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ABSTRACT

In this work, we present a vector representation that is built around
the notion of interpretable, domain-specific shapes that describe
the structure of a whole graph regardless of its size. This represen-
tation overcomes common restrictions of popular graph embedding
approaches and can be computed efficiently on static and dynamic
graphs. We apply this representation to classify the graph struc-
tures in information cascades and trace their changes over time.
Our experimental study on real-life and synthetic datasets shows
both performance results and empirical observations. Although we
currently focus on append-only directed acyclic graphs (DAGs), the
underlying ideas may be generalized to a wider range of graphs.
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1 INTRODUCTION

Graph embeddings have become the mainstay in representing graph
characteristics for classification, clustering, and other ML tasks. In
addition to the compact representation, their main appeal is cap-
turing essential graph characteristics while avoiding the effort of
manual feature engineering. In domains such as social media anal-
ysis or causal graphs [22], important limitations become apparent
but are rarely addressed - especially not in combination:

o Domain-specific meaningful structures are not expressed
well by generic embeddings, providing coarse information.

e The positions of specific parts are not (or rigidly) de-
scribed, limiting the means to capture the overall structure.

e Edge directions are typically not used, depriving the rep-
resentation of important aspects.

o Black-box features obstruct interpretable analyses.

e Variances in graph sizes are prevalent due to power-law
distributions but not supported well, as many embeddings
assume almost the same size for graph instances.

e Dynamic graphs are captured in a rudimentary fashion,
typically as static embeddings on snapshots.

Our main showcase for these issues are Information Diffusion Cas-
cades (see Figure 1) that capture the spread of information [19, 34]
(similar to epidemiological models). Starting from one or a few
original sources, the content spreads gradually (dynamic graph)
to new nodes (direction). The diffusion may form structures such
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as dense superspreading groups or long chains, while the relative
position provides insight into the effects. The sizes of the overall
cascades and the structures vary significantly.

So for a given set of graphs G containing DAGs of various sizes,
our goal is to generate vector representations of every graph G € G
that preserve direction, temporal information, and the similarity of
graphs with respect to their complete structure. They must encode
positional information for certain structural subpatterns and their
relevance to the overall structure of G, but ignore size differences
(compared to other graphs in G).

In this work, we present this whole-graph vector representa-
tion in Section 3) and introduce algorithms for both static and in-
cremental computation in Section 4 that are fast enough on typical
graph sizes to produce representations for every time point, en-
abling fine-grained graph-temporal analyses. As a proof-of-concept,
we group complex real-life graphs of varying sizes into inter-
pretable categories and present first steps towards change point
and temporal evolution studies in Section 5. An experimental study
in Section 6 shows both performance results and the empirical
observations on the applications.

2 RELATED WORK

The purpose of graph vector representations is to provide a notion
of distance or similarity between pairs of graph instances, which
is the foundation of many ML applications. This is particularly
challenging, as traditional graph matching algorithms such as
(sub)graph isomorphism and associated Graph Distance Metrics
like Graph Edit Distance (GED) or Maximum Common Subgraph
(MCSG) are mostly NP-Hard ([5, 17]).

2.1 Graph embeddings

Graph embeddings are general approaches that do not rely on
domain-specific knowledge to generate low-dimensional vectors
that preserve similarity properties. In this work, we focus on whole-
graph embeddings, not individual node or subgraph embeddings.
Many complementary approaches for graph embedding have
been proposed [6]: Matrix factorization methods generate em-
beddings using the adjacency matrix of the graph, yet their compu-
tational complexity limits them to small graphs; e.g., MagNet [33]
encodes directed graphs using a complex Hermitian matrix formu-
lation. Random walk-based methods construct embeddings by
sampling a set of paths from the graph, with the quality strongly
dependent on starting nodes and walk lengths, both of which are
difficult to adapt to the specific structure and size [11]. NN-based
methods employ various neural architectures and a mechanism to
encode neighborhood information, but suffer from similar scaling
limitations. Examples include GCN and GCKM, which rely on fea-
ture transformation [31], as well as message-passing approaches,
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such as GNNs [25] and UGraphEmbed [2] using sampled node em-
beddings to generate whole-graph representations. Graph kernels
count occurrences of elementary fixed substructures; these can be
based on random walks or random subgraphs of fixed size [14],
neither can capture structures that scale with the size of the graph.

