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ABSTRACT
Betweenness centrality is a crucial metric widely used in network

analysis tasks to measure centrality and identify the most central

vertices. The betweenness centrality of a vertex is defined as the

frequency with which the shortest paths between other vertices

pass through it. In many applications, the primary objective is to

find a set of vertices with the maximum betweenness centrality,

referred to as the betweenness centrality maximization problem.

Although this problem has been extensively studied in static net-

works, many real-world networks are not only large in scale but also

incorporate temporal information. Therefore, solving this problem

in temporal networks necessitates the consideration of additional

criteria, and the computational cost is prohibitive compared to static

networks. In this paper, we propose an efficient approximation al-

gorithm, KTBCM, which provides high-quality estimates for the

temporal betweenness centrality maximization problem. KTBCM

first transforms the temporal network into an edge graph to miti-

gate the time-consuming process of comparing adjacent temporal

information. Moreover, it reduces the size of the edge graph by em-

ploying the pruning technique. Then, KTBCM utilizes a single-path

sampling strategy to accelerate the search for the shortest paths

without compromising the quality of the result. Finally, experiments

on 6 temporal networks demonstrate that KTBCM achieves results

comparable to the exact algorithm while significantly reducing

computational costs in large networks.
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1 INTRODUCTION
In complex network analysis, centrality is a fundamental measure

extensively used to identify central vertices [7]. Centrality mea-

sures can be applied to various tasks, such as epidemic research [8],

network vulnerability analysis [19], and rout planning [23]. In this

work, we consider the betweenness centrality, a commonly used

centrality measure that quantifies the frequency of a vertex lies

on the shortest paths between pairs of other vertices [15, 25]. Ver-

tices with high betweenness centrality play a crucial role in detect-

ing communities [14], controlling global information interaction

flows [26], and clustering [17].

In many real-world applications, finding a group of vertices with

high betweenness centrality is important [21, 28, 35]. In biological

networks, we are more interested in the identity of whether a group

of components can be the key to the functional activities of other

components. In cyberattacks, defending a set of nodes that can

impact the entire network leads to more efficient resistance against

attacks [3]. Such tasks can be summarized as identifying a set of 𝑘

vertices with the maximum betweenness centrality, referred to as

the Betweenness Centrality Maximization problem (BCMP).

However, existing works only consider betweenness centrality

maximization in static networks while ignoring the temporal in-

formation. Real-world systems are time-dependent, showing the

interactions between vertices, such as stock trading markets and

transportation systems. Compared to static networks, temporal

networks provide a more comprehensive characterization of the

network properties [34, 36, 37, 39]. To fill the gap, we propose a

novel problem, the temporal Betweenness Centrality Maximiza-

tion problem. However, incorporating temporal information makes

the problem more challenging than in static networks. Additional

criteria include the shortest temporal path (STP) criterion and the

restless temporal path (RTP) criterion are involved in finding the

shortest paths [20, 33]. The STP criterion requires timestamps on

the path between two vertices in ascending order, with the mini-

mumnumber of edges. The RTP criterion builds on the STP criterion

by further requiring that the interval of consecutive timestamps

fall within a predefined parameter 𝜆 ∈ R. In the temporal network

shown in Figure 1(a), following the STP and RTP criteria with 𝜆 = 5,

we can obtain the shortest temporal paths between vertex 𝑣1 and

𝑣5 as shown in Figure 1(b) and 1(c), respectively, While the shortest
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Figure 1: An example of searching the shortest paths in a
directed temporal network under different criteria.

path between 𝑣1 and 𝑣5 in the corresponding static network is dif-

ferent as shown in Figure 1(d). Therefore, the methods for finding

the shortest paths in static networks cannot be directly applied to

temporal networks in an efficient way.

The BCMP is proved to be NP-hard and APX-complete [9, 13].

Research by Fink and Spoerhase demonstrate that using a greedy

algorithm formaximizing themonotone-submodular objective func-

tion ensures an approximation ratio of 1 − 1/𝑒 [13]. However, the
greedy algorithm requires at least 𝑂 (𝑘𝑚𝑛) time, which is obvi-

ously impractical for large networks. Considering the relationship

between finding the shortest paths and obtaining each vertex’s be-

tweenness centrality, the computational costs increase significantly

when temporal information is added. For large temporal networks,

such time complexity is prohibitive.

To address the above challenges, our intuition is to minimize the

impact of the temporal information on finding the shortest paths.

The STP and RTP criteria introduce additional constraints for identi-

fying the shortest path, requiring multiple timestamp comparisons.

Therefore, we transform the temporal network into an edge graph,

where each edge is mapped to an edge vertex. During the trans-

formation, edges between edge vertices are built iff the criteria are

satisfied. By searching for the shortest paths in the edge graph, we

eliminate redundant timestamp comparisons, significantly reducing

computational costs. In greedy algorithms, calculating between-

ness centrality requires obtaining all shortest paths passing through

each vertex, which is time-consuming. Inspired by [28], we sample

only one shortest path between two vertices to further accelerate

the computation. Based on these optimizations, we propose the

𝑘 Top Betweenness Centrality Maximization algorithm (KTBCM),

the first efficient approximation algorithm for the temporal BCMP.

