shown that sparse linear algebra enables a high-performance
algorithm for more expressive query classes, such as Context-Free
Path Queries (CFPQ) [33]. However, to our knowledge, there are
only a few studies on linear-algebra-based RPQ algorithms.

On the one hand, the modern graph database FalkorDB3 (for-
merly RedisGraph) [11] is based on SuiteSparse:GraphBLAS [16],
reference implementation of the GraphBLAS API, and uses linear
algebra for graph analysis. While FalkorDB supports a subset of the
Cypher query language, including some regular constraints, there is
no detailed analysis of the respective algorithm.

At the same time, the linear-algebra-based RPQ evaluation algo-
rithm was recently proposed by Diego Arroyuelo et al [4]. Despite
using sparse matrices and parallel computations, this solution exhibits
performance limitations that are evident from the evaluation [4].

On the other hand, there are BFS-based strategies for the RPQ
evaluation (e.g. [25])4. Notably, BFS and its variants can be expressed
using linear algebra [14], suggesting an opportunity to develop a
linear-algebra-based RPQ algorithm with BFS-like traversal at its
core. We explore this direction in our work.

To summarize, in this work we make the following contributions.
(1) A novel BFS-based algorithm (LARPQ) for single-source

(or symmetrically, single-destination) 2-RPQ is proposed.
1GraphBLAS community web page: https://graphblas.org/
2An almost complete list of graph analysis algorithms in terms of linear algebra:
https://github.com/GraphBLAS/GraphBLAS-Pointers.
3Sources of FalkorDB on GitHub: https://github.com/FalkorDB/falkordb
4For an overview of primary RPQ evaluation techniques, including relational algebra
and automata-based approaches, and their optimization, we refer to the book “Querying
Graphs” by Angela Bonifati et al [8].

https://github.com/SparseLinearAlgebra/la-rpq
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://graphblas.org/
https://github.com/GraphBLAS/GraphBLAS-Pointers
https://github.com/FalkorDB/falkordb

The algorithm is based on linear algebra: it is expressed
in terms of operations over sparse boolean matrices. This
fact allows one to utilize high-performance parallel libraries,
such as SuiteSparse:GraphBLAS [16], for 2-RPQ evaluation.
The correctness of the proposed algorithm is proven.

(2) Our implementation of the proposed algorithm, based on
SuiteSparse:GraphBLAS, is evaluated and compared with
other linear algebra-based solutions such as FalkorDB and
the algorithm proposed by Diego Arroyuelo et al [4], with
graph databases Blazegraph and state-of-the-art Millenni-
umDB. Experimental results on real-world datasets (Wiki-
data with query logs from the MillenniumDB path query
challenge [19] and Yago-2S) demonstrate that our solu-
tion achieves competitive performance. While occasionally
slower on individual queries, our algorithm shows consistent
average speedups: 6.8× for the algorithm of Diego Arroyuelo
et al, 11.3× for MillenniumDB, 18.9× for FalkorDB, and
16.8× for Blazegraph.

2 PRELIMINARIES
In this section, we provide the theoretical basics of graph theory
and formal language theory required to define the RPQ problem
and to describe our solution and the algorithm proposed by Diego
Arroyuelo et al.

First we define the edge-labeled graph that we use as a data model.

Definition 2.1 (Edge-labelled graph). A quadruple
G = ⟨𝑉 , 𝐸, 𝐿, 𝜆G⟩ is called an edge-labelled graph (or a graph) if:

• 𝑉 is a finite set of vertices;
• 𝐸 ⊆ 𝑉 ×𝑉 is a finite set of edges;
• 𝐿 is a finite set of labels;
• 𝜆G : 𝐸 ↦→ 2𝐿 represents edge labels.

Any finite set can be enumerated by natural numbers from 1 to 𝑛.
For the rest of the paper, we will assume that the vertices of the graph
G = ⟨𝑉 , 𝐸, 𝐿, 𝜆G⟩ are enumerated, and without loss of generality
𝑉 = {1, 2, ..., |𝑉 |}.

Let G = ⟨𝑉 , 𝐸, 𝐿, 𝜆G⟩ be an edge-labelled graph. Introduce sym-
bols and sets:

• 𝑎− ∉ 𝐿 for 𝑎 ∈ 𝐿, (𝑎−)− = 𝑎 and 𝑎 = 𝑏 ⇔ 𝑎− = 𝑏−

• 𝑒− = (𝑣,𝑢) where 𝑒 = (𝑢, 𝑣).
• 𝐸− = {𝑒− | 𝑒 ∈ 𝐸}.
• 𝐿− = {𝑎− | 𝑎 ∈ 𝐿}.
• 𝜆−G : 𝐸− ↦→ 2𝐿

−
, 𝜆−G (𝑒

−) = {𝑎− | 𝑎 ∈ 𝜆G (𝑒)}.
We also need these sets to generalize the definition of the directed

graph to be able to traverse it in both directions:

• 𝐸↔ = 𝐸 ∪ 𝐸− .
• 𝐿↔ = 𝐿 ∪ 𝐿− .
• 𝜆↔G : 𝐸↔ ↦→ 2𝐿

↔
, 𝜆↔G (𝑒) = 𝜆G (𝑒) ∪ 𝜆−G (𝑒) .

• G↔ = ⟨𝑉 , 𝐸↔, 𝐿↔, 𝜆↔⟩.

Definition 2.2 (path). A path 𝜋 = (𝑒1, 𝑒2, ..., 𝑒𝑛) of length 𝑛 in the
graph G = ⟨𝑉 , 𝐸, 𝐿, 𝜆G⟩ from 𝑢1 to 𝑣𝑛 is a finite sequence of edges
𝑒𝑖 = (𝑢𝑖 , 𝑣𝑖) ∈ 𝐸 s.t. ∀1 ≤ 𝑖 ≤ 𝑛 − 1 𝑣𝑖 = 𝑢𝑖+1.

We say there are zero-length paths represented by an empty
sequence from 𝑣 to 𝑣 for all 𝑣 ∈ 𝑉 .

Definition 2.3 (2-way path). A 2-way path (2-path)𝜋 = (𝑒1, 𝑒2, ..., 𝑒𝑛)
in the graph G = ⟨𝑉 , 𝐸, 𝐿, 𝜆G⟩ is a path in G↔ = ⟨𝑉 , 𝐸↔, 𝐿↔, 𝜆↔G ⟩.

The 𝜔 maps paths to words as defined below.
• 𝜔G (𝜋) = {𝑎1 · 𝑎2 · ... · 𝑎𝑛 | 𝑎𝑖 ∈ 𝜆G (𝑒𝑖)} for path 𝜋 =

(𝑒1, 𝑒2, ..., 𝑒𝑛) in G.
• 𝜔↔G (𝜋) = {𝑎1 · 𝑎2 · ... · 𝑎𝑛 | 𝑎𝑖 ∈ 𝜆↔G (𝑒𝑖)} for 2-path

𝜋 = (𝑒1, 𝑒2, ..., 𝑒𝑛) in G.
where · denotes concatenation.

Regular languages (RLs) represent the set of all languages that are
accepted by finite automata. However, we are going to look for 2-way
paths for which we need an NFA modification to be introduced.

Definition 2.4 (2-way non-deterministic finite automaton). A 2-
way non-deterministic finite automaton (2-NFA) is a tuple N =

⟨𝑄, Σ,Δ, 𝜆N , 𝑄𝑆 , 𝑄𝐹 ⟩, where:
• 𝑄 is a finite set of states;
• Σ is a finite alphabet;
• Δ ⊆ 𝑄 ×𝑄 is transition relation;
• 𝜆N : Δ ↦→ 2Σ

↔
assigns a set of labels (including inverses)

to each transition;
• 𝑄𝑆 ⊆ 𝑄 is a set of starting states;
• 𝑄𝐹 ⊆ 𝑄 is a set of final states.

The set of languages accepted by 2-NFAs coincides with the set
of all regular languages over Σ↔. Let [[N]] = R where R is the RL
accepted by the 2-NFA N .

Notice that 2-NFA can be seen as a graph GN = ⟨𝑄,Δ, Σ↔, 𝜆N⟩
equipped with the set of starting states 𝑄𝑆 ⊆ 𝑄 and the set of
final states 𝑄𝐹 ⊆ 𝑄 . Analogously introduce sets Δ− , 𝜆−N and the
map 𝜔N (𝜋) = {𝑎1 · 𝑎2 · ... · 𝑎𝑛 | 𝑎𝑖 ∈ 𝜆N (𝛿𝑖)} for the paths
𝜋 = (𝛿1, 𝛿2, ..., 𝛿𝑛) in the graph GN .

Conversely, a graphG = ⟨𝑉 , 𝐸, 𝐿, 𝜆G⟩ equipped with some𝑉𝑆 ⊆ 𝑉
can be seen as 2-NFANG = ⟨𝑉 , 𝐿, 𝐸, 𝜆↔G ,𝑉𝑆 ,𝑉 ⟩. Such 2-NFA accepts
the language:

[[N𝐺]] =
⋃

2-path 𝜋G in G
from 𝑣𝑆 ∈𝑉𝑆

𝜔↔G (𝜋G)

Thus, we can treat the evaluation of 2-RPQs with a fixed set of
starting vertices as an intersection of 2-NFAs.