Methods tailored to directed graphs are mainly based on ad-
jacency matrices or targeted on attributed or knowledge graphs.
Position-aware approaches are usually limited to (single) node em-
beddings, such as [32], or rely on random walks within undirected
graphs [7]. Positional and structural encoding (PSE) approaches
incorporate the positions of the nodes as input features [27], but
in a very rigid and overly detailed manner (e.g., the second child
of the first child of the node x’). Almost all embeddings of dy-
namic graphs use techniques designed for static graphs applied
to snapshots, mostly due to cost [3].

2.2 Graph Summarization

The large size and complex structure of graphs often prohibit di-
rectly computing NP-Hard distance measures. Reducing the graph
to ’interesting’ parts may improve the scalability, but the definition
is subjective, usually requiring both domain knowledge and user
preferences [16]. [13] comes closest to our needs by capturing typi-
cal shapes, but is restricted to undirected edges and only captures
single graphs, thus hindering comparison.

2.3 Structures in Large Graphs

A key element for graph summarization is the choice of ’inter-
esting’ shapes: specific enough to capture domain semantics, but
not over-specialized. They should be cheap to compute, yet allow
composition into larger patterns. At the one end of the resolution
spectrum, Motifs [15] provide a detailed local view: they are prede-
fined, very small (typically 3-5 nodes), connected subgraphs that can
be computed efficiently and approximate the overall structure by
counting or sampling. Due to their fixed size, they cannot effectively
capture structural patterns that scale with the size of the graph. On
the other end of the spectrum, community detection provides a
wider coverage, but usually with limited internal structure. This
is particularly apparent for popular density-based methods, such
as Louvain [29] or Label Propagation [9], while pattern-based [18]
approaches uncover motif-like structures with mechanisms such
as random walks [26]. In recent years, the field has seen a shift
towards encoding strategies [12], leading to the same limitations
outlined in the previous section.

2.4 Analyses of Dynamic Graphs

Understanding how graphs change over time provides valuable
insight into the underlying processes (e.g., Protein-Protein Interac-
tions [8], mass mobility [30], information cascades [34]).

Change points correspond to moments at which the representa-
tion of the graph of the evolving structure changes significantly [35].
Generally, change point detection is applied to a sequence of coarse
graph snapshots, and depending on the underlying dynamic graph
model, such as Markov models, various detection methods have
been developed. In our approach, all the change point detection
techniques applicable to (relational) time series [1] data can be
employed on the fine-grained sequence of vector representations.

The detection of change paths extends the analysis to the entire
data set, mining the sequence of labels and detecting meaningful
migration patterns. Often, determining this sequence of labels is
expressed as a cluster evolution analysis, such as [24]. Similar ap-
proaches are used in analyzing and predicting human behaviors
over time, like students [23] and customers [20].

3 ENCODING APPROACH

Considering that existing approaches do not fit our requirements,
we introduce a vector representation for domain-specific shapes
over directed graphs, which are assembled into larger, scale-free
patterns with positional information. For dynamic graphs, the same
definitions of shapes and patterns can be reused, so that for any
given time point ¢, we create them on G; as the subgraph that
contains all nodes and edges that were active at time . For now,
we focus on single-rooted directed acyclic graphs (DAGs) and point
timestamps in an append-only model.

3.1 Structural Shapes: Stars and Chains

Like motif-based approaches, we keep the concept of a predefined
shape but relax the fixed size towards coverage of larger graph
sections, using the shape properties and the relative positions as fea-
tures. Our choice of shapes for social media and interaction graphs
is influenced by [13], although the graph model makes Stars and
Chains the most suitable shapes: Stars express the influence of a
node in its (dense) neighborhood, while chains connect sections of
the graph. Given its wider range of graph types, [13] also consider
cliques (too expensive, limited applicability in our scope) and bi-
partite graphs (future work). Our shapes greedily “cover” (and thus
summarize) their respective graph parts, avoiding over-weighing
minor shapes and reducing computational effort. Coverage of a
node is unique, unless it is at the boundary of shapes, where it
is fractional. To assemble complex structures succinctly, we
express the relationships between the shapes up to a certain level
of detail, while [13] uses (random) subgraphs.