Our main contributions are as follows:

• We introduce a novel problem, the temporal betweenness

centrality maximization problem, and present an efficient

approximation algorithm, KTBCM. To our best knowledge,

this is the first paper to study the betweenness centrality

maximization in temporal graph.

• To solve the problem efficiently, we transform the temporal

network into an edge graph, significantly reducing the time

costs on timestamp comparisons.

• Wedesign a lossless pruning technique to reduce the scale of

the edge graph and sample only one shortest path between

vertex pairs within the edge graph to accelerate the search

computation.

• Experiments conducted on 6 real-world temporal networks

demonstrate that our algorithm achieves accuracy compara-

ble to the exact algorithm, and provides orders of magnitude

speedup compared to approximation algorithms.

The rest of this paper is organized as follows. In Section 2, we

introduce the problem definition. In Section 3, we introduce our

proposed algorithm Top-k-TBCM and present its theoretical analy-

sis. Section 4 presents the experiments results over 6 datasets. We

introduce the related works in Section 5 and conclude the paper in

Section 6.

2 PRELIMINARIES
In this paper, we consider an unweighted direct temporal graph

𝑇 = (𝑉 , 𝐸), where 𝑉 (resp. 𝐸) is the set of 𝑛 vertices (resp.𝑚 direct

edges). Each edge 𝑒 ∈ 𝐸 can be represented as (𝑢, 𝑣, 𝑡), where 𝑢, 𝑣 ∈
𝑉 and 𝑡 is the corresponding timestamp. For each vertex 𝑣 , we use

𝑁 (𝑣) = {(𝑢, 𝑡) |𝑣 ∈ 𝑉 , (𝑣,𝑢, 𝑡) ∈ 𝐸} to denote the neighbours of 𝑣 .

Definition 2.1 (Temporal Path). Given a temporal network 𝑇 ,

𝑃𝑠,𝑧 = ⟨𝑒1 = (𝑠, 𝑣1, 𝑡1), 𝑒2 = (𝑢2, 𝑣2, 𝑡2), ..., 𝑒𝑙 = (𝑣𝑙 , 𝑧, 𝑡𝑙 )⟩ is an 𝑙-

edge temporal path from 𝑠 ∈ 𝑉 to 𝑧 ∈ 𝑉 . The vertices in 𝑃𝑠,𝑧 are

ordered by increasing timestamps, i.e., 𝑡1 ≤ 𝑡2 ≤ ... ≤ 𝑡𝑙 .

Note that, the method proposed in this paper can be easily ex-

tended to support the case with non-strict ascending timestamps,

i.e., with ≤ constraint in a temporal path. Given a source vertex

𝑠 and target vertex 𝑧, there are multiple temporal paths between

the two vertices. To characterize the shortest path, we follow the

previous settings in temporal betweenness centrality, and employ

the Shortest Temporal Path (STP) and the Restless Temporal Path

(RTP) criteria.

Definition 2.2 (Shortest Temporal Path). A shortest temporal path

in𝑇 is a temporal path from 𝑠 to 𝑧, denoted as 𝑃𝑠ℎ𝑠,𝑧 , with the minimal

length among all temporal paths from 𝑠 to 𝑧.

Definition 2.3 (Restless Temporal Path). A restless temporal path

in 𝑇 is a shortest temporal path with the interaction time between

any two consecutive edges does not exceed 𝜆 ∈ R, denoted as 𝑃𝑟𝑙𝑠,𝑧 .

For presentation simplicity, we use the STP by default. We use

𝜎𝑠ℎ𝑠,𝑧 to denote the number of 𝑃𝑠ℎ𝑠,𝑧 , and 𝜎
𝑠ℎ
𝑠,𝑧 (𝑣) to denote the number

of 𝑃𝑠ℎ𝑠,𝑧 that pass through vertex 𝑣 .
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Definition 2.4 (Temporal Betweenness Centrality). Given a tem-

poral graph 𝑇 (𝑉 , 𝐸) and a vertex 𝑣 ∈ 𝑉 , the temporal betweenness

centrality of 𝑣 is defined as

𝐵(𝑣) = 1

𝑛(𝑛 − 1)
∑︁

𝑠,𝑧∈𝑉 ,𝑠≠𝑧

𝜎𝑠ℎ𝑠,𝑧 (𝑣)
𝜎𝑠ℎ𝑠,𝑧

(1)

As discussed, in real-world applications, users may be interested

in a group of vertices instead of individual ones. By extending the

Define 1, we can compute the temporal betweenness centrality for

a set of vertices 𝑆 ⊆ 𝑉 as

𝐵(𝑆) = 1

𝑛(𝑛 − 1)
∑︁

𝑠,𝑧∈𝑉 ,𝑠≠𝑧

𝜎𝑠ℎ𝑠,𝑧 (𝑆)
𝜎𝑠ℎ𝑠,𝑧

, (2)

where 𝜎𝑠ℎ𝑠,𝑧 (𝑆) is the number of shortest temporal paths 𝑃𝑠ℎ𝑠,𝑧 that

pass through at least one vertex in set 𝑆 .