Definition 2.5 (2-NFA intersection). For two arbitrary 2-NFAsN1 =
⟨𝑄1, Σ1,Δ1, 𝜆N1 , 𝑄𝑆1, 𝑄𝐹1⟩ and N2 = ⟨𝑄2, Σ2,Δ2, 𝜆N2 , 𝑄𝑆2, 𝑄𝐹2⟩ in-
troduce a new automaton N = N1 × N2 called the intersection of
2-NFAs N1 and N2 where N = ⟨𝑄, Σ,Δ, 𝜆N , 𝑄𝑆 , 𝑄𝐹 ⟩ s.t.:

• 𝑄 = 𝑄1 ×𝑄2;
• Σ = Σ1 ∩ Σ2;
• Δ = {((𝑞1, 𝑞2), (𝑞′1, 𝑞

′
2)) | (𝑞1, 𝑞

′
1) ∈ Δ1, (𝑞2, 𝑞′2) ∈ Δ2};

• 𝜆N (((𝑞1, 𝑞2), (𝑞′1, 𝑞
′
2))) = 𝜆N1 ((𝑞1, 𝑞′1)) ∩ 𝜆N2 ((𝑞2, 𝑞′2));

• 𝑄𝑆 = 𝑄𝑆1 ×𝑄𝑆2;
• 𝑄𝐹 = 𝑄𝐹1 ×𝑄𝐹2.

The resulting 2-NFA accepts the intersection of the languages
defined by the initial automata N1 and N2:

[[N1 × N2]] = [[N1]] ∩ [[N2]] .
We have all the necessary preliminaries to formally state the

problem solved by the 2-RPQ algorithm.

Definition 2.6 (Two-way regular path query). Recall two-way regular
path query (2-RPQ) a 4-tuple ⟨G,R,𝑉𝑠 ,𝑉𝑓 ⟩ where G = ⟨𝑉 , 𝐸, 𝐿, 𝜆G⟩
is a graph, R is a regular language over the alphabet 𝐿↔,𝑉𝑠 ⊆ 𝑉 is a
set of starting nodes, and 𝑉𝑓 ⊆ 𝑉 is a set of final nodes.

Frequent practical cases are queries with fixed starting or final
vertex. So, for 2-RPQ Q = ⟨G,R,𝑉𝑠 ,𝑉𝑓 ⟩ we are interested in an
efficient way of evaluating these maps:

• Single-source reachability (𝑉𝑠 = {𝑣𝑠 },𝑉𝑓 = 𝑉):

[[Q]]𝑆𝑆𝑅 =

{
𝑢 ∈ 𝑉

����� ∃ 2-path 𝜋 in G from 𝑣𝑠 to 𝑢
and 𝜔↔G (𝜋) ∩ R ≠ ∅

}
• Single-destination reachability (𝑉𝑠 = 𝑉 ,𝑉𝑓 = {𝑣 𝑓 }):

[[Q]]𝑆𝐷𝑅 =

{
𝑢 ∈ 𝑉

����� ∃ 2-path 𝜋 in G from 𝑢 to 𝑣 𝑓

and 𝜔↔G (𝜋) ∩ R ≠ ∅

}
For such partial cases we introduce the following short versions:

𝑄𝑆𝑆𝑅 = ⟨G,R, 𝑣𝑠 ⟩ and 𝑄𝑆𝐷𝑅 = ⟨G,R, 𝑣 𝑓 ⟩ respectively.

3 LINEAR ALGEBRA, GRAPHS AND
RELATIONS

In order to operate with graphs in terms of linear algebra we need to
see how algebraic objects are connected with set relations and how
the relations are connected to graph theory.

For two enumerated finite sets 𝐴 = {1, 2, ...𝑛}, 𝐵 = {1, 2, ...,𝑚} for
some 𝑛,𝑚 ∈ N a binary matrix 𝑇 of size |𝐴| × |𝐵 | can be used to
represent a relation T ⊆ 𝐴 × 𝐵: 𝑇𝑖 𝑗 = 1 ⇔ (𝑖, 𝑗) ∈ T . Recall this
matrix 𝑇 a matrix representing the relation T .

We need to define the following linear algebra operations over
the Boolean matrices. Let 𝐴, 𝐵, 𝐶 be the matrices over Boolean
algebra ⟨B = {0, 1},∨,∧,¬, 0, 1⟩. Introduce the following operations
and constants.

Definition 3.1. Zero matrix is a rectangular matrix 0𝑛×𝑘 , such that
0𝑖 𝑗 = 0 for all valid 𝑖 and 𝑗 .

Definition 3.2. For the Boolean matrix 𝐴𝑛×𝑚 , the matrix 𝐵𝑛×𝑚 ,
such that 𝐵𝑖 𝑗 = ¬𝐴𝑖 𝑗 is a complement matrix for the matrix 𝐴. We
denote complementation of 𝐴 as ¬𝐴.

Definition 3.3. For the Boolean matrix 𝐴𝑛×𝑚 , the matrix 𝐵𝑚×𝑛 ,
such that 𝐵𝑖 𝑗 = 𝐴 𝑗𝑖 is a transposed matrix for the matrix 𝐴. We
denote transposition of 𝐴 as 𝐴𝑇 .

Definition 3.4. For the given Boolean matrices 𝐴𝑛×𝑚 and 𝐵𝑛×𝑚 ,
the sum 𝐴 ⊕ 𝐵 is a matrix 𝐶𝑛×𝑚 such that matrix 𝐶𝑖 𝑗 = 𝐴𝑖 𝑗 ∨ 𝐵𝑖 𝑗 .

Definition 3.5. For the given Boolean matrices𝐴𝑛×𝑚 and 𝐵𝑚×𝑘 , the
product𝐴⊗𝐵 is a matrix𝐶𝑛×𝑘 such that matrix𝐶𝑖 𝑗 =

∨𝑚
𝑙=1𝐴𝑖𝑙 ∧𝐵𝑙 𝑗 .

Definition 3.6. For the given Boolean matrices 𝐴𝑛×𝑚 and 𝐵𝑛×𝑚 ,
the masking𝐴⟨𝐵⟩ is a matrix𝐶𝑛×𝑚 such that matrix𝐶𝑖 𝑗 = 𝐴𝑖 𝑗 ∧𝐵𝑖 𝑗 .

Let A, B and C be binary relations over sets 𝑆1, 𝑆2, 𝑆3. Let 𝐴,
𝐵 and 𝐶 be binary matrices representing them. Then the following
correspondences hold.

• 𝐶 = 𝐴 ⊕ 𝐵 ↔ C = A ∪ B where A,B, C ⊆ 𝑆1 × 𝑆2.
• 𝐶 = 𝐴 ⊗ 𝐵 ↔ C = {(𝑖, 𝑘) | (𝑖, 𝑗) ∈ A, (𝑗, 𝑘) ∈ B}

if A ⊆ 𝑆1 × 𝑆2, B ⊆ 𝑆2 × 𝑆3 and
C ⊆ 𝑆1 × 𝑆3.

• 𝐶 = 𝐴𝑇 ↔ C = {(𝑖, 𝑗) | (𝑗, 𝑖) ∈ A} = A−
where A ⊆ 𝑆1 × 𝑆2, 𝐶 ⊆ 𝑆2 × 𝑆1.

• 𝐶 = 𝐴⟨𝐵⟩ ↔ C = A ∩ B,
where A,B, C ⊆ 𝑆1 × 𝑆2.

• 𝐶 = ¬𝐴 ↔ C = {(𝑖, 𝑗) | (𝑖, 𝑗) ∈ 𝑆1 × 𝑆2 \ A}
where A, C ⊆ 𝑆1 × 𝑆2.

For a given arbitrary graph G = ⟨𝑉 , 𝐸, 𝐿, 𝜆G⟩ and 2-NFA N =

⟨𝑄, Σ,Δ, 𝜆N , 𝑄𝑆 , 𝑄𝐹 ⟩ introduce the sets:
• 𝐸𝑎 = {𝑒 | 𝑒 ∈ 𝐸, 𝑎 ∈ 𝜆↔G (𝑒)} for all 𝑎 ∈ 𝐿↔.
• Δ𝑎 = {𝛿 | 𝛿 ∈ Δ, 𝑎 ∈ 𝜆N (𝛿)} for all 𝑎 ∈ Σ↔.

These sets consist of the edges of the graph G and the transitions
of 2-NFA N marked with a label 𝑎. They can be seen as binary
relations over the sets 𝑉 and 𝑄 correspondingly.

Definition 3.7 (Adjacency matrix of the label). Let𝐺𝑎 be the matrix
representing the binary relation 𝐸𝑎 .𝐺𝑎 is called an adjacency matrix
of the label 𝑎.

Definition 3.8 (Boolean decomposition of the adjacency matrix).
A Boolean decomposition of the adjacency matrix 𝐺 is a set of
Boolean matrices {𝐺𝑎 | 𝑎 ∈ 𝐿}.

Boolean decomposition of the adjacency matrices of some real-
world data represented by graphs is a set of sparse matrices. This fact
strictly leads to the idea of exploiting it for an efficient representation
and using sparse matrix operation algorithm implementations.