First, we establish some common definitions. For a given directed
graph G=(V, E) with n := |[V| and m := | E|, let sp(s—x) the shortest (di-
rected) path from s to x, while len(p) expresses the length of a path p.
Leaves (L) are nodes without outgoing edges, roots without ingoing.
Neighbors of a node v are all nodes connected to v via an outgoing
edge: neighbors(v) := {w € V|(v, w) € E}. Indegree(v)/outdegree(v)
are the number of inbound/outbound edges to a node v.

Based on these definitions, we now establish our shapes. Chains
are paths that contain only nodes with a limited outdegree (ex-
cept when crossing a star). A maximum chain of a graph is
a shortest path from the root to a leaf with maximum length:
Cmax = argmaxj¢y len(sp(root — [)). We only consider chains
Cryn that reach a significant ratio (7chain) 0f Crmax: ¢ = (Cstart —
Cend)> Where len(sp(c)) > len(Cmax) * Tchain- The nodes covered by
Cr...n are exactly those that are connected by the edges of these
chains.

Our second pattern, the star, consists of a center s directly
reaching a significant share (zstar) of the entire graph:

1
= _ > ‘/ *
out(s) := E indegree(i) ~ max(Tstar * |V],3) (%)

ieneighbors(s)
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Figure 1: Overview: Use Static Shape Detection for Graph Classification

Stars have a more complex coverage: From the center s, the out-
going edges are considered recursively until a leaf or another
star center is reached. To minimize outliers, all nodes that have a
distance greater than the average distance of those considered
are excluded: len(sp(s — n)) > avgjep(s)len(sp(s — 1)) with
R(s) are the leafs and star centers reached by s without visiting any
other star centers or chains on the path (if R(s) is empty we use all
paths to leaves and star centers covered by chains). If multiple stars
reach a leaf or star centers without visiting other stars, we assign it
to multiple stars.

Let SCr,,, be all nodes covered by the stars S. Using this ap-
proach, some nodes O are not covered by chains or stars, for-
mally O = V - SCr,, — Cr,..- Depending on the nearest pat-
tern, they are classified as star tentacles or chain tentacles.

sp(i = 0) € SCTM} be

star tentacles, and CTr,, = O — ST, be chain tentacles.

Let STy, = {o € Olargminjesc,  uc

Tstar = Tchain
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Figure 2: Graph shape detection using 7.pain = 0.3, Tstar = 0.05

In Figure 2 we show the result of this approach: All centers of
stars s are marked , nodes covered by stars ,
nodes belonging to chains red, chain tentacles , and star
tentacles dark green.

3.2 Vector Representation

Interpretable, structure-preserving features for graphs of different
sizes are difficult to express in a dense, low-dimensional vector,
so we aim for a compromise between accuracy, flexibility, and
compactness. The detected shapes (chains, stars) of a graph are
each explicitly taken into account in the representation, whereas
tentacles are summarized because of their small overall impact.

Since the number of shapes and star levels varies among graph
instances or within a dynamic graph, a global static number of
dimensions is not feasible. Instead, we generate the representation
specifically for a dataset, which also matches the use case. After
detecting the shapes in each graph, we can determine the maximum
number and sizes needed. For fully incremental evaluations, a local
(e.g., window) scope is typically sufficient. Instance data are then
filled in, while unneeded dimensions are padded with 0, leading to
some sparse vectors. The number of dimensions can be controlled
by Tstar and ¢, allowing for datasets with high structural com-
plexity or variance. In our experiments, the number of dimensions
was similar to state-of-the-art embeddings (128-256).

Expressing the structure among shapes requires similar trade-
offs. Given our use cases and graph structures, we place more
emphasis on the relationship among stars, as they represent stronger
activity, while the chains lead to sparse areas with little structure.
Instead of fully encoding a summary graph among star centers with
full positions and distances, we only represent the star positions
relative to the root(s) using breadth-first order. At each level, the
stars are then sorted by their size. If the relation of stars is highly
relevant, a possible direction is to use e.g. GED to compute the
distance between star graphs (a reduced but weighted version of the
given graph only containing the star centers and connecting edges
between them). Special consideration is given to the interaction
of stars, which may occur in triangle structures in DAGs with
overlapping stars. The fractional coverage is resolved by assigning
the nodes fully to the star closer to the root but retaining count of
the reassigned nodes in the further nodes.

After the stars, we place the chains sorted by descending length.
The vector is completed by the tentacle information. Although this
order of components does not express the structure completely, it
ensures that the component-wise comparisons in distance functions
match the importance of the respective shapes.

