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ABSTRACT 
Graph anomaly detection is critical for identifying rare, irregular 
patterns in complex networks, particularly when labelled data is 
scarce and class imbalance is high. This paper introduces 
EnGraph, a novel ensemble-based framework that combines 
ComplEx knowledge graph embeddings, pseudo-labelling, and 
targeted data augmentation to improve anomaly detection in 
attributed graphs.  

EnGraph integrates multiple unsupervised base models and 
leverages a generative adversarial network (GAN) to synthesise 
high-confidence anomalous embeddings, which are iteratively 
used to refine pseudo-labels. Evaluated across 14 datasets, 
synthetic, real-world, and injected anomaly benchmarks,  

EnGraph performs comparably to supervised methods while 
requiring fewer labelled instances. Performance in low-label and 
imbalanced scenarios. Notably, it achieves up to 12% higher 
AUC-PR and 10% higher F1-score compared to leading baselines 
on datasets with <5% anomaly ratios. Results also show 
EnGraph’s robustness across varying graph sizes and structures, 
with competitive AUC-ROC scores maintained even in extreme 
sparsity. The method is reproducible, scalable, and applicable to 
diverse graph domains such as e-commerce, citation networks, 
and social platforms. 
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1 INTRODUCTION 
Graph-based anomaly detection presents unique challenges due to 
the interlinked nature of structural and attribute information, the 
rarity of anomalies, and the lack of annotated data [1], [2]. These 
characteristics reduce the effectiveness of traditional anomaly 
detection methods that assume feature independence or rely on 
large, labelled datasets. Recent work has shifted towards 
unsupervised and semi-supervised models [3], [4], [5], [6], but 
scalability, class imbalance, and robustness to graph perturbation 
remain open issues [7], [8]. 

Recent developments in unsupervised graph learning, 
particularly through graph neural networks (GNNs) and 
autoencoders, have advanced the field by enabling scalable 
anomaly detection without requiring dense supervision [9], [4], 
[8]. Notable contributions include GCN-based anomaly detectors, 
such as DOMINANT [8], and autoencoder frameworks like 
GCNAE [3], as well as contrastive representation learning 
methods, including AdONE and CoLA [9], [7]. While these 
methods perform well under certain conditions, they are 
frequently sensitive to the extreme class imbalance inherent in 
real-world datasets and often require retraining for each new 
domain or graph instance [1]. 

Many unsupervised and semi-supervised models assume that 
anomalies have significant deviations from normal data 
distributions [2]. [10]. However, graph anomalies can be subtle, 
sparse, or context-dependent, complicating detection [1], [8].  
Recent advances, such as graph contrastive learning GADFormer 
[11] and transformer-based models GTN [12], as well as 
ensemble-based outlier detectors XGBOD [13], have sought to 
overcome these limitations by integrating representation learning 
with scalable detection frameworks, often in a semi-supervised or 
hybrid setting. These approaches demonstrate improved 
robustness to imbalance, better feature diversity, and enhanced 
anomaly recall, particularly when labelled data is scarce [3]. 

Despite these advances, an important gap remains in methods 
that can effectively generalise to unseen graph data while 
maintaining detection robustness under imbalanced conditions [6], 
[7], [8]. Data augmentation with ensemble learning may improve 
model generalisability, promote diverse decision boundaries, and 
mitigate overfitting. However, it remains under-explored in GAD 
research. 
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This paper introduces EnGraph, a framework that combines 
knowledge graph embeddings (ComplEx [14]), pseudo-labelling, 
and ensemble learning to address the challenges of sparse labels 
and class imbalance in graph anomaly detection. Unlike prior 
work, EnGraph directly integrates GAN-based synthetic 
augmentation into an iterative pseudo-labelling loop and 
aggregates anomaly scores from structurally diverse detectors. 
This builds on prior studies using knowledge graph embeddings, 
such as TransE [15], RotatE [16], and BESS [17], which have 
demonstrated the potential of embedding-based models for 
relational anomaly detection. We evaluate this framework across 
14 graph datasets, including temporal and injected anomaly 
benchmarks, demonstrating improved robustness and scalability 
under diverse anomaly conditions. 