Also note that for the given graph G = ⟨𝑉 , 𝐸, 𝐿, 𝜆G⟩, 𝐸𝑎
−
= (𝐸𝑎)𝑇

and 𝐺𝑎− = (𝐺𝑎)𝑇 .

4 BFS-BASED SINGLE-SOURCE RPQ IN
TERMS OF LINEAR ALGEBRA

In this section, we describe a single-source linear algebra-based
2-RPQ algorithm and prove its correctness.

Algorithm 1: Single Source 2-RPQ using linear algebra
input :N = ⟨𝑄, Σ,Δ, 𝜆N𝑄𝑆 , 𝑄𝐹 ⟩, G = ⟨𝑉 , 𝐸, 𝐿, 𝜆G⟩, 𝑣𝑠 ∈ 𝑉
output
:

Vector 𝑃𝐹 of size 1 × |𝑉 |

1 {𝑁𝑎} ← Boolean decomposition of the N adjacency matrix;
2 {𝐺𝑎} ← Boolean decomposition of the G adjacency matrix;
3 𝑃 |𝑄 |× |𝑉 | ← 0 |𝑄 |× |𝑉 | ;
4 𝑀 |𝑄 |× |𝑉 | ← 𝑀 s.t. 𝑀𝑞𝑣 = 1 if 𝑞 ∈ 𝑄𝑆 , 𝑣 = 𝑣𝑠 , otherwise 0;
5 𝐹1×|𝑄 | ← 𝐹 s.t. 𝐹1𝑞 = 1 if 𝑞 ∈ 𝑄𝐹 , otherwise 0;
6 while 𝑀 ≠ 0 do
7 𝑀 ←

⊕
𝑎∈Σ↔∩𝐿↔

((𝑁𝑎)𝑇 ⊗𝑀 ⊗𝐺𝑎)⟨¬𝑃⟩; // Update

M
8 𝑃 ← 𝑃 ⊕𝑀
9 end

10 return 𝑃𝐹 = 𝐹 ⊗ 𝑃

LetN = ⟨𝑄, Σ,Δ, 𝜆N , 𝑄𝑆 , 𝑄𝐹 ⟩ be the input 2-NFA that represents
the query and specifies the RL R = [[N]]. Let G = ⟨𝑉 , 𝐸, 𝐿, 𝜆G⟩ be
the input graph and 𝑣𝑠 ∈ 𝑉 is a starting node. Then the algorithm 1
builds the following automata intersection:

[[N × N𝐺]] = [[N]] ∩ [[NG]] = R ∩
©­­­­«

⋃
2-path 𝜋G in G

from 𝑣𝑆 ∈𝑉𝑆

𝜔↔G (𝜋G)
ª®®®®¬
.

Result of the algorithm is a vector𝑃𝐹1×|𝑉 | for which 𝑣 ∈ [[Q]]𝑆𝑆𝑅 ⇔
𝑃𝐹1𝑣 = 1 for some 2-RPQ Q = ⟨G,R, 𝑣𝑠 ⟩.

The core of the algorithm is line 8 that performs one step of
traversing two automata simultaneously and builds matrix 𝑃 |𝑄 |× |𝑉 |
such that: {

𝑃𝑞𝐹 𝑣 = 1
𝑞𝐹 ∈ 𝑄𝐹

⇔
{
∃𝜋G in G from 𝑣𝑠 to 𝑣

𝜔↔G (𝜋G) ∩ R ≠ ∅ .
An example of such a step is presented in figure 1. For graph and

automaton with labels {𝑎, 𝑏}, we visualize adjacency matrices for
both of these symbols, the matrix of relation 𝑀 , and the process
of new 𝑀 computation. The visualization uses solid-colored edges
to represent transitions traversed simultaneously at the step, while
dashed edges show the reachability relation 𝑀 — connecting vertices
that are simultaneously reachable. Initially, 𝑀 contains just one edge
linking the automaton’s initial state to the starting vertex in the graph.
After one iteration of the main cycle, 𝑀 contains two edges. One
of them connects the final state of the automaton with vertex 5 of
the graph. This indicates that vertex 5 is reachable from the starting
vertex 3 by the path that forms a word acceptable by the automaton.

The core idea of the algorithm can be summarized in a theorem
that is proved using straightforward induction by the length of the
paths. Details are provided in appendix A.

Theorem 4.1 (LA 2-RPQ algorithm correctness). The pro-
posed algorithm, represented in 1, computes the matrix 𝑃 such that
the respective relation P ⊆ 𝑄 ×𝑉 has the following property.

(𝑞, 𝑣) ∈ P ⇔

∃ 2-path 𝜋𝐺 in G from 𝑣𝑠 to 𝑣

∃ path 𝜋𝑁 in N from some 𝑞𝑠 ∈ 𝑄𝑆 to 𝑞

𝜔↔G (𝜋G) ∩ 𝜔N (𝜋N) ≠ ∅ .

In particular, from the theorem we can immediately conclude that
for the given automaton N , graph G and starting vertex 𝑣𝑠 , 𝑃𝑞𝐹 𝑣 = 1
for 𝑞𝐹 ∈ 𝑄𝐹 iff exist two paths 𝜋G to 𝑣 and 𝜋N to 𝑞𝐹 such that
𝜔↔G (𝜋G) ∩ 𝜔N (𝜋N) ≠ ∅. As far as 𝑞𝐹 is a final state of the NFA,
𝜔↔G (𝜋G) ⊆ [[N]]. Thus, 𝑣 reachable from 𝑣𝑠 by path satisfies the
given regular constraint.

The proposed single-source 2-RPQ algorithm can be used to solve
the single-destination problem. Let N = ⟨𝑄, Σ,Δ, 𝜆N , 𝑄𝑆 , 𝑄𝐹 ⟩ be an
NFA specifies the constraint in the single destination query. Denote:

• R− = {𝑤− = 𝑎−𝑛 𝑎
−
𝑛−1 ...𝑎

−
2 𝑎
−
1 | 𝑤 = 𝑎1𝑎2 ...𝑎𝑛) ∈ R}

• N− = ⟨𝑄, Σ,Δ−, 𝜆−N , 𝑄𝐹 , 𝑄𝑆 ⟩.
• Q− = ⟨G,R−, 𝑣𝑠 ⟩.

The automatonN− allows one to traverse paths in the opposite di-
rection. It holds R− = [[N−]]. Evaluating single-source reachability
2-RPQ on the reversed 2-RPQ Q− gives using the 2-NFA N− :

[[Q]]𝑆𝐷𝑅 = [[Q−]]𝑆𝑆𝑅 .
Boolean matrix decomposition of N− can be easily obtained by
transposing the matrices in Boolean matrix decomposition of N .

1 2 3 4 5
1
2
3
4
5

1 2 3 4 5
1
2

1 2

2
1

1 2 3 4 5
1
2
3
4
5

1
21

2

1 2 3 4 5
1
2

a: b:

1 2 3 4 5
1
2

1 2 3 4 5
1
2

=

+

1 2 3 4 5
1
2

××

× ×

=

=

a
b1 2

a 1

3

4

5

b

2
a

b

b

N

M

G

ba
1 2

a 1

3

4

5

b

2
a

b

b

Figure 1: The algorithm step for graph and automaton for regular
expression 𝑎∗𝑏

For performance reasons, it is necessary to take into account the
fact that sparse matrix multiplication works faster when matrices
have fewer nonzero entries. The associativity of the Boolean matrix
multiplication can be used to perform less calculations. This leads to
the idea of two possible ways to calculate the product on line 8 in
the algorithm 1: ((𝑁𝑎)𝑇 ⊗𝑀) ⊗𝐺𝑎 = (𝑁𝑎)𝑇 ⊗(𝑀 ⊗𝐺𝑎) .

In general, the first option is preferable due to the fact that 2-NFA
for the query can be converted into the corresponding minimal
deterministic finite automaton having no more than |𝑄 | non-zero
cells in eachN𝑎 adjacency matrix due to the automaton determinism.
This strictly leads to a less expensive computation of the product
with the large |𝑉 | × |𝑉 | matrix.

When it comes to real-world implementation, it is important to
note that it is also possible to implement BFS-based 2-RPQs without
using a traversal matrix 𝑀 as described in algorithm 2. The complete
description of such algorithm is available in appendix . For some
sparse linear algebra libraries, it can be more efficient to deal with
fewer distinct matrices than to have fewer nonzero entries, especially
when there are very few of them. Such properties are common for
executing simple regular path queries.

(𝑞, 𝑣) ∈ P𝑛 ⇔

∃ 2-path 𝜋G of length ≤ 𝑛 in G from 𝑣𝑠 to 𝑣

∃ path 𝜋N of length ≤ 𝑛 in N from 𝑞𝑠 ∈ 𝑄𝑆 to 𝑞

𝜔↔G (𝜋G) ∩ 𝜔N (𝜋N) ≠ ∅ .