To cater for size variance both in overall graphs and shape, we
normalize shape sizes inside a graph mostly, but not fully: for stars,



we consider not the full coverage, but the number of nodes directly
connected to the center, since this balances between stars of the same
node distribution, but different coverage size vs. stars with the same
node distribution, but different coverage size.

The normalization is bounded by the size of the largest shape s,
which can be a star (from S) or a chain (from C):

d := max (maxsegs out(s), max.cc len(sp(c)))
with out(s) as defined in *.
The scaling function k : SU C +— [0, 1] is defined as

out(v) ifoes
T4
K= len(sp(®) 40 ¢ ¢
d

The (scaled) individual shape types are represented as follows:

e For chains we use the (scaled) length.

e For stars we use the (scaled) number of nodes assigned to
a closer star and nodes at every level off the center.

o Tentacles are summarized using the d-normalized average
length and fraction of nodes for each tentacle type.

Using the approach on Figure 2 yields the following vector:
Vecrigz = [0,1.0,0,0.714,1.0,0.29, 0.05, ]

with out(star 1)= 7, out(star 2)= 5, and len(main chain)= 7 and
therefore, d= 7, k(star 1)=1, k(star 2)= 0.714 and k(main chain)=1.
The first two values represent star 1 (reassigned, level 1), value 3
and 4 represent star 2, the fifth the single chain (length), and the last
four represent the star and (avg. length, fraction).

4 SHAPE DETECTION ALGORITHMS

Although shape and pattern definitions carry a significant amount
of complexity in their definition and interaction, they lend them-
selves well to efficient implementation without erasing finer struc-
tures or fracturing larger patterns. Our goal is to ensure that the
resulting vector representation is deterministic while leaving suf-
ficient flexibility during computation. In particular, we aim to make
decisions about shapes in a local scope with minimized coordina-
tion, allowing for greedy computation of the cover.

To achieve these design goals, our algorithms perform a number
of well-defined steps that capture the interaction of shapes so
that none of them is overrepresented. Each step handles a main
type and its remainder class, while the order of steps ensures that
the interaction between shapes is consistent.

In general, the proposed algorithms achieve complete shape
detection close to O(m), which is optimal for an approach that is
not based on sampling. To simplify the explanation, we start with a
single root node, no deletions, and no shortcut edges with higher
timestamp, but will lift these restrictions later.

4.1 Static Shape Detection

The first algorithm (Alg 1) covers the static case in which the full
graph with no natural order of operations. This results in four
steps, which we explain using the example in Figure 2. Since both
chains and stars extend their respective cover greedily to the limit
of the graph, the first step detects the chains, as otherwise the
connection between the two star centers would be covered by star
1 or become a star tentacle. By definition, chains fork off longer

chains, so we prepare our graph by computing the single-source
shortest path from the root, which costs O(m) (BFS on unweighted
graphs). Starting from the longest path (main chain), we assign
chains as long as their length (from the last fork) is at least 7 pain,
which also costs O(m). In practice, this total order can be relaxed,
allowing for optimizations.

In the second step, star centers are detected by checking *
for each node. For each detected center, coverage is computed
independently until either leafs, other star centers, or chains are
reached. If two stars overlap (e.g. in a diamond structure), common
nodes are labeled fractionally. In total, this step visits each edge at
most as often as there is fractional cover, so we also achieve O(m).

The third step performs a clean-up between chains and stars:
If a chain runs through a cluster center, we retain it only if the
remaining length is at least 7.j,;,. In Figure 2, the main chain
before this step ran to the node labeled "star tentacle”, but after the
"brown" star center it is too short. This step covers only a small
section of the graph and can be run independently for each chain.

The last step ensures that all the uncovered nodes become
chain tentacles, as any other shape would have consumed them.

Algorithm 1: Shape detection

Input: Graph G = (V, E), parameters Tchain, Tstar
Output: Chains C™ehain, Star Covers SC™tar, Star tentacles
STTstar | Chain Tentacles CT chain

-

Step 1: Detect chain candidates;
initialized « false;

)

@

Sort all root-to-leaf paths in decreasing order of length;

