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Abstract
Numerous applications, from social media to the banking industry,
traffic management, and science, model application data as directed
graphs. Fast graph analytics systems are implemented in-memory.
Among existing systems, History Adjacency List (HAL) [2, 3] is
distinguished by the ability to correctly answer queries even when
updates, received in the graph database from multiple sources,
arrive out of order, that is, impacted by variable transmission delays
that may jeopardize query answer correctness in a system unaware
of such issues. In this paper, we describe two recent extensions
we brought to HAL, and which increase its functionalities. First,
we demonstrate its capabilities to support historical queries, that is,
queries that carry over the state of the dynamic graph at a given
point in time. Second, we describe extensions we implemented to
make HAL support arbitrary numbers of properties on nodes and
edges, making it compatible with the needs of the popular LDBC
benchmark [9], and present performance results of HAL on this
benchmark.
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1 Introduction
Dynamic graphs are ubiquitous in modern real-time applications
that produce immense volumes of data. The ability to promptly
analyze these high-speed graph streams is pivotal for use cases
such as detecting cyber intrusions in security systems [29], identi-
fying fraudulent activities in financial sectors [29], and uncovering
anomalies in Internet of Things (IoT) environments [16]. We con-
sider a model in which a single dynamic graph evolves through
continuous edge insertions and deletions originating from multiple
data streams. This dynamic graph is maintained within a transac-
tional graph database. Each edge operation is associated with a
source (stream) timestamp 𝑆𝑇 , reflecting the time of generation,

and a write timestamp 𝑊𝑇 , marking the time it is recorded in the
database. We assume that the timelines of all streams can be recon-
ciled, meaning that a global ordering can be derived over updates
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Figure 1: Sample dynamic graph with out-of-order updates.

originating from multiple sources1. Importantly, these updates can
arrive out of order [8](ooo, in short): due to asynchronous network
delays, it is possible for an update𝑢2 with a later 𝑆𝑇 to be committed
before an earlier update 𝑢1, resulting in𝑊 2

𝑇
< 𝑊 1

𝑇
. This discrep-

ancy necessitates careful management of both logical (stream) and
physical (database) time. Such scenarios are common in IoT-based
systems [15], where dynamic changes in network topology result
in frequent insertion and deletion of edges. Various factors in IoT
environments—such as multi-path routing [28], route instability [4],
link-layer retransmissions [6], and variations in router-level for-
warding [19]—can lead to ooo delivery [10].

In the context of Intelligent Transportation Systems (ITS), there
are two main variations: (𝑖) When nodes (e.g., sensors) are sta-
tionary—typically located at fixed points like intersections—edges
represent route segments whose conditions change dynamically
due to real-time events such as traffic congestion, accidents, or
road closures [16, 18]. If a sensor emits an update about a route
becoming available, followed by a closure notification, receiving
these updates ooo can mislead the system about the actual road
state. (𝑖𝑖) When nodes move, as in the case of Unmanned Aerial Ve-
hicles (UAVs) [24], edges represent transient communication links
between devices. These links fluctuate as UAVs move, leading to
rapid changes in network connectivity. Such temporal volatility is
critical in applications like surveillance, environmental monitoring,
or precision agriculture [5]. If link insertion and deletion updates
are received ooo, the resulting inconsistency can significantly affect
downstream tasks such as path planning or mission coordination.
Figure 1 shows how ooo update propagation affects dynamic graphs.
The top portion shows a graph where each edge undergoes one or
two operations—insertions (+) and deletions (-)—with updates arriv-
ing at the database in an order that may differ from their original
emission. Each operation is annotated with its stream time 𝑆𝑇 and
listed according to its arrival order. Take the edge between nodes
B and C as an example: the label -3, +2 indicates that a deletion
emitted at stream time 3 is received before an insertion emitted at
time 2. Traditional systems, such as those in [7, 14, 25, 29], which
are unaware of possible ooo updates, process updates strictly based
on their arrival time and assume that a deletion cannot precede its
corresponding insertion. As a result, such deletions are ignored, and
the subsequent insertion is applied, leaving the edge incorrectly
retained.

Instead, the deletion must be preserved even if the corresponding
insertion has not yet been received; upon arrival of the insertion,

1This is achievable using established techniques in distributed systems, e.g., [12].
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Figure 2: Sample dynamic graph.

the edge should be interpreted as having been first inserted and
then deleted. In our example, a system that does not account for
ooo updates would produce the incorrect graph state shown at
the bottom left of Figure 1. The correct final graph—reflecting the
actual order of generation—is shown at the bottom right, with the
discrepancy corresponding to the red-highlighted edges affected by
ooo delivery. Dynamic graph databases that support ooo updates
pose two major challenges: maintaining consistent snapshot views
of the dynamic graph, to be able to answer analytical queries over
it; and, balancing high transactional write throughput and accurate
analytical scans queries.

Existing solutions to address these challenges can be broadly
categorized into five approaches: (𝑖) Buffer-based approaches [22]
temporarily store updates in a buffer and reorder them before data-
base insertion. While effective for restoring stream-time order, this
approach may compromise query correctness near buffer bound-
aries and increase latency—limiting their suitability for real-time
analytics; (𝑖𝑖) Punctuation-based methods [17] use special markers,
or “punctuation,” within the stream to signify that no further ooo
updates will arrive for a given window. Although this enables cor-
rectness guarantees, it incurs processing delays while the system
waits for punctuation to proceed; (𝑖𝑖𝑖) Approximation-based sys-
tems [1] compute bounded-error estimates for numeric queries
over streaming data. However, they fall short for precise graph
operations such as shortest paths, which need an accurate snapshot.
(𝑖𝑣) Time-ordered maintenance maintains a stream-time ordered
list of all edge updates as a naïve strategy to preserve temporal
correctness. However, this structure clashes with typical access
patterns required for graph algorithms. For instance, traversals
necessitate random vertex access followed by sequential neigh-
borhood scans—leading to costly reordering. Also, maintaining
stream time order after ooo updates would significantly impact the
throughput.