2 BACKGROUND 
This section reviews recent advances in GAD, focusing on 
unsupervised and semi-supervised methods, knowledge graph 
embeddings, data augmentation, and ensemble techniques. We 
highlight limitations in the current literature that motivate the 
proposed framework. 

2.1  Unsupervised and Semi-Supervised Graph 
Anomaly Detection 

Graph anomaly detection has become a critical area of study due 
to its applications in fraud detection, cybersecurity, and social 
media analysis. Conventional techniques, including spectral 
clustering, random walks, and reconstruction-based models 
struggle to scale and generalise in the presence of sparse 
anomalies or large graphs. More recently, graph neural networks 
(GNNs) have enabled deep embedding of structural and attribute 
information. However, GNN-based detectors still face challenges 
in handling class imbalance, limited labels, and perturbation 
sensitivity, prompting interest in hybrid, ensemble, and generative 
models.[1].  

 Recent work has shifted toward unsupervised learning using 
graph neural networks (GNNs) and autoencoder-based 
approaches. Models such as DOMINANT, AnomalyDAE, and 
CoLA learn node embeddings and detect anomalies based on 
reconstruction error or self-supervised [3], [9]. These methods 
avoid reliance on labels but often require manual tuning of 
decision thresholds and are sensitive to data imbalance. 

Semi-supervised models, [4], [5], [6] leverage small amounts 
of labelled data and attempt to generalise through regularisation or 
structural priors. While these models can improve performance 
where labels are available, they remain limited by assumptions 
about graph homophily and suffer when anomalies are sparsely 
distributed or lack structural coherence. 

Recent work, such as MSTGAD and GADFormer explore 
transformer-based architectures for GAD, capturing both temporal 
and structural signals. [7], [12], [11]. However, these approaches 
are often computationally expensive and lack interpretability, 
which are barriers in domains like healthcare or finance [2], [10]. 

2.2  Knowledge Graph Embedding (KGE) in 
Anomaly Detection 

Knowledge graph embedding (KGE) models such as TransE, 
DistMult, ComplEx, and RotatE project entities and relations into 
continuous vector spaces. These embeddings capture relational 
structure, allowing anomaly detection via distance-based scoring 
or clustering in the embedding space. ComplEx embeddings, 
which model asymmetric relations using complex-valued vectors, 
are particularly suited to graphs with directionality or temporal 
ordering. While KGEs have been used in link prediction, their 
integration with anomaly scoring and ensemble methods remains 
underexplored [15], [18], [16], [14]. 

In the context of anomaly detection, these embeddings can be 
used to identify outliers based on relational inconsistencies or 
distances in the embedding space. For example, BESS combines 
multiple KGE models into an ensemble to improve detection 
robustness [17]. Among these, ComplEx is especially well-suited 
for anomaly detection due to its ability to model asymmetric 
relationships, a common feature in real-world graph anomalies. 

Nevertheless, KGE models face scalability limitations on large, 
dynamic graphs and often lack mechanisms to capture localised 
node features, hence the need to combine them with feature-aware 
ensemble models. 

2.3  Data augmentation strategies 
Data augmentation has been applied in graph learning to address 
label scarcity and improve model generalisation. Techniques 
include edge rewiring, node feature perturbation, subgraph 
sampling, and adversarial counterfactual generation [19]. 

Notable frameworks such as FLAG, ReGraphGAN, and 
MotifCAR apply augmentation strategies to improve 
generalisation in both static and dynamic graphs. Mixup-style 
augmentation for graphs has also emerged [20], exposing models 
to interpolated representations between graph components. 

These methods enhance robustness but may undermine 
structural validity and semantic consistency of generated samples. 
Augmentation strategies are often standalone preprocessing steps 
instead of being part of the anomaly detection framework. This 
study integrates augmentation into an ensemble architecture to 
adaptively expose detection models to various anomaly signals. 