'S

foreach path p in sorted order do

5 if not initialized then

6 L Cmax = len(p); initialized « true;

7 if p reaches an existing chain then

8 L Truncate p at the (last) connection point;
9 if length(p) > Cmax - Tehain then

10 L Add p to CTehain;

11 Step 2: Identify star centers and their cover;

12 Identify star centers S™%r using *;

13 Compute star covers SC™tr | excluding paths in C%ehain;
14 Add outliers shorter than Crmayx * Tehain to ST ter;

15 Step 3: Refine chains;

s foreach chain candidate ¢ in CThain do

17 if (c satisfies T pqin condition from star center to leaf or

between star centers) and covers at least one node

exclusivly then

18 Keep c (if nodes at the end of c are already covered
L by stars truncate ¢ and keep the remaining);

-

19 else
20 L Discard c;

)

1 Merge chains at star centers if both types meet;

N

2 Step 4: Add chain tentacles;
23 Add remaining uncovered nodes to CT"chain;
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Figure 3: Incremental shape detection: Recombination of chains and star creation.

4.2 Incremental Shape Detection

Algorithm 2: Incremental shape detection

Data: Detected shapes for G; = (V;, E;), a new node
ni+1 € Vi, and new edges e;41; node depth (depth),
graph depth (D;), and graph size (S;) of Gy;
parameters Tszar, Tehain

Result: Detected shapes for Gs41 = (Ve U {ns1}, Er U ery1)

Step 1: Update metadata;

Dtt1 « max(De, minx p,. yee,,, (depth(x) + 1)) ;

St+1 < S +1;

-

[N}

©w

'S

Step 2: Update old shapes;
for every star s of G; do
6 if s does not satisfy * for G4+1 then

3

7 Delete star s and update predecessor stars
8 or generate chains if no predecessor stars exists;
9 if | Tepain * Dil = | Tchain * Dr+1] then
10 for every star s of G; do
11 L Recompute star cover of s;
12 for chain c in Gy do

14 L Relabel c¢ to chain tentacle;

13 L if length(c) < |Tchain * Dr+1] then

15 Step 3: Create new shapes;

16 for (s, ny4+1) € €441 do

17 if s satisfies % for G11 but not for G; then
18 L Create new star with center s

19 and update predecessor stars of s;

20 Step 4: Add new node;

21 Attach ny4q to all possible stars and change the star cover if

_

needed;
22 Attach ns41 to longest possible chain;

23 Step 5: Recombination of chains;
24 if ny4q is attached to a chain then
25 L Recombine chains if needed ;

When computing the representation for dynamic graphs, we
adopt an incremental strategy that utilizes the previously de-
tected shapes of the graph. Each newly added node, along with all
its incoming edges, is encoded to reflect its integration into the
current graph state. Because most of the graph structure remains

unchanged after the addition of a new node, existing shapes can
typically be reused. Furthermore, this method simplifies the identifi-
cation of the necessary structural changes, as existing shapes retain
their identity. Minimal updates by extending existing shapes are
not always possible, causing both deletion of existing shapes and
creation of new shapes. As the definitions of the stars and chain
tentacle structures depend on both the size and depth of the graph,
the addition of a new node can retroactively affect the validity of
the shapes detected earlier. For example, previously identified stars
may no longer satisfy the condition (), necessitating their removal
which may also affect chains. In turn, the addition of a node may
prompt the formation of a new star structure. If a node is added
to an existing chain, it must be ensured that this addition does
not allow for the reconstruction of longer chains by recombining
segments of previously identified chains.

The incremental approach begins with an initial chain between
the first two arriving nodes. Algorithm 2 describes the steps when a
new node and its incoming edges arrive: Step 1 updates the graphs
metadata needed to compute thresholds. In Step 2, previously de-
tected structures in the graph G; are revised. Step 3 involves creat-
ing new stars if required, and Step 4 integrates the new node into
the graph. Finally, Step 5 identifies and, if necessary, constructs
maximal chains within existing chain structures.

Figure 3 shows the approach in a mini-example (using 7chain =
0.3, 7star = 0.2). The new node is marked with a cross-hatch. All
nodes are color coded as in Figure 2, while nodes belonging to the
same chain structure are marked with the same red tone.

In most cases, only Step 1 and 4 of the update procedure are
executed, clearly leading to O(|e;+1]) cost for the whole graph. The
probability of invoking more expensive operations—Steps 2, 3, and
5—decreases as the graph size increases. Typically, all steps other
than the ’snowballing’ operation (Step 5) involve modifications
with limited local scope and can be parallelized.