Problem statement. Given a temporal graph𝑇 and a positive inte-

ger 𝑘 , the temporal betweenness centrality maximization problem

(TBCMP) aims to find a set 𝑆∗ of 𝑘 vertices which has the largest

temporal betweenness centrality, i.e.,

𝑆∗ = argmax

𝑆⊆𝑉 : |𝑆 | ≤𝑘
𝐵(𝑆) (3)

Theorem 2.5. The objective function is a monotone and submodu-
lar function maximization problem.

Proof. Monotonicity: Let 𝑆1 ⊆ 𝑆2 ⊆ 𝑉 . According to the

Equation 2, the betweenness centrality value depends on 𝜎𝑠ℎ𝑠,𝑧 (𝑆).
Since 𝑆1 ⊆ 𝑆2, there are at least as many, and potentially more,

vertices in 𝑆2 that are passed through by shortest paths as in 𝑆1. We

can have: if 𝑆1 ⊆ 𝑆2 ⊆ 𝑉 , then 𝐵(𝑆1) ≤ 𝐵(𝑆2).
Submodularity: We consider an vertex 𝑣 ∈ 𝑉 \ 𝑆2, and show that

𝐵(𝑆2 ∪ {𝑣}) − 𝐵(𝑆2) ≤ 𝐵(𝑆1 ∪ {𝑣}) − 𝐵(𝑆1). As 𝜎𝑠ℎ𝑠,𝑧 (𝑆1) ≤ 𝜎𝑠ℎ𝑠,𝑧 (𝑆2),
there will be some new paths pass through vertices in 𝑆1 which are

already pass through vertices in 𝑆2 when adding vertex 𝑣 . Then,

the marginal gain of 𝐵(𝑆2 ∪ {𝑣}) will not be greater than that of

𝐵(𝑆1 ∪ {𝑣}). Therefore, 𝐵(𝑆2 ∪ {𝑣}) − 𝐵(𝑆2) ≤ 𝐵(𝑆1 ∪ {𝑣}) − 𝐵(𝑆1)
holds.

□

3 SOLUTION
Due to the properties of the objective function, applying the greedy

framework, i.e., iteratively selecting the vertex with the largest

marginal gain, we can obtain a result with 1 − 1/𝑒 approximation

ratio [13]. However, as discussed, computing temporal between-

ness centrality exactly is time-consuming. There are some studies

that aim to accelerate computing through approach approaches

(e.g., [33]). While, it more focuses on computing the betweenness

centrality for all vertices, and all the shortest paths are retrieved for

each sample, which is not practical for the maximization task. As

shown in the experiment, the performance is significantly affected.

3.1 Framework Overview
To solve TBCMP efficiently, we follow the sampling framework for

betweenness centrality maximization in static graphs (e.g., [28]),

which 𝑖) first generates a set of samples, 𝑖𝑖) then iteratively select

𝑘 vertices with the largest marginal gain over the samples. As the

Algorithm 1: KTBCM
Input : A temporal network 𝑇 = (𝑉 , 𝐸), seed set size 𝑘 , and

the sample size𝑀

Output: A seed set 𝑆 of size 𝑘

𝐺𝑒 ← Graph-Transform(𝑇 ); /* graph transformation */;1

𝑃𝐿𝑖𝑠𝑡 ← Path-Find(𝑇,𝐺𝑒 , 𝑀); /* sample generation */;2

S← Seed-Selection(𝑇, 𝑃𝐿𝑖𝑠𝑡, 𝑘); /* seed computation */;3

return 𝑆4

experimental results are shown in Table 1 for ONBRA, sampling

the shortest paths is the most time-consuming part in temporal

networks. To generate samples for TBCMP efficiently, we propose

a graph transformation approach, which can reduce the cost of

timestamp comparison for sampling. The overall framework is

shown in Algorithm 1, denoted as KTBCM. It has three phases, i.e.,

graph transformation, sample generation, and seed computation.

Note that, in this paper, we more focus on generating samples

efficiently. For the sample size required, we follow the previous

research, which is orthogonal to our study.

3.2 Graph Transformation
To avoid redundant comparison in the shortest path sampling, we

transform the temporal network 𝑇 into an edge graph 𝐺𝑒 .

Vertex and edge transformation. Each vertex 𝑣 ∈ 𝑉 is mapped

to a V-vertex in 𝐺𝑒 with a timestamp of 0, i.e., (𝑣𝑖 , 𝑣𝑖 , 0). For any
edge 𝑒𝑖 ∈ 𝐸, we transform it into an E-vertex. For example, the edge

between vertex 𝑣 and 𝑢 with a timestamp 𝑡 is transformed into an

E-vertex (𝑣,𝑢, 𝑡). Each V-vertex is only reachable by its neighboring
E-vertices.

Edge generation. According to Definition 2.1, an edge is reach-

able when the timestamp is larger than that of the previous edge.

For each E-vertex and V-vertex (𝑣,𝑢, 𝑡) ∈ 𝐺𝑒 , we build an edge

((𝑣,𝑢, 𝑡1), (𝑢,𝑤, 𝑡2)) from E(V)-vertex (𝑣,𝑢, 𝑡1) to (𝑢,𝑤, 𝑡2) iff 𝑡1 ≤
𝑡2.

When constructing the edge graph, there is a scenario where

removing certain edges does not affect searching the shortest path.