The recentHAL system [2, 3] we proposed is a novel in-memory
dynamic graph store with multi-version concurrency control pro-
tocol (MVCC), and the first to address these challenges. Below,
we introduce some terminology in Section 2, before outlining the
HAL storage structures in Section 3. Then, Section 4 describes the
novel algorithms we use to answer historical queries over dynamic
graphs managed by HAL. Then, in Section 5, we describe how we
extend HAL to support properties on both nodes and edges. We
then present experiments in Section 6, before concluding.

2 Dynamic Graphs with OOO Updates
At any given moment, a dynamic directed graph consists of a set
of vertices and a set of directed edges, each defined by a source
and destination node. Nodes and edges may also carry associated
properties. As in prior systems [7, 14, 29], HAL decouples the
graph topology from node and edge properties, prioritizing
efficient processing of graph topology updates and queries[3].

Figure 3: Sample vertex entry VA[0].
The efficient storage and access of node and edge properties is a
contribution the present work brings, as we will detail in Section 5.
Out-of-order update. Updates can be received in-order or ooo,
depending on when they arrive at the database. An update 𝑢 with
a given stream time 𝑆𝑇 and write time𝑊𝑇 is ooo if either (𝑖) it is a
deletion that arrives before any prior insertion of the same edge, or
(𝑖𝑖) another update with a later 𝑆 ′

𝑇
has already arrived at an earlier

𝑊 ′
𝑇
.

Best-guess associated update Insertions and deletions frommulti-
ple streams may arrive ooo at the database. To maintain the current
view of the graph at any given time, HAL attempts to infer the
associations between insertions and deletions corresponding to the
same edge. Specifically, leveraging update stream times, to each
insertion (respectively, deletion), we either:

• associate the most likely deletion (respectively, insertion); or
• consider that none of the deletions (respectively, insertions)

received so far is associated to this insertion (respectively,
deletion). In this case, the “missing” operation is either de-
layed (we will receive it later), or may never be emitted,
e.g., some insertions are never followed by deletions.

When, for a given edge, more than one ooo update is received, our
best-guess associations between insertions and deletions may change.

Figure 2 illustrates successive states, labeled a) to h), of a sample
graph. Each edge depicts an update; if it is crossed, it is a deletion,
otherwise, an insertion. On each edge we show its stream time, and
an edge property, e.g., its weight𝑤 . On ooo edges, the stream time
is shown in red; the cross is also red for ooo deletions.

3 The HAL Store
HAL’s dynamic graph store is built upon several guiding principles.
It organizes edge insertions and deletions within an adjacency list,
sorted by the source of the inserted/deleted edges. The system is
fundamentally append-only, meaning that updates do not overwrite
existing data but only add to it. To avoid unbounded growth, HAL
includes garbage collection capabilities, with further technical de-
tails found in [3]. It is specifically optimized for in-order updates,
which are assumed to be more common than ooo updates ones;
when required, HAL introduces tailored fields to efficiently manage
ooo updates. Finally, the system is designed to support concurrent
processing of graph queries and updates arriving from multiple
streams.

The primary data structure utilized is the History Adjacency
List (HAL), depicted in Figure 3. HAL consists of a Vertex Array
(VA), where each entry corresponds to a distinct source vertex; for
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instance, VA[0] in the figure represents one such entry. For a given
source vertex 𝑠 , VA[𝑠] maintains a log of all edge updates (both
insertions and deletions) originating from 𝑠 , organized within a
Stream Time-ordered Adjacency List, denoted STAL𝑠 . This struc-
ture takes the form of an append-only list of blocks, maintaining the
ordering of the updates by stream time from 𝑠 to various destination
vertices.

Each STAL𝑠 contains associatedmetadata (represented by the
shaded region in Figure 3), including a hasDeletes flag—set to true
if any deletions have been recorded for the source vertex 𝑠—and
a counter, delNo, which tracks the number of slots vacated as a
result of consecutive deletions. Furthermore, STAL𝑠 comprises one
or more stream-time ordered adjacency list blocks (STALBs).
Each such block, denoted STALB𝑠 , encapsulates the following
components:

(1) metadata (shaded in Figure 3), notably the boolean flags
hasDeletes and hasOOO, indicating whether the STALB
contains, respectively, deletions, or out-of-order updates,
and the number of deleted entries in the STALB;

(2) destNodes holds 𝑠→𝑑 entries for the given 𝑠 and various
destinations 𝑑 , sorted in descending stream time order.

(3) IEMs stores references to in-order edge entry metadata
(IEM in short, see below) entries, one for each edge update
in destNodes;

(4) propRef references a vector whose length matches that of
the corresponding destNodes and IEMs arrays, and stores
the frequently accessed edge property: the weight. Other
properties associated with edges are maintained separately
in external storage, as discussed in detail in Section 5.