Since each node is assigned to very few shapes, computational
complexity is not primarily determined by the number of nodes n or
edges m, but rather by the number of shapes (usually < n) because
the update is performed by altering the given shapes. Specifically,
let ngtar denote the number of star shapes, nstarten () the number of
tentacles in star s, ncp,in the number of chain shapes, and ncpainten
the number of chain tentacles. The creation of a new star structure
incurs a cost proportional to the size of the new star. If the center of
this new star was previously assigned to another star s, an additional
cost of O (nstarten(s)) to alter the old star by adjusting or deleting
its star tentacles if needed. Finally, the ’snowballing’ step (5) has a
worst-case complexity of O (N¢hain + Pehainten)-



4.3 Generalizing the Graph Model

The algorithms described are limited to append-only single-rooted
graphs without the addition of new edges between existing nodes.
We now sketch several approaches to overcome these limitations.

If we encounter a graph with more than one root, we introduce
a shadow root as soon as a second node without incoming edges
appears. From this shadow root, edges point to all real roots that
are ignored during encoding. If the shadow root forms a star, care
must be taken to ensure that it only covers the actual roots.

Removing a leaf node typically has only a local impact but
may result in (multiple) structure changes. Deleting an edge or a
non-leaf node or adding edges between existing nodes requires
relabeling the entire graph using the static approach in order to
obtain a new start encoding for subsequent steps (since it might
destroy a shortest paths used to generate the old shapes).

5 APPLYING REPRESENTATIONS FOR GRAPH
ANALYSIS

The interpretable vector representation serves as a promising basis
for more elaborate downstream ML tasks. Continuous computation
provides the means to detect changes at every modification, open-
ing the way to state-of-the-art time series analysis techniques. We
will provide brief proof-of-concept descriptions in three directions.

5.1 Determining Graph Structure Classes

Detecting relevant groups by clustering and classifying is a main
driver of graph representations. Since the values of the absolute
value of the individual dimensions have a measurable impact on
discerning graphs, we chose the Euclidean distance. Hierarchical
clustering with Ward linkage proved to be most effective and pro-
vides a good insight into the clustering decision. To assess quality
and determine the best cluster count, we choose to use the Distance-
based Separability Index (DSI) [10], as it can deal well with skewed
cluster sizes and non-convex shapes at low computational cost.

The actual class detection requires a systematic human inves-
tigation, for which our interpretable and meaningful dimensions
are useful. The path of feature “decisions in hierarchical clustering
highlights the properties of these groups and thus provides clues
for descriptive cluster labels. Despite the inherent meaning of the
components, the high dimensionality makes them hard to interpret
for humans. We presented an excerpt of our vector representation
to the expert, mainly summarizing the number, position, and score
of the main shapes (x > 0.85) and the non-main stars.

5.2 Change Point Detection

Change point detection in graphs captures the moments in which
the structure of a graph has changed significantly [35]. Our ap-
proach is particularly suitable, as it provides point-in-time res-
olution (instead of coarse snapshots) and makes the underlying
structural modifications, including the specific type of change,
explicitly accessible. This capability enables the generation of an
initial set of labeled change points, which can be used for more
elaborate ML tasks, such as training supervised models. As the
detection is performed solely on the current graph instance, this
lightweight approach is well-suited for timely analysis of dynamic
or streaming graphs. To provide a first proof of concept, we utilize

specific change types to define our change points, based on the cur-
rent dominant structure observed. For chain-dominant graphs,
change points were identified through the creation of new chains
or stars, whereas for star-dominant graphs, they were determined
by the creation, deletion, or alteration of star covers.

5.3 Change Paths

We extract change paths using vector representations captured after
change points or the average between successive change points and
perform clustering as defined in Section 5.1. The change path for a
graph is then defined as the sequence of cluster assignments,
ordered chronologically. As a result, the generated change paths
may vary in length depending on the number of detected change
points for each graph. We analyze the common evolution paths
of graph shapes using the entire dataset, rather than focusing on
individual graphs, to compensate for sparsity and provide a uniform,
representative model within a dataset.

6 EXPERIMENTAL EVALUATION
6.1 Setup and Data Sources

For our experimental study, we implemented a prototype as a single-
threaded Python program and performed evaluations on an AMD
Epyc 7702P running Linux. Following our motivational use case,
we investigated information diffusion cascades from Twitter/X
and Telegram, each covering their dominant means of information
diffusion. For Twitter, we use retweet cascades reconstructed by
the approach of [28], considering only cascades with at least 60 %
completeness. As this approach relies on a social graph, we used
datasets from the Olympics 2012 (London) to 2016 (Rio), where both
messages and connections had been crawled.