We refer to these edges asmeaningless. If we can remove these

edges, the search time could be significantly reduced.

Lemma 3.1. If two temporal paths have the same vertices and order,
the one with a larger timestamp ismeaningless and can be removed
when constructing the edge graph.

Proof. Suppose there are E-vertices (𝑣𝑖 , 𝑣 𝑗 , 𝑡1), (𝑣 𝑗 , 𝑣𝑘 , 𝑡2) and
(𝑣 𝑗 , 𝑣𝑘 , 𝑡3) ∈𝐺𝑒 , and 𝑡1 ≤ 𝑡2 ≤ 𝑡3. Let 𝑒𝑖 = ((𝑣𝑖 , 𝑣 𝑗 , 𝑡1), (𝑣 𝑗 , 𝑣𝑘 , 𝑡2)) be
the edge from (𝑣𝑖 , 𝑣 𝑗 , 𝑡1) to (𝑣 𝑗 , 𝑣𝑘 , 𝑡2), 𝑒 𝑗 = ((𝑣𝑖 , 𝑣 𝑗 , 𝑡1), (𝑣 𝑗 , 𝑣𝑘 , 𝑡3))
be the edge from (𝑣𝑖 , 𝑣 𝑗 , 𝑡1) to (𝑣 𝑗 , 𝑣𝑘 , 𝑡3). We can have two tempo-

ral paths from vertex 𝑣𝑖 and 𝑣𝑘 through 𝑣 𝑗 in 𝑇 : 𝑃𝑣𝑖 ,𝑣𝑘 = ⟨𝑒1 =

(𝑣𝑖 , 𝑣 𝑗 , 𝑡1), 𝑒2 = (𝑣 𝑗 , 𝑣𝑘 , 𝑡2)⟩ and 𝑃
′
𝑣𝑖 ,𝑣𝑘

= ⟨𝑒 ′
1

= (𝑣𝑖 , 𝑣 𝑗 , 𝑡1), 𝑒
′
2

=

(𝑣 𝑗 , 𝑣𝑘 , 𝑡3)⟩. Suppose there is an E-vertex (𝑣𝑘 , 𝑣𝑞, 𝑡4) connects (𝑣 𝑗 , 𝑣𝑘 , 𝑡3)
in𝐺𝑒 through an edge 𝑒𝑘 = ((𝑣 𝑗 , 𝑣𝑘 , 𝑡3), (𝑣𝑘 , 𝑣𝑚, 𝑡4)). There are two
paths from (𝑣𝑖 , 𝑣 𝑗 , 𝑡1) and (𝑣𝑘 , 𝑣𝑞, 𝑡4): 𝑃1 = ⟨𝑒1 = ((𝑣𝑖 , 𝑣 𝑗 , 𝑡1), (𝑣 𝑗 , 𝑣𝑘 , 𝑡2), 𝑒𝑖 ),
𝑒2 = ((𝑣 𝑗 , 𝑣𝑘 , 𝑡2), (𝑣𝑘 , 𝑣𝑞, 𝑡4), 𝑒𝑘 )⟩ and 𝑃2 = ⟨𝑒

′
1
= ((𝑣𝑖 , 𝑣 𝑗 , 𝑡1), (𝑣 𝑗 , 𝑣𝑘 , 𝑡3),

𝑒 𝑗 ), 𝑒
′
2
= ((𝑣 𝑗 , 𝑣𝑘 , 𝑡3), (𝑣𝑘 , 𝑣𝑞, 𝑡4), 𝑒𝑘 )⟩. We can have 𝑒 𝑗 to be removed

while maintaining the connection between E-vertex (𝑣𝑖 , 𝑣 𝑗 , 𝑡1) and
3



Table 1: The runtime of ONBRA

Dataset Initialize structures Sample paths Compute betweenness

CollegeMsg 14.127s 51.900s 1.020s

EmailEu 504.97s 2019.4s 4.491s

Mathoverflow 149.59s 1045.6s 0.923s

Algorithm 2: Graph-Transformation

Input : A temporal network 𝑇 = (𝑉 , 𝐸)
Output: An edge graph 𝐺𝑒 = (𝑉𝑒 , 𝐸𝑒 )
𝑉𝑒 , 𝐸𝑒 ← ∅;1