For example, in Figure 2, edge insertions such as 0 → 1, 0 → 2,
and 0 → 9 occur across steps b), c), d), g), and h). These updates
are reflected in Figure 3, where the corresponding destination node
identifiers are stored in the destNodes array, and their associated
metadata are captured in IEMs.

Figure 3 further illustrates the structure of a STALB labeled S0,
which occupies 128 bytes in total: 8 bytes reserved for metadata
(shown on the left in gray), 8 bytes for edge properties (on the right),
and 56 bytes each for storing up to 7 entries in both the destNodes
and IEMs arrays.

A key structural property is that STALBs within STAL𝑠 are
ordered in descending stream time: given two STALBs, 𝑆0 and
𝑆1, where 𝑆0 precedes 𝑆1 within STAL𝑠 , it follows that all entries in
𝑆0 are more recent—that is, they have higher stream times—than
any entry in 𝑆1.

Each IEM (in-order entry metadata) contains:
(1) Thewrite (transaction) time (WT), that is, the time when

the entry is received at the database site;
(2) The stream time (ST) when the entry is emitted by its

stream;
(3) The invalidation time metadata (ITM) of an insertion

entry stores information about the edge deletion most likely
associated to this insertion (recall Section 2), if one exists:
• The stream time 𝑆𝑇 of the deletion entry;
• The transaction time𝑊𝑇 of the deletion entry;

(4) The out-of-order updates (OOO) field, which is initially
null, points to a data structure that stores ooo insertions

sharing the same source vertex and either the same or a
different destination as the one referenced by the current
IEM. These insertions are characterized by stream times
that are less than the IEM’s stream time (ST), yet greater
than the 𝑆𝑇𝑠 of the preceding IEM—if such an entry ex-
ists. The data structure referenced by the OOO field de-
pends on the number of these ooo insertions: if there are at
most 512 entries, they are stored in a single out-of-order
stream-time ordered adjacency list blocks (𝑂𝑆𝑇𝐴𝐿𝐵𝑠 ),
which follows the same layout as a 𝑆𝑇𝐴𝐿𝐵𝑠 , except that it
omits the hasOOO field. When this threshold is exceeded,
the entries are partitioned across multiple blocks, which
are subsequently organized into an Adaptive Radix Tree
(ART) [13], with each block indexed by the highest stream
time among its entries.

As updates are received, the system handles them as follows: for
each in-order insertion, an IEM is created; for each ooo insertion,
an out-of-order entry metadata (OEM) is created. An OEM is
structurally similar to an IEM but omits the OOO field. For every
deletion, a corresponding ITM is created and linked to the IEM
or OEM of the insertion that is currently deemed most likely to
correspond to the deletion.

To illustrate, consider Figure 2, which shows insertions and dele-
tions of edges 0 → 1, 0 → 2, and 0 → 9. The resulting data
structures, as constructed in STAL0, are depicted in Figure 3. Specif-
ically, the ITM with stream time 10:10, referenced by the IEM with
stream time 10:09, indicates that the deletion of 0 → 1 at 10:10
(Figure 2e) is associated with the insertion at 10:09 (Figure 2g).
Similarly, the ITM with stream time 10:08, linked to the OEM at
10:03, shows that the deletion of 0 → 9 at 10:08 (Figure 2f) is best
matched with the insertion at 10:03 (Figure 2d). The STAL structure
ensures the update entries for a given source vertex 𝑠 are stored in
the descending order of their stream time. This ensures 𝑂 (1) com-
plexity for the operations we expect to be most common: in-order
insertions and deletions [3].
Remark. In STAL, a deletion is only stored as an ITM of its most
likely insertion. If, upon receiving the deletion, we cannot find such
an insertion, the deletion enters the staging area AR, but is not
visible in STAL.

VA[𝑠] also maintains the latest stream time (LST) corresponding
to the most recent in-order update received for the source vertex 𝑠 .
For example, in Figure 2, the most recent in-order insertion from
source 0 is the edge 0 → 9 at 10:12, as shown in step h); accordingly,
Figure 3 reflects 10:12 as the LST stored in VA[0]. In addition to
LST, VA[𝑠] tracks the degree, representing the number of active
edges—i.e., those inserted but not yet deleted—currently maintained
within STAL𝑠 . It also includes a reference to invalBlocks, which
identifies the set of STALB blocks containing updates from source 𝑠
that are potentially ready for garbage collection due to subsequent
deletions. Lastly, VA[𝑠] stores a hash table (HT𝑠 , in short) whose
keys are the destination vertices 𝑑 for which we have received some
𝑠→𝑑 updates, and whose values we detail below.

Figure 4 depicts the evolution of HT0. Each yellow-shaded re-
gion highlights the data structures created in response to the cor-
responding entry from Figure 2; dashed arrows denote data struc-
ture changes on each step, while solid arrows represent references
among data structures. As the graph evolves, HT𝑠 maintains, for
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Figure 4: HT0 through insertions and deletions.

each destination 𝑑 , one of the following three data structures, selected
based on the current update state.

• Update position and indicator (UPI, in short): The UPI
associated with the edge 𝑠 → 𝑑 , denoted as UPI[𝑠, 𝑑], en-
codes the position of the most recent 𝑠 → 𝑑 insertion,
whether it is in-order or ooo, within STAL𝑠 . For example, in
Figure 2, the initial insertion of edge 0 → 2 occurs in step c),
with a stream time of 10:05, and is in-order. Consequently,
an in-order UPI entry for destination vertex 2 is created
in HT0, as illustrated in Figure 4. The dark grey UPI fields
represent metadata that encode the location of the insertion
entry within STAL𝑠 . As the database grows, the block hold-
ing an insertion may grow or move in the list (the latest
updates are always first); our UPI encoding [3] guarantees
constant-time access to the insertion, throughout the graph
evolution.