2.4  Ensemble Learning in Anomaly Detection 
Ensemble approaches in GAD are increasingly recognised for 
their robustness and ability to handle heterogeneous anomaly 
types. Frameworks such as XGBOD combine multiple anomaly 
detectors or embedding strategies to improve detection 
performance [13], [8]. 

However, most existing ensemble-based GAD frameworks 
treat base detectors independently and use simple voting or 
averaging for aggregation. Few explicitly exploit diversity 
introduced through augmentation, and even fewer integrate 
pseudo-labelling to iteratively refine ensemble input. 

Despite growing interest in graph-based anomaly detection, 
many approaches either require strong supervision, struggle with 



performance under high class imbalance, or heavily depend on the 
assumptions of a single model. Few methods combine 
embeddings, generative augmentation, and ensemble learning in a 
unified, reproducible framework. This motivates our proposed 
approach, which builds on the strengths of diverse detectors while 
mitigating the limitations of sparse supervision and structural 
variability. 

2.5 Contribution of This Work 
Despite advancements in GAD, challenges remain. Current deep 
learning models struggle with scalability and generalisability, 
needing extensive computational resources and failing to adapt 
across datasets without retraining. Many methods are unoptimised 
for extreme label sparsity, leading to poor performance with 
limited labelled data. Augmentation and detection are often 
separate pre-processing stages, limiting their effectiveness when 
not integrated. 

EnGraph uses ComplEx embeddings to capture relational 
complexity and asymmetry in graph structures. It applies graph-
specific data augmentation to expose models to more anomaly 
patterns, enhancing generalisability. Using a GAN-based pseudo-
labelling mechanism, we generate synthetic labels to tackle label 
sparsity challenges. To enhance robustness, we combine outputs 
from various detection components through ensemble score 
aggregation. These elements together create a practical and 
interpretable GAD framework that functions well in real-world 
constraints. 

3 METHODOLOGY 
This section introduces the EnGraph framework, aimed at 
enhancing GAD in both unsupervised and weakly supervised 
contexts. 

3.1 Problem Formulation and Context 
An attributed graph is a structure omposed of nodes and edges 
coupled with attributes for each node. It consists of 𝑛𝑛 nodes, 
represented by V, and edges, represented by 𝐸𝐸, where each edge 
𝑒𝑒𝑒𝑒𝑒𝑒 connects a pair of nodes 𝑣𝑣𝑣𝑣 and 𝑣𝑣𝑣𝑣. The connections between 
nodes are recorded in an adjacency matrix 𝐴𝐴, a square 𝑛𝑛×𝑛𝑛 matrix. 

In this matrix, an entry 𝑎𝑎𝑎𝑎𝑎𝑎 is set to 1 if there is an edge 
between 𝑣𝑣𝑣𝑣 and 𝑣𝑣𝑣𝑣, and zero if there is no edge. Each node has 
associated attributes stored in an attribute matrix 𝑋𝑋, which 
contains the 𝑘𝑘-dimensional attributes 𝑥𝑥𝑥𝑥 for each node 𝑣𝑣, 
providing a set of characteristics for each node. This setup allows 
for analysis of the relationships and properties of nodes within the 
graph. 

This approach characterises graph anomaly detection in an 
attributed graph (G) as a binary classification challenge. Each 
node is initially assigned a pseudo-label of 'normal' (0) or 
'anomalous' (1) using scores obtained from the baseline detectors 
within the ensemble framework. 

 

3.2 EnGraph Framework Overview 
Our framework integrates several anomaly detection algorithms 
into an ensemble. The aim is to enhance accuracy and robustness 
in complex graph data. This is especially useful with limited 
labelled data, where node connections are crucial for identifying 
anomalies. The model operates in three stages: 

 

Figure 1: Anomaly Detection Framework Using Graph 
Embedding for Pseudo Labelling. 