For Telegram, we picked reply cascades, which occur only
within groups. This is in contrast to the global Twitter model using
hashtags for structure. Other diffusion means exist (even with the
same frequency [21]), but are harder to reconstruct. Here, we use
the publicly available Pushshift dataset [4] and analyze cascades
from 200 randomly sampled channels.

In total, we investigated 18,8k Twitter cascades and 13.9k Tele-
gram cascades (Table 1). The latter are always trees (due to the data
model), while the former are mostly DAGs. The cascade sizes vary
from min 6 nodes (our cut-off) to 23k nodes. On both platforms,
an average cascade contains around 35-40 nodes. The cascades on
Telegram are much deeper, whereas the cascades on Twitter contain
more edges per node. To avoid the effect of outliers, we capped the
depth values at 10 and re-scaled derived metrics accordingly.

As our real-world dataset includes cascades containing (only)
up to 23k nodes, we also evaluated the computation time of our
approach using synthetic test data with up to 20m nodes. These
test graphs were specifically constructed to trigger particular types
of alterations, such as the deletion of a star of a given size.

We conducted a (limited) parameter sensitivity analysis showing
robust and predictable behavior. For zgtar, values between 0.03 and
0.1 provide good results, for 7gtar 0.3 and 0.6, with a gradual decline
outside these ranges. Higher values put more emphasis on larger
structures and summarize more, whereas lower values achieve
the opposite. We performed our experiments with 0.05 and 0.4,
respectively, which was a good fit for all datasets.



Twitter ‘ Telegram ‘

number of cascades 18817 13906
tree casc 6132 13906
max casc size 23028 896
min casc size 8 6
avg casc size 36.56 39.09
max edges per node | 45.48 X
min edges per node 0.875 X
avg edges per node 1.33 b'e
max depth 10 702
min depth 1 3
avg depth 2.09 16.4

Table 1: Metadata of used real-world datasets

Input Graph l Considered equal l Considered different

size difference
but same meaning
(root star)

matches stars centers
but different meaning
(none root stars)

matches chains
without direction

but different meaning but same meaning
(2 main conversations) | (1 main conversation)

size difference

Table 2: Embedding Classification Results

6.2 Baseline: Embeddings

Given the dearth of approaches that provide at least parts of our ap-
proach (see Section 2.1), we compare our approach with UGraphEm-
bed [2] for undirected graphs with node ranking, but without de-
tailed structures. None of the more recent work we considered pro-
vides runnable code or a better feature set/scalability. We followed
the recommendation for train/test split and embedding dimension.

Given the graph sizes, we had to deviate from the suggested
(and NP-hard) graph distance measure (GED), replacing with a
heuristic that approximates the same idea: Maximum Number of
Nodes (G;,G;) - matching in the main structural pattern (outdegree
for the main star or length for the main chain). Clustering these
embeddings showed that the clusters were mainly formed by size,
while each contained a mix of chains and star-based cascades, as
well as stars at different levels (see Table 2).

These results did not change noticeably on a directed version
of the heuristic (only allowing rooted chains and stars at the same
root distance to match), since the node ranking of UGraphEmbed

cancels out these effects. Although finding suitable embeddings
might be feasible, current approaches do not fit our problem.

6.3 Static Structure Classification

First, we assess the static approach by generating fine-grained
clusters and discuss the observed patterns.

For the number of clusters, we determined them with DSI with
25 and 50 as bounds and 0.5 as a DSI score to separate clusters.
This resulted in 39 clusters (DSI score 0.77). Analyzing the cluster
features, we observe five dominant patterns (see Table 3):

e Root-Star Cascades: Star-shaped diffusion, where the
most influential node is the root. Smaller secondary centers
are possible, but create only small chains.

o Non-Root-Star Cascades: Similar to root-star cascades,
but the root is not the center of diffusion.

e Chain Cascades: Conversations with message flow.

e Chain Cascades with Stars: A combination of small star-
shaped structures and larger chains.

e Mixed-Structure Cascades: No single dominant pattern,
instead multiple stars/chains that are equally important.

Fine-grained clusters generated by hierarchical clustering describe
refined subclasses of the given patterns. For example, within the
mixed structure cascades, subclasses include galaxies (cascades
with multiple stars across different levels) and stars of stars (where
several stars of similar size are influenced by a central star node).