Algorithm 2: Single Source 2-RPQ using linear algebra
without an extra traversal matrix

input :N = ⟨𝑄, Σ,Δ, 𝜆N𝑄𝑆 , 𝑄𝐹 ⟩, G = ⟨𝑉 , 𝐸, 𝐿, 𝜆G⟩, 𝑣𝑠 ∈ 𝑉
output
:

Vector 𝑃𝐹 of size 1 × |𝑉 |

1 {𝑁𝑎} ← Boolean decomposition of the N adjacency matrix;
2 {𝐺𝑎} ← Boolean decomposition of the G adjacency matrix;
3 𝑃 |𝑄 |× |𝑉 | ← 𝑃 s.t. 𝑃𝑞𝑣 = 1 if 𝑞 ∈ 𝑄𝑆 , 𝑣 = 𝑣𝑠 , otherwise 0;
4 𝐹1×|𝑄 | ← 𝐹 s.t. 𝐹1𝑞 = 1 if 𝑞 ∈ 𝑄𝐹 , otherwise 0;
5 while 𝑃 changes do
6 𝑃 ← 𝑃 ⊕

⊕
𝑎∈Σ↔∩𝐿↔

((𝑁𝑎)𝑇 ⊗ 𝑃 ⊗𝐺𝑎); // Update P

7 end
8 return 𝑃𝐹 = 𝐹 ⊗ 𝑃

Although it may seem that this algorithm should perform some
extra calculations because 𝑃 contains more entries than 𝑀 on each
step within algorithm 1, this way of implementing the proposed
algorithm can be handy. Some sparse linear algebra libraries perform
better when handling fewer distinct matrices, even if that increases
the total number of non-zero entries. Such properties are common
for executing simple regular path queries.

4.1 Comparison With Diego Arroyuelo Algorithm
Diego Arroyuelo et al. in [4] propose another linear algebra-based
2-RPQ evaluation algorithm called RPQ-matrix. It directly translates
2-RE to Boolean matrix operations rather than evaluating step-by-
step traversal over the graph and the automaton with capability to
employ single-source and single-destination 2-RPQs. The algorithm
consists of the following steps.

(1) Build an abstract syntax tree (evaluation plan) representing
the desired regular expression in which leaves represent
labels and other nodes represent operations such as concate-
nation, Kleene star, and conjunction.

(2) Match nodes with matrices: each leaf label is matched with
an adjacency matrix representing it, and every inner node
is matched with a matrix that can be computed based on
the child matrices depending on the operation the node
represents.

(3) Optimize the evaluation plan by using the provided source
or destination vertex.

(4) Compute the matrix representing the root element with
operations reordering applied to optimize computations.

We conduct experiments on several graph database management
systems and compare them to RPQ-matrix and to the proposed
algorithm in order to investigate the efficiency of different linear
algebra-based approaches.

5 EVALUATION
The proposed single-source 2-RPQ algorithm is implemented using
the SuiteSparse:GraphBLAS library [15] within the LAGraph [32]
infrastructure5. Both sparse matrices and their transpositions are

5Regular Path Query algorithm in LAGraph repository: https://github.com/GraphBLAS/
LAGraph/blob/stable/experimental/algorithm/LAGraph_RegularPathQuery.c

loaded in memory due to the fact that we need both representations to
efficiently evaluate 2-RPQ and traverse the graph in both directions.

Whereas we are focusing on an efficient way of evaluating RPQs in
memory, there are not many candidates to compare. Popular database
management systems primarily focus on general availability and
ensure availability of the concurrent access at the same time the
suggested algorithm implementation is suited only for solving the
reachability problem. We have selected the following systems as the
most effective and the most related to our use case.

RPQ-matrix [4] is another implementation of the linear algebra-
based RPQ evaluation algorithm. The original work introduces a few
variations of the adjacency matrix representation: 𝑘2-trees offering
less memory consumption and CSR/CSC formats providing better
performance. We have chosen the last one to compare since we are
aiming to compare the performance.

RPQ-matrix (GrB)6 is an version of Diego Arroyuelo et al.
RPQ-matrix algorithm where matrix representations and operations
are substituted with SuiteSparse:GraphBLAS equivalents in order to
analyse performance impact of basic primitives implementation.

MillenniumDB [35] is a graph-oriented database management
system with RDF-model and SPARQL support. It supports a syn-
thetic way to carry out calculations without using disk storage by
caching query data. MillenniumDB demonstrates state-of-the-art
performance on evaluating regular path queries.

FalkorDB (previously RedisGraph [11]) is an in-memory property
graph database that also employs SuiteSparse:GraphBLAS for query
evaluation. However, it uses OpenCypher modification and supports
only a subset of regular path queries (e.g., it is impossible to evaluate
repeated-path queries in the form of (𝑎 𝑏)∗). To deal with this,
we have carried out the measurements of cypher-compatible and
non-cypher-compatible queries separately.

Blazegraph [35] is another graph-oriented database management
system using RDF data model and SPARQL query language. It is
used by the Wikidata project and is based on more classical B-trees.

Experiments are conducted on a work station with Ryzen 9 7900X
4.7 GHz 12-core, 128 Gb of DDR5 RAM and running Ubuntu 22.04.

5.1 Implementation Details
As mentioned above, it is important for better performance to take into
account that there are two different possible implementations of the
BFS-based 2-RPQ algorithm: one involving less different matrices
and one with less dense matrices. For SuiteSparse:GraphBLAS,
the first approach turns out to be faster if the number of entries in
matrices is small, and the latter is better for denser matrices.

The most straightforward way to combine these two approaches
to achieve better performance is to switch from the first approach
to the second one during the traversal if the resulting matrix starts
having some constant amount of non-zero entries. This constant can
be empirically determined for the graph7. This allows the BFS-based
algorithm to provide strong performance on simple queries with very
few answers and on analytical queries involving a lot of resulting
vertices at the same time.

6SuiteSparse:GraphBLAS-based implementation of RPQ-matrix: https://github.com/
suvorovrain/rpq-matrix/tree/gbmod
7For the studied datasets the most suitable value is 100.

https://github.com/GraphBLAS/LAGraph/blob/stable/experimental/algorithm/LAGraph_RegularPathQuery.c
https://github.com/GraphBLAS/LAGraph/blob/stable/experimental/algorithm/LAGraph_RegularPathQuery.c
https://github.com/suvorovrain/rpq-matrix/tree/gbmod
https://github.com/suvorovrain/rpq-matrix/tree/gbmod

5.2 Dataset Description
To compare performance of different approaches we start from
evaluating benchmarks on large real-world datasets. For algorithm
evaluation, we choose the Wikidata dataset from the snapshot pro-
vided in terms of MillenniumDB path query challenge [19]. The
resource contains both the graph and the set of 660 different 2-RPQs
in SPARQL format taken from the Wikidata query log. The second
dataset is Yago-2S evaluated with 7 complex queries taken from [2].

We also want to compare different linear algebra-based approaches
and determine the best of them for different query kinds. Real-world
datasets are not suitable for it due to complex graph topology. In-
stead, we employ the synthetic RPQBench dataset generator [36]
for controlled performance evaluation across query categories. The
structure of the graph ensures reproducible and predictable results
when similar queries are executed. The original generator produces
arbitrary sized RDF datasets and offers 10 different query kinds
without starting or final nodes specified in SPARQL format. We gen-
erate a graph and supply these query kinds with randomly generated
source and destination vertices.

For systems that do not support the RDF format, the datasets
have been converted to an edge-labeled graph. Original SPARQL
path queries have been deprefixed, converted to the corresponding
minimized DFAs. Queries have been converted to Cypher queries of
the form MATCH ... COUNT (DISTINCT ...) when it is possible.
Queries without starting or final vertex, broken queries involving
missing entities have been removed. Final dataset statistics can be
summarised as follows.
Wikidata

• 610 million edges, 91 million vertices, 1400 distinct labels.
• 578 queries filtered out from 660 from the query dump.

Yago-2S
• 46 million edges, 7 million vertices, 42 distinct labels.
• 7 complex queries taken from [2].

RPQBench
• Synthetic dataset, 150 million edges, 57 million vertices, 9

distinct labels.
• 20 different query kinds supplied 1000 randomly generated

source/destination vertices.
• Trivial queries are filtered out (e.g. 𝑎∗ has ≥ 1 answer).

5.3 Evaluation Scenario
We measure query evaluation time with a 1-minute timeout, preload-
ing all required data into memory, so data preprocessing time is not
included. Queries execute sequentially in isolation.
RPQ-Matrix8 configuration.

• CSR/CSC mode as the most performant one.
• No CPU/cores limitations.
• No memory limitations.
• Timing: internal timer.

RPQ-matrix (GrB)9 configuration.
• Pre-caching CSR/CSC matrices.

8RPQ-Matrix repository we use for the evaluation: https://github.com/adriangbrandon/
rpq-matrix/tree/34fc2240a7c8069f7d6a39f1c75176edac4fe606
9RPQ-matrix implemented using SuiteSparse:GraphBLAS repository: https://github.
com/suvorovrain/rpq-matrix/tree/gbmod

(a) Queries which are supported
and succeeded on all of the com-
petitors

(b) Queries which are not sup-
ported in Cypher or timed out
on FalkorDB or Blazegraph

Figure 2: Wikidata dataset per-query evaluation time

• No CPU/cores limitations.
• No memory limitations.
• Timing: internal timer.