Stage 1: Graph Embedding with ComplEx 

Graph representation learning is used to encode each node into 
a continuous latent space which captures both structural and 
relational properties. This work employs ComplEx embeddings, a 
complex-valued embedding method initially developed for 
knowledge graph completion. ComplEx is selected for its capacity 
to model asymmetric and directional relationships, both of which 
are prevalent in real-world graph anomaly detection scenarios. 

Each node 𝑣𝑣𝑖𝑖  is mapped to a complex-valued vector 𝑧𝑧𝑖𝑖 ∈ 𝐶𝐶𝑘𝑘 
where 𝑘𝑘 denotes the embedding dimension. The embeddings are 
trained using relational scoring functions that aim to preserve both 
local and global node interactions. These functions are designed to 
capture latent structure across directed and potentially non-
symmetric relationships in the graph. 

The embedding dimension k and regularisation parameters are 
selected through grid search on a validation set to balance 
representation capacity and overfitting risk. 

Unlike purely structural embedding approaches (e.g., 
node2vec) or attribute-based encoders (e.g., GCNs), ComplEx 
provides a more expressive representation, thereby reducing the 
dependency on domain-specific feature engineering, allowing for 
richer modelling of latent interactions. 

Stage 2: Generative Anomaly Candidate Generation via GAN 

As the ground-truth labels are sparse, we employ a Generative 
Adversarial Network (GAN) to generate synthetic anomaly 
candidates in the embedding space. The GAN comprises: 

• A generator GGG that produces candidate embeddings 
simulating anomalous behaviour. 

• An encoder–discriminator pair that evaluates the realism 
of these embeddings relative to those derived from the 
actual graph. 
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This design serves two functions: To expose the model to 
potential outlier patterns beyond those explicitly available in the 
training data, and to allow pseudo-labelling of high-confidence 
anomaly candidates for use in downstream ensemble training. 

A confidence threshold 𝜃𝜃 ∈ [0.85,0.95]is used to assess if a 
generated embedding is anomalous, receiving a pseudo-label of 1 
(anomaly). This threshold is empirically validated through cross-
validation across datasets. 

Stage 3: Ensemble-Based Pseudo-Label Refinement 

The framework uses a graph-based ensemble to capture various 
structural and attribute anomalies. It includes: 

• DOMINANT, a GCN-based method; 

• AnomalyDAE, which uses an autoencoder architecture; 

• CoLA, a contrastive learning-based model. 

Each model independently generates an anomaly score vector 
𝑠𝑠(𝑚𝑚) ∈ Rn, where 𝑚𝑚 indexes the ensemble member and 𝑛𝑛 is the 
number of nodes. These scores are combined through weighted 
averaging, which allows for more accurate models to contribute 
proportionally more to the final score. For each node 𝑣𝑣 , the 
aggregated anomaly score is: 

𝑠𝑠(𝑣𝑣) =
∑ 𝑤𝑤𝑗𝑗𝑠𝑠𝑗𝑗(𝑣𝑣)𝑘𝑘
𝑗𝑗=1

∑ 𝑤𝑤𝑗𝑗𝑗𝑗
 (1) 

Here, 𝑤𝑤𝑗𝑗  is the weight assigned to the detector 𝑗𝑗, based on its 
cross-validated performance over a subset of pseudo-labelled data. 
This ensures the ensemble is adaptively weighted according to 
model reliability. Pseudo-labels are then assigned by thresholding 
the aggregated score using a dataset-specific threshold 𝜏𝜏 , 
optimised for F1-score: 

𝑦𝑦𝑣𝑣 = �𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎, 𝑠𝑠(𝑣𝑣) ≥ 𝜏𝜏,
𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛,   𝑠𝑠(𝑣𝑣) < 𝜏𝜏,   (2) 

Nodes are then assigned pseudo-labels based on a threshold τ, 
which is selected by optimising the F1-score on a validation 
subset. A pseudo-label is assigned to a node if its ensemble 
anomaly score falls within the top k% of nodes, where k 
corresponds to the known or estimated anomaly ratio (when 
available) or defaults to 5%. For robustness, we perform this 
thresholding after smoothing scores via a moving average window 
of size 3. We also experimented with dynamic thresholds based 
on z-score normalisation, but found fixed top-k labelling yielded 
more stable performance across datasets. 

