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ABSTRACT

In supply chain management of port operations querying and visu-
alizing network data often requires complex joins, nested queries
and predefined reporting templates, which can hinder exploratory
analysis and decision-making. When relational databases become
too rigid and cumbersome for transactional processing, we envi-
sion an alternative approach using graph data models, provided
by transforming entities (e.g. containers, vessels, terminals) into
nodes and their relationships (e.g. arrival, loading, handling) into
edges. To investigate the potential benefits of transforming rela-
tional supply chain data into a graph-based model, we designed and
implemented a structured approach that integrated data processing,
transformation and performance analysis across both relational
and graph databases.
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1 INTRODUCTION

Supply chain management and port operations generate highly
interconnected, dynamic data. As critical nodes in global logistics
networks, ports must handle large volumes of containers with vary-
ing statuses, origins, destinations and modes of transport. Tracking
these containers on a global route through several ports relies
heavily on relational databases. These systems typically manage
container information through structured tables containing times-
tamps, statuses, and references to carriers or vessels.
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While relational databases are robust for transactional processes,
they can become rigid and cumbersome when tasked with repre-
senting the real-world complexity of supply chain networks, like
route tracing, identifying optimal transfer points, and detecting
inconsistencies [5]. The process of querying and visualizing such
data often requires complex joins, nested queries and predefined
reporting templates, which can hinder exploratory analysis and
decision-making. In addition, these limitations can negatively im-
pact the usability of data tools for non-technical users, limiting
access to critical insights.

On top of that, the dynamic lifecycle of container handling in-
volves temporal phases, such as:

(1) Pre-Vessel-Arrival: Ensuring containers scheduled for
loading are in the yard before the vessel arrives.

(2) Operations Phase: Coordinating discharge and load oper-
ations in parallel while the vessel is berthed.

(3) Post-Vessel-Departure: Managing the dwell time and fur-
ther movement of discharged containers, including those
earmarked for transshipment onto other vessels.

These operational phases and the transitions between them cre-
ate dense networks of events, dependencies and movements that
are difficult to visualize and explore intuitively using relational
data alone. Identifying patterns - such as container turnaround
times, ship-to-ship flows, or yard utilization bottlenecks - requires
not only data querying, but also relationship tracing and temporal
pattern recognition.

Graph data models (see e.g. [1]) provide an alternative approach
by transforming entities (e.g. containers, vessels, terminals) into
nodes and their relationships (e.g. arrival, loading, handling) into
edges. This structure allows for a more natural exploration of com-
plex relationships, such as identifying transshipment containers
from vessel A to vessel B, analyzing container lifecycles within the
port, or visualizing capacity utilization over time.

In this paper we present our vision for transforming relational
port operations data into graph-based models that can improve
the visualization, understandability, usability and accessibility of
supply chain and port management data. The aim is to explore
whether graph data analysis can enable both technical and oper-
ational stakeholders to better understand the complexity of port
operations, make faster data-driven decisions and improve overall
operational awareness.
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2 RELATED WORK

In a previous study [3], Feng and Huang proposed a structured ap-
proach to converting relational database schemas into graph-based
representations. Their method divides this process into three stages.
The first stage involves analyzing metadata to identify and under-
stand the relationships between tables. The second stage focuses
on converting entities, which are typically represented as rows
in relational tables, into graph nodes. The final stage transforms
foreign key relationships into edges between nodes.

Furthermore, an introductory examination of graph database
principles is provided by Miller [7], with a particular focus on
Neo4j. They work emphasizes the limitations of traditional rela-
tional databases when managing complex, highly interconnected
data structures. In such structures, multiple joins can lead to per-
formance bottlenecks. In contrast, graph databases, such as Neo4;j,
are shown to offer clear advantages in scenarios requiring efficient
relationship traversal.

Similar studies [4, 9] have evaluated the performance, memory
usages, and time complexity of relational databases (such as MySQL
and PostgreSQL) and NoSQL databases across different data vol-
umes. Findings from [9] indicate that, despite similar theoretical
time complexity for certain operations, MySQL often demonstrates
faster query execution times in practice.

Numerous studies in the field of supply chain management have
explored the potential benefits of using graph structures to rep-
resent data instead of traditional relational models. In [5, 6] they
argue that graph-based approaches are well-suited to capturing the
complex, interconnected nature of supply chains such as RFID data.
In such chains, entities such as suppliers, transport links, products,
and distribution centers are deeply interrelated. By modeling these
elements as nodes and their interactions as edges, graph databases
can offer more intuitive insights and enable more intuitive queries.