• Staging area (AR, in short): The AR for an edge 𝑠 → 𝑑

stores insertions (or deletions) that are awaiting their corre-
sponding deletions (or insertions). For example, in Figure 4,
when a deletion of 0 → 1 is received at step a), HT0 contains
no prior insertion for this edge. Consequently, a staging
area is initialized for 0 → 1, and an update deletion block
UD𝑎 is created to store the stream time 10:02 associated
with this deletion. The corresponding AR is then stored at
index 1 in HT0. Later, when the deletion of 0 → 9 arrives
at step f) with stream time 10:08, a matching insertion is
found at index 3 in HT0. At this point, the previously main-
tained out-of-order UPI for 0 → 9 is replaced with an AR.
The staging area the component of HAL’s storage where in-
coming operations “match” those previously received, which
are staged while awaiting their possible “pair”. Its operating
details [3] follow the possible cases: ooo deletion (resp.,
insertion) received before (resp. after) the corresponding
insertion (resp. deletion). Our algorithms also handle the
possibility that some inserted edges are never deleted.

• Last garbage collected deletion (LGCD, in short) for
vertex 𝑠 is the stream time of the most recent deletion of
𝑠→𝑑 that has been garbage-collected.

HT𝑠 (𝑑) through the lifecycle of the edge The purpose of these dis-
tinct data structures can be understood by analyzing the lifecycle
of an edge 𝑠→𝑑 in our system.

Table 1: Complexity comparison for graph operations.
System Edge insertion Edge deletion Edge look-up
Llama [20],
Stinger [11]

𝑂 ( |𝐸 |) 𝑂 ( |𝐸 |) 𝑂 (|𝐸 |)

GraphOne [11] 𝑂 (1) 𝑂 ( |𝐸 |) 𝑂 (|𝐸 |)
LiveGraph [29] 𝑂 (1) 𝑂 ( |𝐸 |) 𝑂 (1)
Teseo [14], Sortled-
ton [7], HAL out-of-
order

𝑂 (𝑙𝑜𝑔( |𝐸 |)) 𝑂 (𝑙𝑜𝑔( |𝐸 |)) 𝑂 (𝑙𝑜𝑔( |𝐸 |))

Spruce [25] 𝑂 ( |𝐸 |) 𝑂 (𝑙𝑜𝑔( |𝐸 |)) 𝑂 (𝑙𝑜𝑔( |𝐸 |))
HAL in-order 𝑂 (1) 𝑂 (1) 𝑂 (1)

• A UPI is created only when the database receives its first
update for 𝑠→𝑑 as an insertion, similar to what was done
for the insertion 0→2 in Figure 2 c).

• An AR persists as long as there are one or more insertion(s)
(or deletion(s)) for which the corresponding deletion(s) (or
insertion(s)) have not yet been received. The operation we
received waits for the one not yet received, in the AR. This
applies to: in- or ooo insertions that do not have a corre-
sponding deletion; in the future, such a deletion might be
received, or it might not; and, every deletion for which
the current STAL does not contain a potential associated
insertion. This happens when all the insertions prior to our
deletion, have already been marked as deleted (by other
deletion entries).

• An LGCD is created when updates 𝑠→𝑑 have been garbage
collected.

Table 1 presents a comparison of HAL’s algorithmic complexity
with that of existing systems, which do not accommodate ooo
updates. The superior complexity of HAL enables it to surpass the
performance of other systems by up to 73× in throughput and 357×
in graph analytics [3].

4 Historical queries
In this section, we address the challenge of evaluating historical
queries over a dynamic graph at a given moment, specified as a
stream time 𝜏 . Recall that the stream time globally orders the mo-
ments where updates are emitted in the system, whereas the trans-
action time is impacted by the order in which updates reach the
database. Thus, the stream time is the natural time to use for histor-
ical queries. For ease of presentation, below, we consider the query
requesting all the graph edges at stream time 𝜏 ; based on this, more
complex queries can also be handled.

The problem, then, is to decide, at a given moment (transaction
time) 𝜏ℎ when the query is issued, whether each edge 𝑠 → 𝑑 in the
store, was logically present at time 𝜏 , with 𝜏 ≤ 𝜏ℎ .

We must guarantee that only updates that both occurred (were
issued) before the 𝜏 , and were committed before 𝜏ℎ are reflected. This
is in order to ensure transactional query processing, as updates that
were not committed before 𝜏ℎ are considered not received yet at
the database.

For each edge 𝑠 → 𝑑 in the store, one of the following holds:
• The edge was inserted at or before 𝜏 , was never deleted, and

the insertion committed before 𝜏ℎ : this edge is still present
in the graph at 𝜏ℎ , and should be included in the answer.

• The edge was inserted at or before 𝜏 , was deleted after 𝜏 ,
and the insertion committed before 𝜏ℎ : the edge still existed
at 𝜏 and should be included.
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• The edge was inserted and then deleted before or at 𝜏 , and
the deletion committed before 𝜏ℎ : the edge no longer existed
at 𝜏 and must not be in the answer.

For instance, in Figure 3, a query is issued at 𝜏ℎ = 10:15, asking for
the edges in VA[0] as they were at 𝜏 = 10:05.