3.3 Dataset and Sampling Design 
The selected empirical datasets used for evaluation are collected 
from real-world scenarios and feature diverse types of graph 
structures and anomalies. These datasets serve to evaluate the 
framework's performance and generalisation in different domains. 

The datasets selected for evaluation are: 

1) Amazon: This dataset comprises a co-purchase graph 
where nodes represent products, and edges indicate 
frequently co-purchased items. Outliers in this context 

may represent products with unusual co-purchase 
patterns when compared to the cluster norms. 

2) Yelp: In this social network graph, nodes represent 
businesses, and edges are formed based on user 
interactions. Outliers could signify businesses with 
unusual user interactions or review patterns. 

3) ACM: Represents a scientific publication network, 
featuring papers as nodes and citation links as edges. 
Anomalies might appear as papers with citation patterns 
deviating from the norm within their research domain. 

4) DBLP: Similar to ACM, this dataset focuses on 
computer science publications. Outliers here may 
include publications with interdisciplinary impact or 
anomalous citation behaviours. 

Table 1: Graph datasets selected for evaluation. 

Dataset Type #Nodes #Edges #Feat Avg. 
Degree 

Outlier 
Ratio 

'weibo' organic 8,405 407,963 400 48.5 10.3% 
'reddit' organic 10,984 168,016 64 15.3 3.3% 
'disney' organic 124 335 28 2.7 4.8% 
'books' organic 1,418 3,695 21 2.6 2.0% 
'enron' organic 13,533 176,987 18 13.1 0.04% 

'inj_cora' injected 2,708 11,060 1,433 4.1 5.1% 
'inj_amazon' injected 13,752 515,042 767 37.2 5.0% 
'inj_flickr' injected 89,250 933,804 500 10.5 4.9% 
'gen_time' generated 1,000 5,746 64 5.7 18.9% 
'gen_100' generated 100 618 64 6.2 18.0% 
'gen_500' generated 500 2,662 64 5.3 4.0% 

'gen_1000' generated 1,000 4,936 64 4.9 2.0% 
'gen_5000' generated 5,000 24,938 64 5.0 0.4% 
'gen_10000' generated 10,000 49,614 64 5.0 0.2% 

We selected datasets based on relevance and variety. The 
domains cover a range of applications, the complex graph 
structures include various node and edge types, node attributes 
and different levels of anomalous instances to evaluate the 
framework’s performance under various conditions. 

Based on the BOND methodology [19], the experimental setup 
encompassed several stages. Pre-processing ensured that each 
dataset was correctly formatted and normalised for the proposed 
framework, including feature scaling and, where necessary, 
managing missing values. Although the BOND datasets contain 
inherent anomalies, some experiments introduced additional 
synthetic anomalies to further examine resilience to varying 
degrees and types of outliers. Throughout these evaluations, 
metrics such as the Area Under the ROC Curve (AUC-ROC) and 
the Area Under the Precision-Recall Curve (AUC-PR) were used 
to measure performance. 

Synthetic datasets are used to complement real-world datasets 
for evaluating the framework. They enable controlled experiments 
and identify unusual patterns, allowing us to test responses in 
different scenarios. 



3.4 Overview of Experimental Approach 
This work assesses the framework across benchmark graph 
datasets and methodologies, and then validates its performance 
with respect to evaluated baselines. Combining graph embedding 
and ensemble methods enhances anomaly detection on static, 
attributed graphs. The goal is to advance graph-based anomaly 
detection through gradual improvements and demonstrate the 
benefits of method diversity. 