Antony et al. [2] use a graph data model to help identify risks
in supply chain management more effectively, manage logistics,
and detect fraud. This line of research highlights the importance of
graph technologies, such as Neo4j, in modern supply chain analy-
sis. Nevertheless, more empirical case studies in different sectors
are needed to quantitatively evaluate the impact of graph-based
methods on manufacturing resilience [8].

3 A STRUCTURED APPROACH TO SCM
ANALYSIS USING GRAPH DATA

We explore realistic SCM data from real-world port operations in
Section 3.1. In Section 3.2. we explain our graph model for the
port operations data. We present a structured transformation from
relational data to a graph data model in Section 3.3.

3.1 The Relational Data Model for Supply Chain
Management

The relational data model for one port is shown in Figure 1. It
supports the analysis of port operations and container flows, and is
structured around key relational tables representing entities such
as containers, carriers, modes, services, liners and flexible attribute
options. The model captures dynamic events (such as arrival and
departure times), enabling a wide range of operational queries and
analyses.

In addition, the data model supports vessel-centric analysis by
enabling queries that associate containers with specific vessels. It
allows analysts to observe whether the number of containers loaded
or unloaded matches the carrier’s declared plans, and to classify
operations into different phases. Before the ship arrives, all the
containers to be loaded must already be in the yard. During the
ship’s stay, the terminal has to manage the parallel operations of
discharging the arriving containers and loading those scheduled
for departure. After the ship has departed, any remaining discharge
containers should be moved out of the yard, unless they are trans-
shipment containers waiting for their next carrier.

Operational questions such as "How does the volume of contain-
ers change over the course of the day?" or "Are there any service/-
liner combinations for which the expected export container dwell
times are above average?" are answered by SQL queries using this re-
lational model. However, the complexity of these queries increases
significantly as analysts attempt to understand container move-
ments over time, identify handoffs between carriers, or analyze
capacity utilization patterns over smaller time intervals. Queries
often involve multiple joins and conditions, requiring technical
expertise and limiting the accessibility of the data to non-technical
stakeholders.

3.2 The Graph Data Model

Graph-based models offer a compelling alternative, also for non-
technical stakeholders. Figure 2 shows the graph data model for
port operations data for one port. By transforming the relational
data into a graph structure, where containers, carriers, services and
modes are represented as nodes and their relationships as edges, it
becomes possible to more naturally visualize and explore the com-
plex network of container flows and vessel operations. This trans-
formation not only improves comprehension and accessibility, but
also supports the identification of patterns such as transshipment
flows, bottlenecks and operational inefficiencies that are difficult to
identify using traditional relational queries alone.

An overview of the modeled graph in Neo4;j is shown in Figure 3
which shows all nodes directly connected to a specific container
node via a single edge. It also shows how these nodes are linked
to each other and if they share any direct relationships. The result
provides a clear view of the container’s immediate network and the
structure of its surrounding connections. The output shows that the
container is directly linked to one inbound and one outbound carrier.
Additionally, both carriers consistently share the same service and
liner connections with the container, revealing a clear, uniform
structure to these relationships. This result is presented in the form
of an effective graph visualization. Any inconsistency caused by
a container being linked to a different service or liner than its
carriers would be immediately apparent. This makes it easy to spot
modeling errors or data issues at a glance.

3.3 Transforming SCM Data using Neo4j

To investigate the potential benefits of transforming relational sup-
ply chain data into a graph-based model, we design and implement
a structured approach that integrates data processing, transforma-
tion and performance analysis across both relational and graph
databases.



Figure 1: Relational Schema for Port Operations Data
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Figure 2: Graph Data Model for Port Operations Data
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Figure 3: Details of Container 02b30A9iogS (extracted with
Neo4j desktop)

Emerald
i
SERVICE o,
o Albatross
& Wing
o <
)
2 <
3 @_\@
2 &
5 ®
4 Q N
'S kS & @
%y 2 & o
=7 [ < o
N » & 20
¢ & >
K58 W

et & % Gelestial
&’ & k3 Horizon
o> E %
& = (e
) %
9 2 4,
27 =3 o &
2 = <, o
F] %, &
'z &
= 2, K
i ® $
Deepsea
Flicker
dry Line

Our process starts with preparing the data environment. Existing
relational supply chain and port operations data, see Figure 1, is
imported into a relational MySQL database. This ensures that the
data reflects its original transactional structure, including all rele-
vant entities, attributes and relationships. MySQL serves as baseline
system for comparison, representing the conventional approach of
handling such data.