To make this reasoning, for every source vertex 𝑠 , HAL uses
STAL𝑠 , the stream-time sorted adjacency list storing updates whose
source node is 𝑠 , as described in Section 3. We traverse STAL𝑠 to
determine which edges were present at 𝜏 , considering only edges
that had been committed before the query’s arrival time 𝜏ℎ . We
proceed for each source vertex 𝑠 as follows:

1. Locate the starting STALBs using stream time 𝜏 . We first
perform a binary search on STAL𝑠 using the stream timestamp 𝜏 as
the search key. This identifies the most recent STALBs, 𝑆𝑝 , whose
entries could be present at time 𝜏 . All STALBs including 𝑆𝑝 and
older than 𝑆𝑝 are traversed in reverse stream-time order. This avoids
unnecessary work, bounding the scan to only relevant updates (the
others are too recent).

2. Classify the STALB using metadata flags. Before access-
ing a STALB’s entries, we read its hasDeletes and hasOOO flags
(Section 3), which state whether the block contains deletions, re-
spectively, ooo updates. We distinguish four cases:

(1) Both hasDeletes and hasOOO are true: The STALB con-
tains deletions, and and ooo updates. For each IEM entry,
we check both the ITM field (to detect deletions) and the
OOO field (to include any present OOO updates).

(2) hasDeletes is true, hasOOO is false: The STALB contains
deletions, but no OOO updates. We check each IEM entry’s
ITM field, to confirm that it was not deleted before 𝜏 .

(3) hasOOO is true, hasDeletes is false: The STALB contains
ooo updates but no deletion. We follow the OOO field for
each entry (if present) to locate relevant updates in OS-
TALBs or ARTs.

(4) Neither flag is set: The STALB contains neither deletions
nor out-of-order updates. This enables a fast traversal (just
scan entries sequentially), without the need to check per-
entry metadata. This improves cache locality and avoids
costly random memory accesses.

In our example, for 𝜏 = 10:05 and 𝜏ℎ = 10:15, the binary search
identifies STALB0 as the relevant block. At this point, it contains
both deletions and ooo entries. Thus, STALB0 is in Case (1).

3. Locate the first relevant entry within the STALB. On the
most recent STALB 𝑆𝑝 , perform a binary search on its IEMs array
to find the first index 𝑒𝑖 of an update whose stream time is ≤ 𝜏 . This
is the point from where we start reading. For older STALBs, which
are always full, we scan from index 0 (newest) to the end. HAL also
inspects the IEM at index 𝑒𝑖 − 1 (if present). Although its stream
time exceeds 𝜏 , it may contain an OOO pointer referencing OEM
entries with stream time ≤ 𝜏 . If such a pointer exists, we process
it as described in step (1c), ensuring that all relevant ooo updates
are considered. In Figure 3, a binary search on the IEMs in STALB0
using 𝜏 = 10:05 locates index 5, corresponding to the insertion entry
for the edge 0 → 2. This is the most recent insertion not exceeding
𝜏 and serves as the entry point for the scan. We also verify that the
IEM entry at index 4 does not contain an OOO field, confirming
that the entry at index 5 is the correct starting point.

(1) Scan IEM entries from the position 𝑒𝑖 . We scan IEM
entries from 𝑒𝑖 toward the oldest in 𝑆𝑝 , and do the same for
older STALBs (which, by the way HAL works, are guaran-
teed to be full). For each IEM entry at position 𝑐𝑢𝑟𝐼𝑛𝑑𝑒𝑥

within its block, we evaluate its eligibility based on trans-
action visibility and metadata as follows:
(a) Transaction time check:We first check whether the

IEM entry at the 𝑐𝑢𝑟𝐼𝑛𝑑𝑒𝑥 in the STALB was commit-
ted before the query arrived, that is, before 𝜏ℎ , or after.
If the entry was committed after 𝜏ℎ , it was not part of
the database at that time, therefore it is skipped.
If the entry was committed before 𝜏ℎ , and the STALB
contains neither deletions nor ooo updates (case (4)),
or only ooo updates (case (3)), the entry is considered
present, and we include 𝑠 → 𝑑 in the query result.

(b) Deletion check (if applicable): When the current
STALBs contains deletions (in cases (2) or (1)) and
the IEM entry at the 𝑐𝑢𝑟𝐼𝑛𝑑𝑒𝑥 in the current STALBs
has an associated deletion record, we access its ITM
block, which holds the metadata for that deletion. We
examine the ITM to determine whether the deletion
is relevant to the current query. Specifically, we check
that the deletion’s stream time is later than 𝜏 (meaning
that the edge was still logically present at 𝜏), and that
the insertion (i.e., IEM entry) was committed before
the query time 𝜏ℎ . If both conditions are satisfied, the
edge is considered present at 𝜏 , and we include 𝑠 → 𝑑

in the result.
(c) Out-of-order (OOO) update check (if applicable):

When the current STALBs includes ooo updates (cases (3)
or (1)), and the IEM entry at 𝑐𝑢𝑟𝐼𝑛𝑑𝑒𝑥 has an OOOfield,
we follow that field to retrieve potential past updates
that arrived ooo, were issued before 𝜏 , and committed
before the query time 𝜏ℎ . Depending on the number of
such entries, as explained in Section 3, the OOO field
may reference either a single OSTALB (Out-of-order
STALB) if there are 512 or fewer entries, or an Adap-
tive Radix Tree (ART) which is an index over several
OSTALBs, if there are more entries. In either case, we
need to identify the metadata (OEM) attached to these
entries; we collect them in a set denoted 𝑂𝐸𝑀𝑜 . We
proceed as follows:

• When the OOO field leads to a single OSTALB,
we perform a binary search within this OSTALB
using 𝜏 to locate OEM entries whose stream
time is earlier than 𝜏 . We gather these entries in
𝑂𝐸𝑀𝑜 .