for each 𝑣 ∈ 𝑉 do2

𝑉𝑒 ← 𝑉𝑒 ∪ (𝑣, 𝑣, 0);3

for each (𝑣,𝑢, 𝑡) ∈ 𝐸 do4

𝑉𝑒 ← 𝑉𝑒 ∪ (𝑣,𝑢, 𝑡);5

for each (𝑣,𝑢, 𝑡) ∈ 𝑉𝑒 do6

Mark all vertices as not visited;7

for each (𝑢,𝑤, 𝑡 ′) ∈ 𝑁 (𝑢) do8

if 𝑡 ≤ 𝑡 ′ and𝑤 is not visited then9

𝐸𝑒 ← 𝐸𝑒 ∪ ((𝑣,𝑢, 𝑡), (𝑢,𝑤, 𝑡 ′));10

Mark𝑤 as visited;11

𝐺𝑒 = (𝑉𝑒 , 𝐸𝑒 );12

return 𝐺𝑒13

(𝑣𝑘 , 𝑣𝑞, 𝑡4) with the same number of edges. And the vertex 𝑣𝑖 can

still reach 𝑣𝑞 in the temporal network through 𝑣 𝑗 and 𝑣𝑘 in or-

der. □

Lines 6 to 11 of Algorithm 2 shows the process of generating

edges in𝐺𝑒 : 𝑖) traverse each vertex in𝐺𝑒 and mark it as not-visited,

𝑖𝑖) for each vertex in the neighbor vertex set 𝑁 (𝑢), create an edge

{(𝑣,𝑢, 𝑡), (𝑢,𝑤, 𝑡 ′)} iff 𝑡 ≤ 𝑡 ′. To adapt to the RTP criterion here,

the constrain 𝑡 ≤ 𝑡 ′ in line 9 need to be modified to 𝑡 ≤ 𝑡 ′ ≤ 𝑡 + 𝜆.

3.3 Sample Generation
In this section, we introduce the Algorithm 3 that computes the

temporal shortest paths in 𝐺𝑒 and return the path set 𝑃𝐿𝑖𝑠𝑡 . Based

on the analysis in the algorithm HEDGE, the algorithm samples

𝑀 = 𝑂 ( 𝑘𝑙𝑜𝑔 (𝑛)
𝜖2
) pair of vertex [28]. In each iteration, we randomly

select a pair of vertices (𝑠, 𝑧) from 𝑇 . The algorithm performs a

BFS search for the shortest paths from the source E-vertex (𝑠, 𝑠, 0)
to the target E-vertex (𝑧, 𝑧, 0). For each vertex (𝑣,𝑢, 𝑡) ∈ 𝐺𝑒 , we

initialize 𝑑𝑖𝑠𝑡𝑣,𝑢 (𝑡) and a set 𝑝𝑟𝑒𝑣,𝑢 (𝑡) to record the distance from

the source E-vertex (𝑠, 𝑠, 0) and its predecessors, respectively. The

𝑑𝑖𝑠𝑡𝑠,𝑠 (0) is set to 0 for each source E-vertex. The BFS starts by

pushing (𝑠, 𝑠, 0) into the queue. In each iteration, the algorithm

pops a vertex (𝑣,𝑢, 𝑡) and checks if 𝑢 is the target vertex. Then, the

algorithm traverses neighbor vertices (𝑣𝑛, 𝑢𝑛, 𝑡𝑛) of (𝑣,𝑢, 𝑡) with
operations as follows: 𝑖) if 𝑢𝑛 is the target vertex, the algorithm

records the path by adding (𝑣𝑛, 𝑢𝑛, 𝑡𝑛) into the predecessor set

𝑝𝑟𝑒𝑧,𝑧 (0); 𝑖𝑖) if 𝑢𝑛 is not the target vertex, the algorithm updates

the distance with 𝑑𝑖𝑠𝑡𝑣,𝑢 (𝑡) + 1 and pushes it into the queue. The

predecessor set is updated by checking the distance between (𝑣,𝑢, 𝑡)
and (𝑣𝑛, 𝑢𝑛, 𝑡𝑛). The algorithm keeps track of the shortest paths

between 𝑠 and 𝑧 in the predecessor set 𝑝𝑟𝑒𝑧,𝑧 (0). If 𝑝𝑟𝑒𝑧,𝑧 (0) is not
empty, the algorithm randomly samples one shortest path and adds

it to the 𝑃𝐿𝑖𝑠𝑡 set at the end of each iteration. In the sampling,

vertices can be visited multiple times which is not allowed under

the STP criterion.

Lemma 3.2. The BFS in Algorithm 3 guarantees that no vertex will
be repeated in the sampled temporal shortest path.

Proof. Suppose there is a temporal shortest path from a source

vertex 𝑠 to a target vertex 𝑧 that is not sampled by BFS: 𝑃𝑠,𝑧 =

⟨𝑒1 = (𝑠, 𝑣1, 𝑡1), 𝑒2 = (𝑣1, 𝑣2, 𝑡2), 𝑒3 = (𝑣2, 𝑠, 𝑡3), 𝑒4 = (𝑠, 𝑣1, 𝑡4), 𝑒5 =

(𝑣1, 𝑣2, 𝑡5), 𝑒6 = (𝑣2, 𝑧, 𝑡5)⟩ with a cycle: 𝑠
𝑡1−→ 𝑣1

𝑡2−→ 𝑣2
𝑡3−→ 𝑠 . We

observe that 𝑃𝑠,𝑧 violates the Definition 2.2 as there are duplicate

vertices. As BFS starts from the source vertex and expands the

search scope layer by layer, the search will reach 𝑧 directly after first

reaching 𝑣2. Furthermore, BFS utilizes a set to record vertices that

have been visited, thereby preventing vertices duplication and the

occurrence of cycles. The Algorithm 3 implements this mechanism

by checking whether 𝑑𝑖𝑠𝑡𝑣,𝑢 (𝑡) is a non-negative value. □

Next, we explain why it is sufficient to consider only one shortest

path for the betweenness centrality calculation.