Next we transform and load the relational data into a graph
database environment. We use Neo4j, a widely used graph database
system optimized for highly connected data. A dedicated Java appli-
cation using Spring Boot handles data extraction, transformation,
and loading (ETL) processes. The application reads data from the
MySQL database, transforms it according to graph modeling prin-
ciples, and writes it to Neo4j. The transformation logic is based on
retrieving complete data for each table via SQL queries. The enti-
ties and corresponding graph nodes are modeled inside the Spring
Boot application. Rather than treating foreign key values as simple
attributes, they are mapped directly to relationships between nodes
in the node classes, aligning the structure with Neo4j’s native graph
paradigm.

In determining the appropriate transformation logic, we follow
Neo4j’s recommended methodology for migrating relational data
to graph models which is similar to the approach described in [3].
Specifically, all primary entities such as containers, carriers, ser-
vices and liners are modeled as nodes. The existing foreign key
relationships in the relational model are translated directly into
explicit relationships between nodes in the graph model. For exam-

ple, the relationship between a container and its in- and outbound
carriers is represented as graph relationships connecting the respec-
tive nodes. This approach ensures that the inherent relationships
present in the relational model are preserved and made navigable
within the graph database.

To enable a direct comparison of the performance of queries and
data exploration in the two systems, the Spring Boot application
is built to support executing both MySQL and Neo4j queries. This
setup permits controlled experiments in which identical queries
are formulated in SQL and Cypher, and executed through the same
interface. Each query is executed a predetermined number of times
to collect consistent performance data and mitigate the impact of
caching and other runtime factors. The MySQL and Neo4j servers
are hosted on separate virtual machines running Ubuntu 24.04 to
ensure consistent, isolated environments for fair benchmarking.
Our study focuses solely on query execution time in milliseconds
as a consistent metric for comparing performance across systems.
CPU, memory, and disk I/O usage are not included, though these
can be measured separately using system monitors or database
profiling tools for a more in-depth analysis.

4 ANALYZING THE FUTURE SCM GRAPH
DATA MODEL

This section examines two key aspects of the system: data visibility
and query performance. By analyzing how information can be
intuitively accessed and how efficiently queries are executed, we
can better understand the practical strengths and limitations of
each database management approach.

For example, the standard query in Figure 4 returns a simple
overview in Neo4j, as shown in Figure 3. This query returns all
nodes directly connected to a specific container node via a single
edge. It also shows how these nodes are linked to each other and
if they share any direct relationships. The result provides a clear
view of the container’s immediate network and the structure of
its surrounding connections. This query’s result is the immediate
network around each container. The output shows that the con-
tainer is directly linked to one inbound and one outbound carrier.
Additionally, both carriers consistently share the same service and
liner connections with the container, revealing a clear, uniform
structure to these relationships. This result is presented in the form
of an effective graph visualization. Any inconsistency caused by a
container being linked to a different service or liner than its car-
riers would be immediately apparent. This makes it easy to spot
modeling errors or data issues at a glance.

Figure 4: A Cypher Query to generate a Container Overview

MATCH(n:Container{unitName: 3) -->(x)
RETURN n, x

This doesn’t mean that MySQL can’t produce the same result.
It can, but achieving the same level of visibility requires a more
complex query. In this case, we would need to join the container
table with the carrier table twice: once for the inbound carrier and
once for the outbound carrier. Then, we would need to compare
the serviceld and linerld of both carriers to ensure they match the
values documented in the container attributes. While this approach
is possible, it adds more steps, which can make it harder to quickly
interpret the relationships. Extracting the same information from
MySQL requires multiple redundant joins across all tables in the
schema. This increases query complexity and makes the results



harder to interpret, see e.g. Figure 5. Issues such as mismatched
liners or services must be identified manually in the result set
because the relationships aren’t as visually or structurally apparent
as they are in a graph model.