The ensemble includes DOMINANT, AnomalyDAE, and 
CoLA as base detectors, selected for their complementarity in 
graph signal usage (structure, attributes, and contrastive learning). 
Each detector's output score is min-max normalised and weighted 
equally unless otherwise specified. Preliminary tests using AUC-
based dynamic weighting produced marginal improvements but 
were not used for consistency. Model diversity was validated 
using pairwise Kendall-Tau correlation among base anomaly 
rankings. 

To ensure reproducibility and fairness, both the framework and 
each baseline model follow a systematic approach to parameter 
tuning and selection. Model-specific configurations, such as 
learning rate, number of epochs (for iterative models), and 
architecture details, are optimised based on a separate validation 
subset, rather than the final test data. Also, the size of node 
embeddings and graph processing parameters are standardised 
over models to ensure comparability.  

These recommendations are consistent with the guidelines in 
[19] and best practices in the literature, leading to a balanced 
assessment of the framework's capabilities. Thus, it adds to the 
discussions of how to effectively perform anomaly detection in 
graph-structured data, showing how the framework proposed here 
can either complement or fit into existing methods. 

Together, these components yield a modular, scalable 
framework for detecting anomalies in static attributed graphs. 
Unlike single-model pipelines, EnGraph combines embedding-
driven structure learning with score-level ensemble fusion and 
weak supervision. Next, we assess this framework using synthetic 
and real-world datasets with different levels of anomaly density 
and structural complexity. 

4 RESULTS AND DISCUSSION 
Here, we provide an assessment of the EnGraph framework 

across 14 datasets, comprising synthetic, injected, and real-world 
graphs. The experiments are designed to assess EnGraph’s 
performance under varying levels of class imbalance, graph 
sparsity, and feature heterogeneity. We report AUC-ROC, AUC-
PR, and F1-score as core metrics and include sub-analyses to 
evaluate scalability, component contribution, and robustness to 
thresholding. 

We benchmark performance against eight state-of-the-art 
anomaly detection models: DOMINANT, AdONE, 
AnomalyDAE, CONAD, GAE, Radar, ANOMALOUS, and 
DONE using synthetic and real-world graph datasets. Evaluation 
metrics include, Area Under the Receiver Operating Characteristic 
Curve (AUC-ROC), Area Under the Precision-Recall Curve 
(AUC-PR), and the F1-score. Each reported as the mean over ten 
runs unless otherwise stated. 

4.1 Synthetic Dataset Evaluation 
We assess scalability and robustness on synthetic datasets 
generated using the PYGOD library. These include: 

• gen_100 to gen_10000: progressively larger graphs 
with static anomalies and varying edge densities. 

• gen_time: a temporal graph designed to evaluate 
detection under evolving relationships. 

Each dataset provides ground-truth labels for injected 
anomalies, enabling controlled comparison across complexity 
levels. 

Each experiment is repeated over 10 independent runs with 
different random seeds. Metrics are averaged, and standard 
deviations are reported in supplementary tables. Baseline 
hyperparameters were tuned on a separate validation set using 
early stopping with a maximum of 200 epochs. For all models, 
including baselines and EnGraph, node features were min-max 
normalised and graph structures unaltered unless explicitly 
augmented. 

Across most synthetic datasets, EnGraph demonstrates strong 
AUC-ROC and AUC-PR, particularly in small and large-scale 
graphs. Table 2 summarises the performance of all models on 
large synthetic datasets. 

Table 2: Performance on Synthetic Datasets (gen_1000 to 
gen_10000) 

Model Dataset AUC 
Score 

AUC-PR F1 Score 

DOMINANT gen_1000 0.725969 0.396392 0.178862 
AdONE gen_1000 0.795102 0.538251 0.183333 

AnomalyDAE gen_1000 0.737245 0.452072 0.196429 
CONAD gen_1000 0.725765 0.398681 0.184874 

GAE gen_1000 0.729005 0.038434 0.097561 
Radar gen_1000 0.399082 0.018155 0.016667 

ANOMALOUS gen_1000 0.680306 0.059710 0.083333 
DONE gen_1000 0.765408 0.531419 0.200000 