In the temporal network𝑇 , the probability of randomly selecting

𝑠 and 𝑧 is 1

𝑛 (𝑛−1) . According to Definition 2, the probability that at

least one vertex in 𝑃𝑠ℎ𝑠,𝑧 belongs to the set S is
𝜎𝑠ℎ
𝑠,𝑧 (𝑆 )
𝜎𝑠ℎ
𝑠,𝑧

. The probability

of randomly selecting a shortest path containing vertices from any

𝑆 ⊆ 𝑉 is:

𝑃𝑟𝑜𝑏 (𝑃𝑠ℎ𝑠,𝑧 ∩ 𝑆 ≠ ∅) =
∑︁

𝑠,𝑧∈𝑉 ,𝑠≠𝑧

1

𝑛(𝑛 − 1) 𝐵(𝑆). (4)

Suppose we search 𝑛(𝑛−1) shortest paths between 𝑠 and 𝑧 in the

algorithm, the number of shortest paths passing through vertices

in 𝑆 will be equal to 𝐵(𝑆). Therefore, sampling only one shortest

path is sufficient to calculate the temporal betweenness centrality

of 𝑆 ⊆ 𝑉 .

3.4 Seed Computation
In this section, we describe the process of computing the seed set

by traversing paths in 𝑃𝐿𝑖𝑠𝑡 . The aim is to find a set of 𝑘 vertices

that cover the largest number of shortest paths. A counter𝐶 (𝑣) and
a path set are initialized to keep track of 𝜎𝑠ℎ𝑠,𝑧 (𝑣) and the set of paths
covering 𝑣 , respectively. For each vertex 𝑣 in 𝑃𝐿𝑖𝑠𝑡 , we set𝐶 (𝑣) = 1,

indicating that the vertex covers one shortest path. The computing

process is shown as follows and will iterate until the seed set has

𝑘 vertices: At each step, we select the vertex 𝑣 with the maximum
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Algorithm 3: Path-Finding
Input : A temporal network 𝑇 = (𝑉 , 𝐸), an edge graph

𝐺𝑒 = (𝑉𝑒 , 𝐸𝑒 ) and the sample size𝑀

Output: A set of shortest path 𝑃𝐿𝑖𝑠𝑡

for 𝑖 ← 1 to𝑀 do1

get a pair vertices (𝑠, 𝑧) from 𝑉 at random;2

// BFS from 𝑠

for each (𝑣,𝑢, 𝑡) ∈ 𝑉𝑒 do3

𝑑𝑖𝑠𝑡𝑣,𝑢 (𝑡) ← −1;4

𝑝𝑟𝑒𝑣,𝑢 (𝑡) ← ∅;5

𝑄 ← empty queue;6

𝑑𝑖𝑠𝑡𝑠,𝑠 (0) ← 0;7

𝑄.𝑝𝑢𝑠ℎ(𝑠, 𝑠, 0);8

while 𝑄 is not empty do9

(𝑣,𝑢, 𝑡) ← 𝑄.𝑝𝑜𝑝 ();10

if 𝑢 = 𝑧 then11

break;12

for each (𝑣𝑛, 𝑢𝑛, 𝑡𝑛) ∈ 𝑁𝑣,𝑢 (𝑡) do13

if 𝑑𝑖𝑠𝑡𝑣𝑛,𝑢𝑛 (𝑡𝑛) ≠ −1 then14

𝑄.𝑝𝑢𝑠ℎ((𝑣𝑛, 𝑢𝑛, 𝑡𝑛));15

𝑑𝑖𝑠𝑡𝑣𝑛,𝑢𝑛 (𝑡𝑛) ← 𝑑𝑖𝑠𝑡𝑣,𝑢 (𝑡) + 1;16

if 𝑢𝑛 = 𝑧 then17

𝑝𝑟𝑒𝑧,𝑧 (0) ← 𝑝𝑟𝑒𝑧,𝑧 (0) ∪ (𝑣𝑛, 𝑢𝑛, 𝑡𝑛);18

if 𝑑𝑖𝑠𝑡𝑣𝑛,𝑢𝑛 (𝑡𝑛) = 𝑑𝑖𝑠𝑡𝑣,𝑢 (𝑡) + 1 then19

𝑝𝑟𝑒𝑣𝑛,𝑢𝑛 (𝑡𝑛) ← 𝑝𝑟𝑒𝑣𝑛,𝑢𝑛 (𝑡𝑛) ∪ {𝑣,𝑢, 𝑡};20

if 𝑝𝑟𝑒𝑧,𝑧 (0) is not empty then21

get a shortest path through 𝑝𝑟𝑒 at random;22

add the shortest to 𝑃𝐿𝑖𝑠𝑡 ;23

return 𝑃𝐿𝑖𝑠𝑡24

𝐶 (𝑣) and add it to the seed set. Once selected, the influence of 𝑣 is

removed. The counters 𝐶 (𝑢) for vertices part of the same shortest

path recorded in the path set as 𝑣 are decremented by 1.

4 EXPERIMENTS
In this section, we conduct extensive experiments over 6 real-world

graphs to demonstrate the performance of proposed techniques.