Figure 5: Details of Container 02b30A9iogS (MySQL)
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The differences in query performance between MySQL and Neo4;j
are shown in Figure 6. This graph illustrates three stages of com-
plexity. All three queries aim to identify specific combinations of
shipping services and liners (defined by outboundServiceID and
outboundLinerld) associated with above-average dwell times for
export containers in the port. Dwell time, which is calculated as the
difference between timeOut and timeln, reflects how long contain-
ers remain in the terminal. By focusing on export containers (i.e.,
inboundModeld > 2 and outboundModeld <= 2), the query examines
whether certain service/liner combinations result in containers con-
sistently arriving much earlier than necessary for loading, thereby
occupying storage space longer than required. Identifying such pat-
terns could inform contract adjustments or operational planning
by highlighting combinations that contribute disproportionately to
terminal congestion.

The complexity stages are set as follows:

(1) The query filters by mode IDs to find relevant service and
liner combinations and returns only their IDs along with
dwell times.

(2) The query filters by the names of the modes to find relevant
service and liner combinations and returns their names
along with the dwell times.

(3) This query builds on the second one, ensuring that the
carrier has not yet arrived at the port and is associated with
the same liner and service as the export container.

For Neo4j, all three queries have the same level of complexity
and don’t require any specific extensions. However, the second
query for MySQL requires specific joins to access the names of the
modes, services, and liners. The third query builds on the second
by ensuring that the carrier has not yet arrived at the port and is
linked to the same liner and service as the export container. These
conditions are established through nested subqueries.

In Figure 6 we observe that as query complexity increases, the
performance gap between Neo4j and MySQL narrows. However,
Neo4j can handle complex queries with relatively simple patterns,
while MySQL requires increasingly nested joins to produce the
same results.

Figure 6: Query Execution Time Distribution
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Looking ahead, there are several ways to extend this project
to improve performance and analytical depth. As queries become
more complex, we want to explore wheter Neo4;j can leverage its
strength in relationship-heavy data structures and outperforms the
relational model.

One key opportunity lies in rethinking how certain attributes are
modeled. Currently, nodes such as AttributeOption, LinerOption,
ServiceOption, and ModeOption hold only a small amount of infor-
mation, typically just two attributes. Since these nodes are linked to
containers and carriers every query involving them requires addi-
tional traversal steps. This adds complexity and overhead without
offering much structural benefit. A more efficient approach could
be to remove these lightweight nodes and store their information
as attributes directly on the relationships between nodes instead.
For instance, rather than connecting a container and a carrier to
shared ServiceOption and LinerOption nodes, the relationship be-
tween them could include the serviceld and linerld as attributes.
This approach would reduce the number of nodes and edges in the
graph, streamlining the data model and simplifying many queries,
particularly those that only need to filter or compare basic option
values. It would also eliminate the need to manage multiple edges
in simple lookups, making the model easier to work with.

In addition to improving the model itself, one area for expansion
is to increase the scope of the data. Currently, the dataset only
represents operations within a single port. In the future we want
to construct realistic sequences that simulate container movement
across multiple ports. This will allow to model a more complete
logistics chain and demonstrate how containers move over time and
under different conditions around the world. Such a model will open
up new possibilities for analysis as current databases are usually
restricted to one port only. In this way, we can explore how graph
databases perform when querying on longer paths compared to
traditional, join-heavy SQL queries. Potential use cases are testing



how effectively routes can be traced, optimal transfer points are
identified, and surface delays or inconsistencies are detected. In
addition, we envision to understand a container’s entire journey,
including its origin, destination, and intermediate stops, simply by
following its connected nodes.

5 CONCLUSION

We propose a novel approach to port operations in supply chain
management, utilizing a graph data model to achieve a more com-
prehensive understanding of the complex interrelationships among
different entities and their interactions. In this study, we employ
authentic SCM data derived from actual port operations to con-
duct a comparative analysis of the relational data schema and a
graph data model that utilizes the same set of data. In Section 3.3,
an automated transformation is employed to translate the exist-
ing SCM data into a Neo4j database. In Section 4, we undertake
a foundational examination of potential use cases for port opera-
tions and their query complexity. This analysis is conducted with
the objective of demonstrating the merits of graph modeling. Al-
though relational databases are nowadays the clear choice, the
results across the presented complexity stages suggest a possible
shift in query efficiency. As queries and data structures become
more complex, Neo4j may have an advantage. However, this alone
is not enough to confirm that Neo4j will consistently outperform
MySQL under more complex conditions. Similar tests should be
conducted in the future on larger, more complex datasets to enable
drawing reliable conclusions from additional queries.
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