MillenniumDB10 configuration.
• SPARQL mode.
• Maximum CPU cores.
• Two execution runs (first warm-up excluded).
• Timing: internal timer for query optimization + execution

(parser excluded).
FalkorDB (v4.2.0)11 configuration.

• Accessed via Python wrapper.
• No CPU/cores limitations.
• No query caching.
• Vertices index for efficient start/end vertex selection.
• Timing: internal database timer.

Blazegraph (2.1.5)12 configuration.
• Accessed via Python wrapper.
• No CPU/cores limitations.
• No memory limitations.
• Timing: external timer.
• Queries are executed one by one with extra heatup to avoid

out-of-memory.
All benchmarking scripts, configurations, and instructions are

available in GitHub repository13.

5.4 Real-World Graph Querying Results
Resulting per-query evaluation time is provided in Figure 2a for
queries that are supported on all of the competitors. Remaining
10MillenniumDB repository we use for the evaluation: https://github.com/
MillenniumDB/MillenniumDB/tree/5190c0d9b07ca681328495b69c715af792513775
11FalkorDB v4.2.0: https://github.com/FalkorDB/FalkorDB/tree/v4.2.0
12Blazegraph v2.1.5: https://github.com/blazegraph/database/tree/BLAZEGRAPH_
RELEASE_2_1_5
13Benchmark evaluation repository: https://github.com/SparseLinearAlgebra/la-rpq

https://github.com/adriangbrandon/rpq-matrix/tree/34fc2240a7c8069f7d6a39f1c75176edac4fe606
https://github.com/adriangbrandon/rpq-matrix/tree/34fc2240a7c8069f7d6a39f1c75176edac4fe606
https://github.com/suvorovrain/rpq-matrix/tree/gbmod
https://github.com/suvorovrain/rpq-matrix/tree/gbmod
https://github.com/MillenniumDB/MillenniumDB/tree/5190c0d9b07ca681328495b69c715af792513775
https://github.com/MillenniumDB/MillenniumDB/tree/5190c0d9b07ca681328495b69c715af792513775
https://github.com/FalkorDB/FalkorDB/tree/v4.2.0
https://github.com/blazegraph/database/tree/BLAZEGRAPH_RELEASE_2_1_5
https://github.com/blazegraph/database/tree/BLAZEGRAPH_RELEASE_2_1_5
https://github.com/SparseLinearAlgebra/la-rpq

Table 1: Wikidata query execution results. The results are supplied for simple and for complex (C) queries separately. For in-memory
algorithms the memory consumption for whole dataset and bytes-per-triple values (BPT) are presented. Mean and median speedup
relatively the proposed solution is a ratio of mean and median over query set for respective systems

LARPQ RPQ-matrix RPQ-matrix (GrB) MillenniumDB FalkorDB Blazegraph
Total, ms 24 403 166 882 34 891 276 527 460 606 403 738
Mean, ms 49.8 340.6 71.2 564.3 940.0 824.0
Median, ms 2.0 3.3 1.1 13.7 17.6 128.0
Mean speedup 1.00 0.15 0.70 0.09 0.05 0.06
Median speedup 1.00 0.60 1.74 0.15 0.11 0.02
Total C, ms 35 061 508 378 288 766 639 193 — —
Mean C, ms 427.6 6 199.7 3 521.5 7 795.0 — —
Median C, ms 169.1 372.9 142.9 3 105.6 — —
Mean speedup C 1.00 0.07 0.12 0.05 — —
Median speedup C 1.00 0.45 1.18 0.05 — —
Memory, Gb 9.2 6.9 9.2 — — —
BPT 16.3 12.1 16.3 — — —

Table 2: Yago-2S query execution results. Mean and median
speedup relatively the proposed solution is a ratio of mean and
median over query set for respective systems

LARPQ RPQ-matrix
RPQ-matrix

(GrB)
MillenniumDB Blazegraph

Total, ms 377 174 202 7 025 24883
Mean, ms 54 25 29 1 004 3555
Median, ms 69 25 38 985 3808
Mean speedup 1.00 2.17 1.87 0.05 0.02
Median speed up 1.00 2.71 1.81 0.07 0.02
Memory, Gb 0.5 0.4 0.5 — —
BPT 11.3 9.8 11.3 — —

complex queries ended up with a timeout on slower competitors or
not expressible in Cypher are represented separately in Figure 2b. The
dotted lines represent means and the straight lines represent medians.
These numeric values of and total execution time are available in the
table 1 for the relatively simple and complex queries (C) separately.
For linear algebra-based competitors the size of the dataset loaded
in-memory, and memory byte-per-triple (BPT) memory consumption
values are provided.

For simple queries, LARPQ demonstrates the best mean with a
speedup of 1.7× to 18.9×. However, RPQ-matrix implemented with
SuiteSparse:GraphBLAS demonstrates the best median time that is
better 1.7× than that of LARPQ. It means that RPQ-matrix evaluates
some of the queries faster whereas the BFS-based algorithm works
better in general cases. Our hypothesis is that the proposed algorithm
does not utilise the sparsity of some edge kinds enough. Both linear
algebra-based approaches demonstrate better time in mean an in
median in comparison to all of database management systems.

For complex queries, relations between different competitors
are the same except that LARPQ mean is drastically lower than
other competitors being 14.5×, 8.3×, 18.3× less than those of the
competitors. It means the proposed algorithm is capable of executing
the most complex out of the queries faster than other approaches.

The results for the Yago-2S dataset are presented in table 2.
FalkorDB is excluded since every of the 7 queries have resulted with
a timeout.

Both RPQ-matrix algorithms demonstrate better time than the
proposed LARPQ algorithm. It is likely due to the structure of the
query. All of them use 𝑎 𝑏 𝑐+ 𝑑+ patterns. Iterative structure of the
BFS-based approach does not utilize efficient evaluation order that
is important for such long queries of simple operations.

It is an interesting question for future research whether it is possible
to combine ideas from two linear algebra based-solutions (proposed
and RPQ-Matrix) to take the best from both of them.

5.5 Synthetic Graph Querying Results
We perform a detailed comparison of competitors for executing dif-
ferent query kinds by running a synthetic RPQBench. Its evaluation
results are available in the table 3. Each row represents distinct query
kind. Total execution time of the randomly generated queries are
presented in seconds for each competitor separately. Due to the lower
overall performance demonstrated on the real-world datasets, Millen-
niumDB, FalkorDB, and Blazegraph are excluded from subsequent
comparisons. Edge statistics for each label kind provided in table 4.

As it is observed, the execution time of the proposed BFS-based
algorithm for simple queries such as 𝑑∗, 𝑑+, and 𝑑∗𝑒 is quite similar
to that of other linear algebra-based implementations. RPQ-matrix
×2 speedups are likely to happen due to the CSR/CSC matrix
implementation since RPQ-matrix (GrB) demonstrates evaluation
time close to LARPQ.

The greatest performance improvement over other approaches is
achieved when the patterns contain compound parts involving dense
edges that are not adjacent to the starting or final node. For instance,
the single-destination query 20, (𝑐 | 𝑔) (𝑑 | 𝑒)∗, yields speedups of
9,600× and 2,300×. The same holds for queries 11, 15, and 18.

For the remaining queries, such as 1–4, the proposed algorithm
demonstrates a relative slowdown of 2× to 4×, since it does not
utilize an efficient evaluation order. For queries 14, 16, 17, and 19,
LARPQ is 4× to 17× slower than the competitors because it does not
exploit the fact that edges with labels 𝑑 or 𝑒 are very rare.

Table 3: RPQBench dataset evaluation time of queries with
randomly generated sources and destinations per each query kind
in seconds. Query pattern notation uses spaces for concatenations,
a symbol | for disjunctions, and a symbol ∗ for Kleene-stars

Query pattern, single-source
(S) or single-destination (D)

LARPQ RPQ-matrix
RPQ-matrix

(GrB)

1 𝑎 𝑏 𝑐, (S) 51 83 11
2 𝑎 𝑏 𝑐, (D) 32 11 12
3 (𝑎 𝑏 𝑐) | (𝑐 𝑑 𝑑), (S) 59 89 24
4 (𝑎 𝑏 𝑐) | (𝑐 𝑑 𝑑), (D) 47 14 22
5 𝑑∗, (S) 22 21 37
6 𝑑∗, (D) 19 19 23
7 𝑑∗ 𝑒, (S) 21 12 18
8 𝑑∗ 𝑒, (D) 6 3 5
9 𝑑 𝑑∗, (S) 23 14 29
10 𝑑 𝑑∗, (D) 18 14 20
11 (𝑎 𝑏)∗, (S) 1 350 30 156 4 904
12 (𝑎 𝑏)∗, (D) 3 619 15 706 2 978
13 𝑓 𝑔 (𝑑 | 𝑒), (S) 92 700 5 917 7 745
14 𝑓 𝑔 (𝑑 | 𝑒), (D) 2 193 301 486
15 𝑓 𝑔 (𝑑 | 𝑒)∗, (S) 149 644 2 870 709 2 053 090
16 𝑓 𝑔 (𝑑 | 𝑒)∗, (D) 6 167 810 1 053
17 (𝑐 | 𝑔) (𝑑 | 𝑒), (S) 36 3 7
18 (𝑐 | 𝑔) (𝑑 | 𝑒), (D) 16 173 017 41 713
19 (𝑐 | 𝑔) (𝑑 | 𝑒)∗, (S) 930 55 232
20 (𝑐 | 𝑔) (𝑑 | 𝑒)∗, (D) 99 955 891 229 035

Table 4: RPQBench edge stats per label

Edge label Count Edge label Count
𝑎 343 660 𝑒 36
𝑏 4 209 447 𝑓 4 928 456
𝑐 114 742 222 𝑔 223 656
𝑑 186

Conclusion about various linear algebra-based algorithms might
be summarized as follows.