When analyzing the number of fine-grained clusters per pattern,
we observe that only a minority of the clusters only contain chain
structures (4 out of 39 clusters). Given the dataset, this behavior is
expected since only 3.3k cascades are based on a single main chain.
Most clusters feature stars, as stars provide more complexity in
terms of position, coverage, and structure.

6.4 Computation Time Analysis

As expected, operations that involve creating or deleting complex
structures (stars) or altering multiple simple structures (star tenta-
cles or chains) are computationally expensive.

Real-world graphs typically involve multiple types of alter-
ation, as such changes are more likely in smaller graphs (since
adding a new node to a small graph has a higher probability of
triggering a costly structural update). The average time to update
both the encoding description and shape detection is 51.36 us for
tree-structured data and 52.62 us for DAGs.

For the synthetic test graphs, the worst-case scenario — de-
signed to trigger the maximum number of recombinations upon
insertion of the final node - resulted in an average processing time
of 300 s for a graph containing 12.5m nodes and 5,000 recombi-
nations, while the average processing time grows linearly with
the root of the number of nodes. For all other synthetic test cases
such as changing the star cover of a large star, the size of the graph
has no significant influence on the average computation although
individual operations can take several seconds (e.g., changing the
star cover takes 16 seconds for a star with 10 million nodes), such
cases are rare. Moreover, triggering such a costly operation on a
large substructure requires a substantial number of basic append
operations. Consequently, the average cost of updates remains low.



Pattern Root Main Main | Main Add.
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Table 3: Cascade Pattern Descriptions

6.5 Change Points and Paths

We applied the proof-of-concept change detection based on the
dominant structure as described in Section 5.2. The initial ‘setup’
phase of graphs with fewer than five nodes was excluded to avoid
false detections. Using a window size of one (only comparing di-
rect neighbor slices), we examined 1166k slices and identified 82k
change points (= 7% of the number of slices). The percentage of
change varied considerably, ranging from zero - typically indicative
of simple root star structures where the root star forms within the
first five nodes and subsequently grows steadily - to around 30 %,
which was often observed in Telegram cascades characterized by
small substars that are frequently added and deleted. Ignoring the
initial peak and the subsequent drop, the change points appeared
almost equally likely across different cascade sizes (see Figure 4a).
The temporal distribution of changes closely matches the expected
activity of the information diffusion cascades, with high activity
at the beginning that gradually slowed over time, and a final peak
caused by very small cascades (see Figure 4b).

We utilize the encodings obtained after the selected change
points to generate clusters for the change path analysis, employ-
ing the same setup as in the static approach. Due to constraints
of time and space, we limit our findings to a brief description of
the generated clusters and a simple cross-validation between the
identified change points and cluster assignments. This aims to pro-
vide preliminary evidence that, in most cases, the identified change
points indeed reflect significant structural transformations within
the graph when compared to other graphs.

This approach produces clusters for similar shapes as described
in 6.3, with the primary differences arising from the exclusion of
early-stage changes. Cross-validation between generated change

Figure 4: Change points

points and clusters reveals that only 65 % of the change points
correspond to an assignment in a different cluster. The reason is
minor changes, such as the creation of a small star within a large
cascade, that do not necessarily result in a different overall structure.

7 CONCLUSION AND FUTURE WORK

In this work, we present a shape-based vector representation for di-
rected DAGs that can be computed efficiently on large-scale graphs.
Our analyses show its utility for static and dynamic graph analyses.

There are multiple avenues for future work: Studying a wider
range of graph types will provide a better understanding of the
trade-offs on shape selection and representation. Given the promis-
ing results on dynamic graphs, incorporating more expressive
shapes such as directed temporal cycles and fully overcoming
the snapshot-based model seems promising. This opens up means
to capture temporal dynamics within information cascades and to
study underlying user interaction graphs in conversational settings.

Enhancing the model to support frequent deletions would
improve its adaptability to real-time data changes. Furthermore,
employing diverse activity models for incremental encoding may
offer more accurate and flexible modeling of dynamic behaviors. In-
tegrating advanced approaches for stream clustering may improve
the representation of evolving data streams.

Finally, we plan to conduct a further analysis of our real-world
datasets to find an optimal change point detection strategy and
study graph evolution paths to predict future potential structural
patterns or anomalies in detected shapes.
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