4.1 Experiment Setup
Datasets. The algorithm KTBCM is evaluated on 6 real-world net-

works. The statistic are summarized in Table 2. The largest network

is Superuser, which contains 192 thousands vertices and 1.1 millions

edges. All datasets are public available on SNAP
1
. We performed

experiments in each network ten times and reported the average

results.

Algorithms. Due to the lack of research on the TBCMP, we extend

existing algorithms from static networks to temporal networks. We

compare the proposed approximation algorithm KTBCM with the

1
https://snap.stanford.edu/data/.
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Figure 2: Runtime on small networks.

following algorithms: 𝑖) a greedy algorithm using exact computa-

tions of betweenness centrality, denoted as EXHAUST [13]; 𝑖𝑖) an
approximate algorithm ONBRA for computing temporal between-

ness centrality, which consider the STP and RTP criterion [33];

𝑖𝑖𝑖) state-of-the-art approximation algorithm HEDGE computing

BCMP in large static network [28]. The extended algorithms are

denoted as EXHAUST-T, ONBRA-T and HEDGE-T. We evaluate

the effectiveness of our algorithm by comparing it to the exact

algorithm EXHAUST-T and assess the efficiency against the ap-

proximate algorithm ONBRA-T and HEDGE-T. All algorithms were

implemented in C++ and complied with GCC 7.5.0 using the -03 op-

timization flag. Experiments were run on a Linux server equipped

with an Intel(R) Xeon(R) Gold 5218R CPU (2.10GHz) processor and

64 GB of RAM.

4.2 Effectiveness Evaluation
To evaluate the effectiveness, we compared our algorithm with the

algorithm EXHAUST-T. Due to the limited scalability of EXHAUST-

T, experiments were conducted on three small networks, High-

School2012, CollegeMsg and EmailEu. The seed size 𝑘 is varied

from 10 to 50 in steps of 10 to access the scalability. The values of

betweenness centrality are normalized by
1

𝑛 (𝑛−1) , where 𝑛 is the

number of vertices in each network. As shown in Table 3, KTBCM

achieves achieves accuracy comparable to EXHAUST-T. Although

KTBCM is an approximate algorithm, it can still maintain high accu-

racy and scalability as the value of 𝑘 increases. Since exact computa-

tion of betweenness centrality algorithms are usually much slower

than approximate algorithms, we do not compare the running times

of EXHAUST-T and KTBCM.

4.3 Efficiency Evaluation
We compare KTBCM with approximation algorithms HEDGE -T

and ONBRA-T to evaluate the efficiency. KTBCM uses the same

sampling strategy as HEDGE-T: sampling only one shortest path.

In contrast, ONBRA-T obtains all shortest paths and then randomly

selects one. For fair comparisons, all algorithms use the same sam-

pling size. As shown in Figure 2, KTBCM is approximately 10 times

faster than HEDGE-T, demonstrating the efficiency of transforming

the temporal network into an edge graph for runtime reduction.

Compared to ONBRA-T, KTBCM is 2 orders of magnitude faster on

HighSchool2012 and EmailEu, indicating that sampling only one

shortest path can achieve significant acceleration. According to

the results, we found that as 𝑘 increases, our algorithm’s running

time increases linearly with the value of 𝑘 . Therefore, we compared

the runtime on large networks when 𝑘 = 10. As shown in Table
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Table 2: Statistics of datasets

Dataset Nodes Edges Granularity Timespan

HighSchool2012 180 45K 20 sec 7 (days)

CollegeMsg 1.9K 59.8K 1 sec 193 (days)

EmailEu 986 332K 1 sec 803 (days)

Mathoverflow 24.8K 390K 1 sec 6.4 (years)

Askubuntu 157K 727K 1 sec 7.2 (years)

Superuser 192K 1.1M 1 sec 7.6 (years)

Table 3: KTBCM vs. EXHAUST-T: centralities

Dataset 𝑘 EXHAUST-T KTBCM

HighSchool2012

10 0.193 0.186

20 0.274 0.269

30 0.318 0.314

40 0.347 0.342

50 0.367 0.357

CollegeMsg

10 0.193 0.186

20 0.274 0.269

30 0.318 0.314

40 0.347 0.342

50 0.367 0.357

EmailEu

10 0.286 0.256

20 0.396 0.355

30 0.464 0.419

40 0.512 0.470

50 0.548 0.516

4, HEDGE-T and ONBRA-T struggle to complete the computation,

whereas KTBCM can still complete the task within a reasonable

time frame.

5 RELATEDWORK
5.1 Betweenness Centrality Computation
In static networks. The naive exact algorithm to compute the be-

tweeness centrality is time-consuming, requiring 𝑂 (𝑛3) time [15].

The best-known exact algorithm, proposed by Brandes, employed

an accumulation technique and a traversal algorithm to compute

single-source shortest paths, significantly reducing the time com-

plexity to 𝑂 (𝑚𝑛) [5]. Erdös et al. utilize Brandes’s algorithm and

partition large networks into sub-networks to parallelize the com-

putation of betweenness centrality within these sub-networks [10].

This algorithm archives a 𝑘-fold speedup [10]. However, the com-

putational cost of these exact algorithms remains prohibitive for

large real-world networks. Recently, research have introduced vari-

ous sampling-based approximation algorithms [2, 4, 16, 18, 22, 32].