• LARPQ is a better choice for queries that involve compound
operations over labels corresponding to many edges and not
having source/destination vertices close to them.

• LARPQ algorithm tends to be more stable whereas RPQ-
matrix might demonstrate drastic slowdown for some kinds
of complex queries.

• Both algorithms are efficient enough for simple queries.
• RPQ-matrix is a better choice if the query contains rare labels,

long concatenations or disjunctions allowing to perform
optimizations.

6 CONCLUSION AND FUTURE WORK
In this work, we proposed the single-source RPQ evaluation algo-
rithm, which is based on the simultaneous traversal of the input graph
and the finite automaton specifying path constraints. The traversal is

expressed in terms of operations over matrices and vectors, which
allows us to provide a highly parallel implementation based on
SuiteSparse:GraphBLAS.

Our experimental evaluation shows that the suggested algorithm
is suitable for in-memory processing of real-world large knowledge
graphs. While for some queries the proposed algorithm is slower
than competitors, we can conclude that our solution is faster for hard
queries: it fits with 1 minute time while other solutions do not.

Our results demonstrate that both algorithmic design and imple-
mentation details of underlying linear algebra primitives significantly
impact 2-RPQ performance. While average performance metrics
provide straightforward comparisons, specific cases require deeper
analysis to identify each algorithm’s strengths under different condi-
tions; to understand implementation trade-offs; to guide development
of robust universal solutions.

Furthermore, this analysis provides valuable insights for enhancing
the GraphBLAS API by identifying critical functionality required for
efficient RPQ evaluation algorithms. The performance characteristics
we observed highlight specific linear algebra primitives that most
significantly impact query processing efficiency, suggesting potential
directions for API optimization.

Regarding our new algorithm, first of all, it is necessary to analyse
abilities to apply well-known optimizations from both RPQ evaluation
and BFS algorithms. For example, rare labels [25] utilization, or
push-pull optimization [38] respectively.

Although multiple source BFS has been shown to be expressed in
terms of linear algebra [17], there is room for technical optimizations
and careful evaluation of the respective modifications to the proposed
algorithm, and it should be done in the future.

Thanks to linear algebra, having a single schema of algorithm one
can solve different problems varying semiring-like structures. For
example, one can look at variations of the BFS [9] where one can
compute reachability facts or information about paths depending on
the used semiring. In the case of RPQ, there are a number of possible
outputs and semantics [3]: reachability, single path, all paths, simple
paths, etc. It is an open question, which of them can be expressed
without algorithm changes, but by providing other semirings, and
which can be expressed with algorithm changes.

Utilization of GPGPUs to evaluate linear algebra-based algorithms
for graph analysis can significantly improve performance in some
cases [31, 38]. It is necessary to investigate, whether utilization of
GPGPU in our algorithm improves performance or not.

Distributed solutions are a way to process graph processing [22].
Implementation and evaluation of the proposed algorithm in dis-
tributed settings, for example, using CombBLAS [10] that provides
distributed linear algebraic routines for graph analysis, is also a task
for the future.

ACKNOWLEDGMENTS
This research has been supported by the St. Petersburg State Uni-
versity, grant id 116636233 and by Open-Source Tarantool DBMS
Platform.

REFERENCES
[1] 2013. SPARQL 1.1 Query Language. Technical Report. W3C. http://www.w3.

org/TR/sparql11-query

http://www.w3.org/TR/sparql11-query
http://www.w3.org/TR/sparql11-query

[2] Zahid Abul-Basher, Nikolay Yakovets, Parke Godfrey, Shadi Ghajar-Khosravi,
and Mark H. Chignell. 2017. TASWEET: Optimizing Disjunctive Path Queries
in Graph Databases. In Proceedings of the 20th International Conference on
Extending Database Technology, EDBT 2017, Venice, Italy, March 21-24, 2017,
Volker Markl, Salvatore Orlando, Bernhard Mitschang, Periklis Andritsos, Kai-
Uwe Sattler, and Sebastian Breß (Eds.). OpenProceedings.org, 470–473. https:
//doi.org/10.5441/002/EDBT.2017.47

[3] Renzo Angles, Marcelo Arenas, Pablo Barceló, Aidan Hogan, Juan Reutter, and
Domagoj Vrgoč. 2017. Foundations of Modern Query Languages for Graph
Databases. ACM Comput. Surv. 50, 5, Article 68 (Sept. 2017), 40 pages. https:
//doi.org/10.1145/3104031

[4] Diego Arroyuelo, Adrián Gómez-Brandón, and Gonzalo Navarro. 2023. Evaluating
Regular Path Queries on Compressed Adjacency Matrices. In String Processing
and Information Retrieval: 30th International Symposium, SPIRE 2023, Pisa,
Italy, September 26–28, 2023, Proceedings (Pisa, Italy). Springer-Verlag, Berlin,
Heidelberg, 35–48. https://doi.org/10.1007/978-3-031-43980-3_4

[5] Diego Arroyuelo, Adrián Gómez-Brandón, Aidan Hogan, Gonzalo Navarro,
and Javiel Rojas-Ledesma. 2023. Optimizing RPQs over a compact graph
representation. The VLDB Journal 33, 2 (Sept. 2023), 349–374. https://doi.org/
10.1007/s00778-023-00811-2

[6] Diego Arroyuelo, Aidan Hogan, Gonzalo Navarro, and Javiel Rojas-Ledesma.
2022. Time- and Space-Efficient Regular Path Queries. In 2022 IEEE 38th
International Conference on Data Engineering (ICDE). 3091–3105. https:
//doi.org/10.1109/ICDE53745.2022.00277

[7] Chris Barrett, Riko Jacob, and Madhav Marathe. 2000. Formal-Language-
Constrained Path Problems. SIAM J. Comput. 30, 3 (May 2000), 809–837.
https://doi.org/10.1137/S0097539798337716

[8] Angela Bonifati, George Fletcher, Hannes Voigt, and Nikolay Yakovets. 2018.
Querying Graphs. Springer International Publishing. https://doi.org/10.1007/978-
3-031-01864-0

[9] Benjamin Brock, Aydın Buluç, Timothy Mattson, Scott McMillan, and José
Moreira. 2021. The graphblas c api specification. GraphBLAS. org, Tech. Rep
(2021).

[10] Aydın Buluç and John R Gilbert. 2011. The Combinatorial BLAS: design,
implementation, and applications. The International Journal of High Perfor-
mance Computing Applications 25, 4 (2011), 496–509. https://doi.org/10.1177/
1094342011403516 arXiv:https://doi.org/10.1177/1094342011403516

[11] Pieter Cailliau, Tim Davis, Vĳay Gadepally, Jeremy Kepner, Roi Lipman, Jeffrey
Lovitz, and Keren Ouaknine. 2019. RedisGraph GraphBLAS Enabled Graph
Database. In 2019 IEEE International Parallel and Distributed Processing Sym-
posium Workshops (IPDPSW). IEEE, 285–286. https://doi.org/10.1109/ipdpsw.
2019.00054

[12] Diego Calvanese, Giuseppe De Giacomo, Maurizio Lenzerini, Moshe Y Vardi,
et al. 2000. Query processing using views for regular path queries with inverse. In
ACM Principles of Database Systems. 58–66.

[13] Diego Calvanese, Giuseppe De Giacomo, Maurizio Lenzerini, and Moshe Y.
Vardi. 2000. Containment of conjunctive regular path queries with inverse. In
Proceedings of the Seventh International Conference on Principles of Knowledge
Representation and Reasoning (Breckenridge, Colorado, USA) (KR’00). Morgan
Kaufmann Publishers Inc., San Francisco, CA, USA, 176–185.