• When the OOO field leads to an ART, we search
the ART for all OSTALBs whose keys are less
than or equal to 𝜏 . In each retrieved OSTALB,
we use binary search to extract the OEM entries
whose stream time is earlier than 𝜏 , and add
them to 𝑂𝐸𝑀𝑜 .

For each 𝑂𝐸𝑀𝑜 entry, we apply a deletion check as
follows:
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• If the entry is not marked as deleted (i.e., with
hasDeletes flag set to false) and committed be-
fore the query arrival time 𝜏ℎ , we include 𝑠 → 𝑑

in the query result.
• Otherwise, we check if the entry has ever been

deleted: if that is the case, it has an associated
ITM. Upon finding an ITM, we examine it to
determine when the deletion occurred. If the
deletion’s stream time is later than 𝜏 , and if the
entry was committed before the query arrival
time 𝜏ℎ , we conclude that the edge 𝑠 → 𝑑 was
still present at 𝜏 . Thus, it should be included in
the result. If the entry has no ITM, it has ever
been present since its insertion, and it is included
in the result.

In our working example, continuing the scan in Figure 3, we begin
at index 5 of STALB0, which contains the 𝐼𝐸𝑀5 entry for edge
0 → 2 with write timestamp (WT) 10:06. Since WT < 𝜏ℎ = 10:15
and no deletion is recorded, this edge is included in the query
result. This 𝐼𝐸𝑀5 has an OOO field, which HAL follows; it leads to
an OSTALB marked with hasDeletes, thus it contains deletions.
Within this OSTALB, we locate an 𝑂𝐸𝑀0 for edge 0 → 9 with WT
10:07 < 𝜏ℎ , and a deletion committed at 10:08, also before 𝜏ℎ . Since
the deletion’s stream time is ≥ 𝜏 = 10:05, the edge was still present
at 𝜏 and is included in the result. We then proceed to index 6 of
STALB0, which contains the 𝐼𝐸𝑀6 entry for edge 0 → 1 inserted at
10:04, with a deletion committed at 10:04, both before 𝜏ℎ . Because
the deletion’s stream time is earlier than 𝜏 , edge 0 → 1 is excluded
from the query result.

The worst-case computational complexity of evaluating a his-
torical query is 𝑂 (log( |𝐸 |) + |𝑅 |), where |𝐸 | is the number of edge
entries and |𝑅 | is the size of the query result.

5 Property-rich nodes and edges
As outlined in Section 3, edge properties are not stored directly
within the graph topology but are instead referenced from it. Specif-
ically, for a given source node 𝑠 , the STAL𝑠 entry, as shown in
Figure 3, includes a reference to a vector storing the weight prop-
erty of each edge. This property can be viewed as generic, as it
is frequently used in graph analytical algorithms such as Single-
Source Shortest Path (SSSP).

To enable attaching arbitrary properties on edges, as well as ver-
tex properties, we store them independently within RocksDB [21],
a high-performance, embeddable key-value store optimized for fast
storage. This separation ensures that the graph topology remains
compact and thus HAL continues to provide efficient analytical
operations on the graph topology, operations that are often central
for analytics.

RocksDB organizes key-value data within column families, each
of which can be seen as an independently managed database within
a single RocksDB instance. Each column family consists of one
key-value collection (called memtable), implemented by a skip
list-based structure (SkipListMemTable) [26]. Memtables provide
logarithmic-time access and are periodically flushed to disk as
Sorted String Tables (SSTables) under RocksDB’s Log-Structured
Merge-tree (LSM-tree) architecture. Each column family maintains
its own Log-Structured Merge-tree (LSM-tree) [23]. This design

allows each column family to be tuned and accessed independently
for best performance.

To support flexible and efficient access to properties, we store
vertex and edge properties in separate RocksDB column families
within RocksDB. The decision reflects the fact that these two cat-
egories of data are semantically orthogonal and follow different
access and update patterns. By storing them separately, our system
stands to benefit from improved data locality, faster point lookups,
and higher write throughput.

To encode vertex and edge properties within RocksDB, our sys-
tem employs composite keys that enable direct and efficient access
to each property. This departs from existing systems [7, 14, 25, 29],
which co-locate all properties of a vertex or edge and require de-
serialization of an entire property block to retrieve a single prop-
erty. Our solution avoids unnecessary data access, reduces cache
misses, and improves both query latency and memory efficiency,
particularly in analytical workloads that target selective subsets of
properties. The details of the vertex and edge property formats are
as follows:

• Vertex properties. The key used to store a vertex property
is of the form
<updateStreamTime>_<vertexId>_<propertyName>_<op>.
For example, the key 1_1_name_insert identifies an insert
operation for the name property of vertex 1 at stream time 1;
a possible value is, e.g., "Khan". This design also preserves
the update chronological order.