Bader et al. propose an adaptive sampling algorithm that also builds

upon Brandes’s algorithm, estimating betweenness centrality by

computing single-source shortest paths for a sampled vertex sub-

set [1]. Geisberger et al. introduce a scaling function, which provides

higher approximation accuracy for less important nodes, making it

suitable for large networks [16]. The time complexity of sampling

algorithms generally depends on the sample size, usually achieving

time complexity with 𝑂 (𝑘𝑚) [32]. As previously discussed, both

exact and approximation algorithms involve computing shortest

paths, they cannot be directly applied to temporal networks.

In temporal networks. Kim and Anderson are the first to extend

the betweenness centrality criteria to dynamic networks by trans-

forming the dynamic network into time-ordered networks [24].

However, algorithms designed for dynamic networks are not ap-

plicable to temporal networks as the shortest paths are computed

within a fixed timestamp in dynamic networks [33]. Buß et al. ex-

tended Brandes’s algorithm to temporal networks based on various

criteria, including the foremost and fastest paths, along with the

STP criterion discussed in this paper [6]. Yet, this algorithm is

highly inefficient, with a time complexity of 𝑂 (𝑛3𝑡2), where 𝑡 is
the number of time steps [6]. Zhang et al.’s work achieves high-

quality results with multiple criteria considered through a novel

recursive temporal dependency formulation and a network com-

pression technique [41]. However, this algorithm does not process

the RTP criterion. Conversely, ONBRA, proposed by Santoro and

Sarpe, handles both the STP and RTP criteria [33]. ONBRA is the

most related algorithm to our work and is the first to compute be-

tweenness centrality in temporal networks based on sampling [33].

Compared to exact algorithms, ONBRA significantly accelerate the

computation [33].

5.2 BCMP Computation In Static Networks
The earliest studies on centrality maximization prove that the cen-

trality measure of an individual vertex can be extended to a set of

vertices [11]. It provides new insight into the importance of groups

within a network [11]. Puzis et al. introduce the BCMP, which in-

volves identifying the 𝑘 vertices in the network with the maximum

betweenness centrality [30]. They prove that BCMP is NP-hard

and demonstrate that using a greedy algorithm can achieve an ap-

proximation ratio of 1 − 1/𝑒 , which is superior to that achieved

by heuristic algorithms [30, 31]. The greedy algorithm works as

follows: first starts with an empty set and iteratively adds the ver-

tex that maximizes the betweenness centrality of the set at each

step until the set contains 𝑘 vertices [12, 13]. Such greedy algo-

rithms require computing all shortest paths passing through each

vertex, making the running time dependent on the size of the net-

work. When the network is massive, greedy algorithms become

impractical to complete within a reasonable timeframe.
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Table 4: Runtime on large networks (𝑘 = 10)

Dataset HEDGE-T ONBRA-T KTBCM

Mathoverflow 18101.8s 14182.4s 366.4s

Askubuntu 220980s 27725.3s 689.6s

Superuser 304167s 56038.9s 1417.1s

Consequently, previous research focus on developing approx-

imation algorithms to deliver estimations within acceptable run-

time [9]. Yoshida first explores BCMP in static networks, introduc-

ing a sampling-based algorithm called TOP-k-ABC for adaptive

betweenness centrality measure [38]. TOP-k-ABC has a time com-

plexity of 𝑜 ((𝑛 +𝑚 + ℎ𝑙𝑜𝑔𝑛)𝑙𝑜𝑔𝑛/𝜖2), where ℎ depends on the size

of the set of shortest paths between any pair of vertices [38]. It

computes all possible shortest paths between any pair of vertices

and iteratively selects the top 𝑘 vertices with the highest between-

ness centrality based on the weights on the shortest paths [38]. The

high-quality output is guaranteed by sampling 𝑂 (𝑙𝑜𝑔𝑛/𝜖2) sets of
vertices [38]. HEDGE, another sampling-based algorithm, is cur-

rently considered state-of-the-art [28]. It samples only one shortest

path between a pair of vertices to reduce sampling time, ensuring

results with a 1 − 1/𝑒 − 𝜖 approximation ratio [28]. Mumtaz et al.

introduced a progressive random sampling approach PS, which

sequentially selects nodes with higher frequency in the hyper-edge

set to add to the result set [29]. However, when applied to large

networks, PS does not outperform HEDGE in terms of accuracy. Ad-

ditionally, Zhang et al. propose a sketch based method to efficiently

find a set of results [40]. Veremyev et al. utilize a mixed integer pro-

gramming solver for the BCMP, but the time complexity is similar

to that of exact algorithms, resulting in low efficiency [35]. Li et al.

investigate the BCMPwhen giving a set of query keywords [27]. It is

evident that there are no known approximate algorithms designed

for the temporal betweenness centrality maximization problem.

6 CONCLUSION
In this paper, we propose a novel problem: the Temporal Between-

ness Centrality Maximization Problem, and present an algorithm

named KTBCM. KTBCM incorporates a graph transformation ap-

proach with pruning technique and a one shortest path sampling

strategy. Extensive experiments with 6 real-world networks demon-

strate the effectiveness and efficiency of our proposed algorithm.

In the future, we plan to investigate how to extend the algorithm

to other types of networks.
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