[14] Timothy A. Davis. 2019. Algorithm 1000: SuiteSparse:GraphBLAS: Graph
Algorithms in the Language of Sparse Linear Algebra. ACM Trans. Math. Softw.
45, 4, Article 44 (dec 2019), 25 pages. https://doi.org/10.1145/3322125

[15] Timothy A. Davis. 2019. Algorithm 1000: SuiteSparse:GraphBLAS: Graph
Algorithms in the Language of Sparse Linear Algebra. ACM Trans. Math. Softw.
45, 4, Article 44 (dec 2019), 25 pages. https://doi.org/10.1145/3322125

[16] Timothy A. Davis. 2023. Algorithm 1037: SuiteSparse:GraphBLAS: Parallel
Graph Algorithms in the Language of Sparse Linear Algebra. ACM Trans. Math.
Softw. 49, 3, Article 28 (Sept. 2023), 30 pages. https://doi.org/10.1145/3577195

[17] Márton Elekes, Attila Nagy, Dávid Sándor, János Benjamin Antal, Timo-
thy A. Davis, and Gábor Szárnyas. 2020. A GraphBLAS solution to the
SIGMOD 2014 Programming Contest using multi-source BFS. In 2020 IEEE
High Performance Extreme Computing Conference (HPEC). 1–7. https:
//doi.org/10.1109/HPEC43674.2020.9286186

[18] Tomáš Faltín, Vasileios Trigonakis, Ayoub Berdai, Luigi Fusco, Călin Iorgulescu,
Jinsoo Lee, Jakub Yaghob, Sungpack Hong, and Hassan Chafi. 2023. Distributed
Asynchronous Regular Path Queries (RPQs) on Graphs. In Proceedings of the
24th International Middleware Conference: Industrial Track (Bologna, Italy)
(Middleware ’23). Association for Computing Machinery, New York, NY, USA,
35–41. https://doi.org/10.1145/3626562.3626833

[19] Benjamín Farias, Carlos Rojas, and Domagoj Vrgoc. 2023. MillenniumDB path
query challenge (short paper). In Proceedings of the 15th Alberto Mendelzon
International Workshop on Foundations of Data Management (AMW 2023),
Santiago de Chile, Chile, May 22-26, 2023 (CEUR Workshop Proceedings),
Benny Kimelfeld, Maria Vanina Martinez, and Renzo Angles (Eds.), Vol. 3409.
CEUR-WS.org. https://ceur-ws.org/Vol-3409/paper13.pdf

[20] Nadime Francis, Alastair Green, Paolo Guagliardo, Leonid Libkin, Tobias Lin-
daaker, Victor Marsault, Stefan Plantikow, Mats Rydberg, Petra Selmer, and

Andrés Taylor. 2018. Cypher: An Evolving Query Language for Property Graphs.
In Proceedings of the 2018 International Conference on Management of Data
(Houston, TX, USA) (SIGMOD ’18). Association for Computing Machinery, New
York, NY, USA, 1433–1445. https://doi.org/10.1145/3183713.3190657

[21] Xintong Guo, Hong Gao, and Zhaonian Zou. 2021. Distributed processing of
regular path queries in RDF graphs. Knowledge and Information Systems 63, 4
(Jan. 2021), 993–1027. https://doi.org/10.1007/s10115-020-01536-2

[22] Xintong Guo, Hong Gao, and Zhaonian Zou. 2021. Distributed processing of
regular path queries in RDF graphs. Knowl. Inf. Syst. 63, 4 (April 2021), 993–1027.
https://doi.org/10.1007/s10115-020-01536-2

[23] ISO/IEC 39075:2024 2024. Information technology – Database languages –
GQL. Standard. International Organization for Standardization, Geneva, CH.
https://www.iso.org/standard/76120.html

[24] Jeremy Kepner, Peter Aaltonen, David A. Bader, Aydın Buluç, Franz Franchetti,
John R. Gilbert, Dylan Hutchison, Manoj Kumar, Andrew Lumsdaine, Henning
Meyerhenke, Scott McMillan, Carl Yang, John Douglas Owens, Marcin Zalewski,
Timothy G. Mattson, and José E. Moreira. 2016. Mathematical foundations of
the GraphBLAS. 2016 IEEE High Performance Extreme Computing Conference
(HPEC) (2016), 1–9. https://api.semanticscholar.org/CorpusID:3654505

[25] André Koschmieder and Ulf Leser. 2012. Regular Path Queries on Large Graphs.
In Scientific and Statistical Database Management, Anastasia Ailamaki and Shawn
Bowers (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 177–194.

[26] Baozhu Liu, Xin Wang, Pengkai Liu, Sizhuo Li, and Xiaofei Wang. 2021. PAIRPQ:
An Efficient Path Index for Regular Path Queries on Knowledge Graphs. In Web
and Big Data, Leong Hou U, Marc Spaniol, Yasushi Sakurai, and Junying Chen
(Eds.). Springer International Publishing, Cham, 106–120.

[27] Ruoyan Ma, Shengan Zheng, Guifeng Wang, Jin Pu, Yifan Hua, Wentao Wang, and
Linpeng Huang. 2024. Accelerating Regular Path Queries over Graph Database
with Processing-in-Memory. arXiv:2403.10051 [cs.DB] https://arxiv.org/abs/
2403.10051

[28] Alberto O. Mendelzon and Peter T. Wood. 1989. Finding Regular Simple
Paths in Graph Databases. SIAM J. Comput. 24 (1989), 1235–1258. https:
//api.semanticscholar.org/CorpusID:12684556

[29] Maurizio Nolé and Carlo Sartiani. 2016. Regular Path Queries on Massive
Graphs. In Proceedings of the 28th International Conference on Scientific and
Statistical Database Management (Budapest, Hungary) (SSDBM ’16). Association
for Computing Machinery, New York, NY, USA, Article 13, 12 pages. https:
//doi.org/10.1145/2949689.2949711

[30] Michel Pelletier, Will Kimmerer, Timothy A. Davis, and Timothy G. Mattson. 2021.
The GraphBLAS in Julia and Python: the PageRank and Triangle Centralities.
In 2021 IEEE High Performance Extreme Computing Conference (HPEC). 1–7.
https://doi.org/10.1109/HPEC49654.2021.9622789

[31] Oracev Egor Stanislavovic. 2023. Generalized sparse linear algebra library with
vendor-agnostic GPUs acceleration. (2023).

[32] Gábor Szárnyas, David A. Bader, Timothy A. Davis, James Kitchen, Timo-
thy G. Mattson, Scott McMillan, and Erik Welch. 2021. LAGraph: Linear
Algebra, Network Analysis Libraries, and the Study of Graph Algorithms.
arXiv:2104.01661 [cs.MS] https://arxiv.org/abs/2104.01661

[33] Arseniy Terekhov, Vlada Pogozhelskaya, Vadim Abzalov, Timur Zinnatulin, and
Semyon V. Grigorev. 2021. Multiple-Source Context-Free Path Querying in
Terms of Linear Algebra. In International Conference on Extending Database
Technology. https://api.semanticscholar.org/CorpusID:232284054

[34] Oskar van Rest, Sungpack Hong, Jinha Kim, Xuming Meng, and Hassan Chafi.
2016. PGQL: a property graph query language. In Proceedings of the Fourth Inter-
national Workshop on Graph Data Management Experiences and Systems (Red-
wood Shores, California) (GRADES ’16). Association for Computing Machinery,
New York, NY, USA, Article 7, 6 pages. https://doi.org/10.1145/2960414.2960421

[35] Domagoj Vrgoc, Carlos Rojas, Renzo Angles, Marcelo Arenas, Diego Arroyuelo,
Carlos Buil Aranda, Aidan Hogan, Gonzalo Navarro, Cristian Riveros, and Juan
Romero. 2021. MillenniumDB: A Persistent, Open-Source, Graph Database.
arXiv:2111.01540 [cs.DB] https://arxiv.org/abs/2111.01540

[36] Hui Wang, Xin Wang, Menglu Ma, and Yiheng You. 2025. RPQBench: A
Benchmark for Regular Path Queries on Graph Data. In Web Information Systems
Engineering – WISE 2024, Mahmoud Barhamgi, Hua Wang, and Xin Wang (Eds.).
Springer Nature Singapore, Singapore, 351–367.

[37] Xin Wang, Simiao Wang, Yueqi Xin, Yajun Yang, Jianxin Li, and Xiaofei Wang.
2019. Distributed Pregel-based provenance-aware regular path query processing
on RDF knowledge graphs. World Wide Web 23, 3 (Nov. 2019), 1465–1496.
https://doi.org/10.1007/s11280-019-00739-0

[38] Carl Yang, Aydın Buluç, and John D. Owens. 2022. GraphBLAST: A High-
Performance Linear Algebra-based Graph Framework on the GPU. ACM Trans.
Math. Softw. 48, 1, Article 1 (feb 2022), 51 pages. https://doi.org/10.1145/3466795