• Edge properties. Similarly, an edge property is indexed
using the format:
<updateStreamTime>_<src>-<dst>_<propertyName>_<op>,
where <op> indicates the type of operation (e.g., insert,
delete). A key like 1_1-2_createdDate_insert records
the insertion of a createdDate property on the edge from
vertex 1 to vertex 2 at stream time 1, with a value such as
"01/10/2025".

This structure encodes not only the source and destination of the
edge, but also the stream timestamp of the update and the property
name, enabling a log-style representation of updates. This logging
approach is consistent with the design principles of HAL, which
stores the graph as a history of updates. Insertions and deletions of
properties are allowed both on nodes and on edges. Key-value pairs
thus formed are inserted into the memtable of their corresponding
column family.
Transactional coordination and consistency. Given that we
now store graph information in two distinct stores (the core HAL
structure for the topology, the core HAL structure, plus RocksDB
for properties), we need to ensure transactional guarantees for up-
dates relying on these two stores. For that, we adopt a decoupled
but coordinated transactional protocol, with HAL serving as the
transaction coordinator. Specifically, property updates are first com-
mitted within the (transactional) RocksDB context, using its native
optimistic concurrency control mechanism [27]. If that transaction
fails, we do not attempt the corresponding topological update in
HAL; otherwise, we go forward with the HAL transaction (structure
update). Since HAL only appends updates (that it may later match
with other pending updates), HAL update transactions do not fail.
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Figure 5: Performance of historical queries at different mo-
ments in the update history.

This ordering of operations guarantees that no edge or vertex be-
comes visible in the topology, unless its associated properties are
durably persisted.

Historical queries over property graphs As explained above,
we have extended (a) the HAL topology store with historical queries,
(b) separately (and orthogonally), the storage model with node and
edge properties, on which snapshot queries are already supported.
The ingredients are in place to combine the two extensions, i.e.,
answer historical queries over property graphs. This extension is
part of our future work.

6 Experiments
We have implemented the new algorithms proposed in this work
within the HAL system [2, 3] and experimentally assess their perfor-
mance. We describe our experimental setting in Section 6.1, before
discussing experimental results in Section 6.2 and 6.3. Our system
is available at https://gitlab.inria.fr/cedar/hal-dynamic-graph.

6.1 Settings
Our experiments have been executed on a dual-socket Intel Xeon
E5-2640 v4 server, with 40 hardware threads and 256 GB of DRAM.
Our system is implemented in C++ and compiled with GCC v10.2,
with the -O3 optimization flag. We set maximum size occupied by a
STALB at 215 bytes, and 213 for an OSTALB. This allows us to store
512 entries per OSTALB, like Sortledton [7] does in its blocks. We
report median times over five runs.

6.2 Historical queries
To evaluate the performance of historical queries under out-of-
order (OOO) insertions, we based our experiments on the Graph
500 scale-24 dataset [9], which contains approximately 9 million
vertices and 260 million edges. Lacking a benchmark with OOO
updates, we reuse our update workload from [3], based on the Graph
500-24 dataset, but featuring 50% OOO insertions. We construct
our workload as follows: (𝑖) Sort the graph500-24 workload (edge
insertions) by the source vertex. (𝑖𝑖) Remove the edges whose source
vertex has fewer than 10 edges in the dataset (this facilitates our
next steps; see below). We thus obtain an OOO insertion list called
OIL (243 million edges, between 1.5 million vertices). Edges in OIL
are assigned consecutive stream times: 1, 2, 3 etc. (𝑖𝑖𝑖) For a given
out-of-order percentage (𝑜𝑜𝑜𝑝), we swap some edges in OIL to
ensure that exactly 𝑜𝑜𝑜𝑝 among them are out-of-order. In our case,

we use 𝑜𝑜𝑜𝑝 = 50%, resulting in a realistic OIL where approximately
half of the edges are disordered.

Since existing systems [7, 14, 25, 29] do not support historical
queries in the presence of out-of-order (OOO) insertions, we im-
plemented a baseline system to compare our approach with This
baseline employs a conventional adjacency list structure, where
updates are stored in the order in which they are received (not
necessarily the order in which they are emitted), unlike HAL. To
support historical queries, we augment the baseline with a sec-
ondary index based on an Adaptive Radix Tree (ART). In this
index, each key is a stream time, and the corresponding value indi-
cates the position, in the adjacency list, of an update emitted at that
stream time (since we assume a global order on updates, there is
at most one update per stream time). This secondary ART enables
access to data by their stream time, an access pattern not supported
by the simple baseline.

To illustrate a varied range of historical queries, we have com-
puted 9 query stream times 𝜏1, . . . , 𝜏9 as follows. For each 1 ≤ 𝑖 ≤ 9,
𝜏𝑖 is the highest stream time among the first 𝑖 × 10% of the edge
updates in the above workload. Figure 5 presents the performance
of historical queries at stream time 𝜏𝑖 , for 1 ≤ 𝑖 ≤ 9; the value plot-
ted on the 𝑥 axis is 𝑖 × 10%. For instance, 10% filtering corresponds
to querying 10% of the 243 million total edges. Figure 5(a) shows
the time required to scan all edges under different filtering levels.
Figure 5(b) presents the execution time of the PageRank algorithm
computed over the filtered edge sets, while Figure 5(c) reports the
scan time within the adjacency list of the highest-degree vertex,
chosen to avoid bias from low-degree vertices.