A PROOF OF CORRECTNESS
Theorem A.1 (LA 2-RPQ algorithm correctness). The pro-

posed algorithm, represented in 1, computes the matrix 𝑃 such that

https://doi.org/10.5441/002/EDBT.2017.47
https://doi.org/10.5441/002/EDBT.2017.47
https://doi.org/10.1145/3104031
https://doi.org/10.1145/3104031
https://doi.org/10.1007/978-3-031-43980-3_4
https://doi.org/10.1007/s00778-023-00811-2
https://doi.org/10.1007/s00778-023-00811-2
https://doi.org/10.1109/ICDE53745.2022.00277
https://doi.org/10.1109/ICDE53745.2022.00277
https://doi.org/10.1137/S0097539798337716
https://doi.org/10.1007/978-3-031-01864-0
https://doi.org/10.1007/978-3-031-01864-0
https://doi.org/10.1177/1094342011403516
https://doi.org/10.1177/1094342011403516
https://arxiv.org/abs/https://doi.org/10.1177/1094342011403516
https://doi.org/10.1109/ipdpsw.2019.00054
https://doi.org/10.1109/ipdpsw.2019.00054
https://doi.org/10.1145/3322125
https://doi.org/10.1145/3322125
https://doi.org/10.1145/3577195
https://doi.org/10.1109/HPEC43674.2020.9286186
https://doi.org/10.1109/HPEC43674.2020.9286186
https://doi.org/10.1145/3626562.3626833
https://ceur-ws.org/Vol-3409/paper13.pdf
https://doi.org/10.1145/3183713.3190657
https://doi.org/10.1007/s10115-020-01536-2
https://doi.org/10.1007/s10115-020-01536-2
https://www.iso.org/standard/76120.html
https://api.semanticscholar.org/CorpusID:3654505
https://arxiv.org/abs/2403.10051
https://arxiv.org/abs/2403.10051
https://arxiv.org/abs/2403.10051
https://api.semanticscholar.org/CorpusID:12684556
https://api.semanticscholar.org/CorpusID:12684556
https://doi.org/10.1145/2949689.2949711
https://doi.org/10.1145/2949689.2949711
https://doi.org/10.1109/HPEC49654.2021.9622789
https://arxiv.org/abs/2104.01661
https://arxiv.org/abs/2104.01661
https://api.semanticscholar.org/CorpusID:232284054
https://doi.org/10.1145/2960414.2960421
https://arxiv.org/abs/2111.01540
https://arxiv.org/abs/2111.01540
https://doi.org/10.1007/s11280-019-00739-0
https://doi.org/10.1145/3466795

the respective relation P ⊆ 𝑄 ×𝑉 has the following property.

(𝑞, 𝑣) ∈ P ⇔

∃ 2-path 𝜋𝐺 in G from 𝑣𝑠 to 𝑣

∃ path 𝜋𝑁 in N from some 𝑞𝑠 ∈ 𝑄𝑆 to 𝑞

𝜔↔G (𝜋G) ∩ 𝜔N (𝜋N) ≠ ∅ .
(∗)

Denote the state of matrix 𝑀 after the step 𝑛 of the loop on lines
7–10 of algorithm 1 as 𝑀𝑛 and the state of 𝑃 as 𝑃𝑛 . Introduce the
auxiliary relationsM𝑛 ⊆ 𝑄 ×𝑉 represented by 𝑀𝑛 and P𝑛 ⊆ 𝑄 ×𝑉
represented by 𝑃 after step 𝑛. P and P𝑛 are connected with relations
M𝑛 :

P𝑛 =
⋃

1≤𝑚≤𝑛
M𝑚 ; P =

⋃
𝑚∈N
M𝑚

The approach is to build a relation between the automaton states
and the vertices of the graph and update it by traversing both
automaton and graph at the same time. As an algorithm invariant
after the step 𝑛 we claim this properties forM𝑛 represented by the
matrix 𝑀𝑛 :

(𝑞, 𝑣) ∈ M𝑛 ⇔


∃ 2-path 𝜋G of length 𝑛 in G from 𝑣𝑠 to 𝑣

∃ path 𝜋N of length 𝑛 in N from 𝑞𝑠 ∈ 𝑄𝑆 to 𝑞

𝜔↔G (𝜋G) ∩ 𝜔N (𝜋N) ≠ ∅
∀𝑚 < 𝑛 (𝑞, 𝑣) ∉M𝑚

(∗∗)
Note that if we continue looping forever in lines 7–10 from

M𝑛 = ∅ it followsM𝑚 = ∅ for𝑚 > 𝑛. This means that it is enough
to iterate until the 𝑀 matrix becomes 0.

Notice that P𝑛 ⊊ P𝑛+1 or |P𝑛 | < |P𝑛+1 | ifM𝑛+1 is not empty.
AndM𝑛+1∩P𝑛 = ∅ for all𝑛 ∈ N. |P𝑛 | ≤ |𝑄 | |𝑉 | and |M𝑛 | ≤ |𝑄 | |𝑉 |
for all𝑛 ∈ N. Thus, ifM𝑚 ≠ ∅ for all𝑚 < |𝑄 | |𝑉 | thenM |𝑄 | |𝑉 | = ∅,
since |P|𝑄 | |𝑉 |−1 | ≥ |𝑄 | |𝑉 |. This means that the algorithm always
finishes in a maximum of |𝑄 | |𝑉 | steps.

Obviously, the invariant holds for𝑛 = 0 after initializing the matrix
𝑀 with 𝑀0. If you consider the paths of length 0, the set of vertices
and automaton states coincides with {𝑣𝑠 } and 𝑄𝑆 correspondingly.

(𝑞, 𝑣) ∈ M0 ⇔ 𝑞 ∈ 𝑄𝑆 , 𝑣 = 𝑣𝑠

Consider evaluating the 𝑛 + 1 step of the algorithm. Fix the label
𝑎 ∈ 𝐿. After step 𝑛, 𝑀 represents a relationM𝑛 . At first, evaluate
the first matrix product 𝑀′𝑎

𝑛+1 = (𝑁
𝑎)𝑇 ⊗𝑀 . This product represents

a relationM′𝑎
𝑛+1 ⊆ 𝑄 ×𝑉 :

M′𝑎𝑛+1 = {(𝑞
′, 𝑣) | (𝑞, 𝑞′) ∈ Δ𝑎, (𝑞, 𝑣) ∈ M𝑛}.

Evaluate the second matrix product 𝑀𝑎
𝑛+1 = 𝑀′𝑎

𝑛+1 ⊗𝐺
𝑎 =

= (𝑁𝑎)𝑇 ⊗𝑀𝑛 ⊗𝐺𝑎 . Assume 𝑀𝑎
𝑛+1 represents a relation M𝑎

𝑛+1,
then:

M𝑎
𝑛+1 = {(𝑞

′, 𝑣 ′) | (𝑣, 𝑣 ′) ∈ 𝐸𝑎, (𝑞′, 𝑣) ∈ M′𝑎𝑛+1}
= {(𝑞′, 𝑣 ′) | (𝑣, 𝑣 ′) ∈ 𝐸𝑎, (𝑞, 𝑞′) ∈ Δ𝑎, (𝑞, 𝑣) ∈ M𝑛}.

Hence, the new relationM𝑛+1 represented by the matrix∨
𝑎∈Σ↔∩𝐿↔ 𝑀𝑎

𝑛+1⟨¬𝑃⟩ can be written as follows:

M𝑛+1 =
⋃

𝑎∈Σ↔∩𝐿↔
{(𝑞, 𝑣) | (𝑞, 𝑣) ∈ M′𝑎𝑛+1, (𝑞, 𝑣) ∉ P} =

=
⋃

𝑎∈Σ↔∩𝐿↔

{
(𝑞′, 𝑣 ′)

�����(𝑣, 𝑣 ′) ∈ 𝐸𝑎, (𝑞, 𝑞′) ∈ Δ𝑎(𝑞, 𝑣) ∈ M𝑛, (𝑞, 𝑣) ∉ P

}
.

Updating the relation between the 2-NFA states and the graph
verticesM with theM′ value derives the following properties.

(𝑞′, 𝑣 ′) ∈ M𝑛+1 ⇔
{
(𝑞, 𝑞′) ∈ Δ𝑎

(𝑣, 𝑣 ′) ∈ 𝐸𝑎
for some 𝑎 ∈ Σ↔ ∩ 𝐿↔ .

Ensure that the invariant is preserved for (𝑞′, 𝑣 ′) in M′. Let
𝜋G = (𝑒1, ..., 𝑒𝑛), 𝜋N = (𝛿1, ..., 𝛿𝑛) be the paths to (𝑞, 𝑣) satisfying
conditions ∗∗. Then:

• ∃ 2-path 𝜋 ′G = (𝑒1, ..., 𝑒𝑛, (𝑣, 𝑣 ′)) in G from 𝑣𝑠 to 𝑣 ′.
• ∃ path 𝜋 ′N = (𝛿1, ..., 𝛿𝑛, (𝑞, 𝑞′)) in N from 𝑞𝐹 ∈ 𝑄𝐹 to 𝑞′.
• 𝑤 ·𝑎 ∈ 𝜔↔G (𝜋

′
G)∩𝜔N (𝜋

′
N) where𝑤 ∈ 𝜔↔G (𝜋G)∩𝜔N (𝜋N).

• P𝑛 =
⋃
𝑚≤𝑛
M𝑚 , so if (𝑞, 𝑣) ∈ M𝑚 for 𝑚 ≤ 𝑛 then (𝑞, 𝑣) ∉

M𝑛+1.
Since conditions (∗∗) are preserved for the relationM𝑛+1 matching

the new value of 𝑀 ← 𝑀𝑛+1, the invariant is preserved.

	Abstract
	1 Introduction
	2 Preliminaries
	3 Linear Algebra, Graphs and Relations
	4 BFS-Based Single-Source RPQ in Terms of Linear Algebra
	4.1 Comparison With Diego Arroyuelo Algorithm

	5 Evaluation
	5.1 Implementation Details
	5.2 Dataset Description
	5.3 Evaluation Scenario
	5.4 Real-World Graph Querying Results
	5.5 Synthetic Graph Querying Results

	6 Conclusion and Future Work
	Acknowledgments
	References
	A Proof of Correctness