In all three cases, HAL consistently outperforms the baseline
system. This is due to HAL’s data layout, which stores edge updates
sorted by stream time. As explained in Section 4, HAL leverages
this ordering to perform a binary search to quickly identify the
position corresponding to the target stream time, followed by a
cache-friendly linear scan. In contrast, the baseline system relies on
the secondary ART tree index. Although an ART enables efficient
lookup of the target stream time in 𝑂 (log |𝐸 |) time, subsequent
scanning suffers due to random-access reads, as the adjacency list
is not sorted by stream time—leading to frequent cache misses. This
performance gap is clearly visible across all query types in Fig-
ure 5, demonstrating the efficiency of HAL in supporting historical
queries, particularly as filtering levels increase.
Lesson learned: HAL delivers significantly better performance for
historical queries under out-of-order insertions due to its stream-
time-sorted layout. In contrast, the baseline system suffers from
the overhead of random-access patterns introduced by its reliance
on secondary indexing.

6.3 Property graph queries
To evaluate the performance of property-aware vertex and edge in-
sertions, we rely on the popular LDBC Social Network Benchmark
(SNB) interactive workload [9], at scale factors 1, 3, 10 and 30; the
dataset characteristics are shown in Table 2. We present a compari-
son with LiveGraph [29], one of the most recent transactional graph
systems for dynamic graphs. Systems such as [7, 14, 25] provide
only partial property graph support, typically limited to a single
edge property (e.g., weight) and no support for vertex properties,
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(a) person_knows_person (b) person_likes_comment (c) person_likes_post (d) person_studyAt_organisation

(e) person_workAt_organisation (f) forum_hasMember_person (g) all_relationships_combined

Figure 6: Edge insertion time across SNB relationships.

as they are primarily designed for structural graph updates. In con-
trast, LiveGraph supports the full LDBC SNB update benchmark,
making it a suitable and practical baseline for our evaluation. We
evaluate insertion performance in this PG context. We focus on six
benchmark relationships, namely person_kno
ws_person, person_likes_comment, person_likes_post, person_
studyAt_organisation, person_workAt_organisation, forum_
hasMember_person. These are the only ones in the SNB dataset
that include edge properties.
Table 2: Estimated number of nodes and edges in LDBC SNB
Interactive v1 datasets at different scale factors.
Scale factor (SF) Number of vertices Number of edges

1 ∼3M ∼17M
3 ∼9M ∼51M
10 ∼30M ∼170M
30 ∼90M ∼510M

To ensure compatibility with our system and LiveGraph, which
both support only integer vertex IDs, we address a subtle yet impor-
tant issue in the LDBC SNB dataset: overlapping node IDs across
different entity types. For example, both person and forum nodes
may have IDs such as 1, 2, etc., leading to collisions when ingesting
multiple entity types into a shared graph context. This lack of global
uniqueness arises because the SNB benchmark organizes node and
edge data across multiple CSV files, where IDs are guaranteed to
be unique only within the scope of each node type, not across the
entire graph. To resolve this, we apply a normalization strategy
that ensures globally unique vertex identifiers while preserving
the integrity of the original dataset. Concretely, we first count the
number of nodes for each entity type (e.g., 1000 person nodes, 2000
forum nodes) and then define a translation offset 𝑛𝑇 for each node
type 𝑇 . This offset is added to the original ID of each node of type
𝑇 , such that the resulting IDs become globally unique. For instance,
we may assign 𝑛𝑇 = 0 for person nodes and 𝑛𝑇 = 1000 for forum
nodes, ensuring that the adjusted forum node IDs begin where the
person IDs end.

This ID translation is applied consistently across the dataset: first,
to each CSV file containing node data, and second, to each CSV file

encoding edge data, by shifting both the source and destination
vertex IDs according to their respective types. This preprocessing
step allows us to merge all node and edge types into a unified graph
structure without ambiguity, thereby enabling fair and collision-
free insertion experiments across all supported relationships.

For each relation type, we measure the time required to insert
both vertices and edges along with their associated properties. The
resulting performance plots are shown in Figure 6, where the x-axis
represents the number of edges (in millions) and the y-axis indicates
the insertion time (in seconds). Across all evaluated relationships,
HAL achieves higher insertion throughput than LiveGraph. This
is primarily due to two architectural differences between the sys-
tems. First, LiveGraph relies on Bloom filters for edge existence
checks, which may return false positives and trigger linear scans
of its Transactional Edge Log (TEL). In contrast, HAL maintains
a secondary index implemented as a hash table (HT in Section 3),
allowing constant-time edge existence checks. Second, LiveGraph
assigns a single TEL block per source vertex, which leads to frequent
resizing as adjacency lists grow. HAL avoids this overhead by dis-
tributing edges across multiple fixed-size STALB blocks, reducing
the need for costly reallocations.
Lesson learned: HAL’s support for constant-time edge existence
checks and multiple sorted adjacency list blocks enable efficient
insertions. By separating property storage from the topology and
indexing each property individually, HAL maintains a lightweight
structure optimized for analytical scans. Despite relying on ex-
ternal storage for vertex and edge properties, HAL consistently
outperforms LiveGraph across all evaluated SNB relationships.
7 Conclusion and Perspectives
We presented two key extensions to the HAL graph store [3]: sup-
port for historical queries and property-rich graphs. HAL now
efficiently evaluates temporal queries and manages arbitrary prop-
erties on nodes and edges, aligning with LDBC SNB requirements.
Experiments show that HAL outperforms baseline systems on his-
torical queries and achieves higher throughput than LiveGraph
on property graph workloads, demonstrating its effectiveness for
advanced dynamic graph use cases.
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