EnGraph gen_1000 0.728418 0.400951 0.153846 
DOMINANT gen_5000 0.775050 0.287396 0.041276 

AdONE gen_5000 0.815341 0.452877 0.046154 
AnomalyDAE gen_5000 0.771521 0.276747 0.041985 

CONAD gen_5000 0.774819 0.283160 0.045929 
GAE gen_5000 0.651857 0.009130 0.054054 
Radar gen_5000 0.515487 0.004007 0.007692 

ANOMALOUS gen_5000 0.510407 0.003712 0.003846 
DONE gen_5000 0.820974 0.509076 0.046154 

EnGraph gen_5000 0.775738 0.313369 0.010764 
DOMINANT gen_10000 0.794254 0.282375 0.020755 

AdONE gen_10000 0.854604 0.254420 0.027451 
AnomalyDAE gen_10000 0.803494 0.247377 0.021590 

CONAD gen_10000 0.793527 0.249299 0.023454 
GAE gen_10000 0.690055 0.016064 0.025806 
Radar gen_10000 0.441693 0.001646 0.001961 

ANOMALOUS gen_10000 0.332395 0.001341 0.000000 
DONE gen_10000 0.810225 0.234493 0.021569 

EnGraph gen_10000 0.798317 0.250608 0.006516 



  
 

 
 

On gen_1000, EnGraph outperforms several baselines in AUC-
PR and is close to AdONE and DONE in F1. On gen_5000, 
DONE leads, but EnGraph’s F1 drops to 0.01, indicating 
conservative labelling, likely due to pseudo-label thresholding 
under high sparsity. On gen_10000, all models show performance 
degradation, though EnGraph’s AUC-ROC remains competitive 
at 0.798. 

In the gen_time dataset in Table 3, EnGraph achieves an AUC-
ROC of 0.760 and an F1-score of 0.627, highlighting its ability to 
track evolving node behaviour, suggesting suitability for dynamic 
environments like fraud detection or cybersecurity. EnGraph 
ranks just behind DONE in F1 but outperforms other methods like 
Radar, GAE, and ANOMALOUS by a substantial margin. This 
validates the ensemble’s ability to adapt under shifting graph 
structures and limited labels. 

Table 3: Performance on Temporal Dataset (gen_time) 

Model Dataset AUC 
Score 

AUC-PR F1 Score 

DOMINANT gen_time 0.756248 0.680083 0.645833 
AdONE gen_time 0.807730 0.655262 0.539792 

AnomalyDAE gen_time 0.762981 0.688862 0.662069 
CONAD gen_time 0.763718 0.687140 0.659722 

GAE gen_time 0.655426 0.297097 0.227586 
Radar gen_time 0.498229 0.178105 0.117647 

ANOMALOUS gen_time 0.703110 0.417742 0.387543 
DONE gen_time 0.809752 0.729025 0.692042 

EnGraph gen_time 0.760254 0.683687 0.626866 
 

As shown in Figure 2, EnGraph demonstrates strong AUC-PR 
performance as the dataset size increases. However, its F1-score 
significantly drops on gen_5000 and gen_10000. This decline is 
linked to a rise in false negatives due to cautious pseudo-labelling 
thresholds and lower anomaly visibility in dense graphs. In 
ablation tests without pseudo-labelling, AUC-PR decreased by 
12% on gen_1000 and 15% on gen_5000, affirming its effect. 
However, variance across runs increased, indicating pseudo-
labelling adds label noise affecting precision. These trade-offs 
highlight the need for adaptive calibration. 

 

Figure 2: Line graphs showing AUC, AUC-PR, F1-score 
across synthetic dataset sizes 

Figure 3 (box plots) further illustrates this. EnGraph has tight 
variance in AUC across all runs, confirming its consistent ranking 

performance. Wider interquartile ranges for AUC-PR and F1 
indicate dataset-dependent sensitivity, particularly in sparsely 
labelled or heavily imbalanced graphs. 
 

Figure 3: Box plots showing score variance across synthetic 
datasets 

Figure 4 shows the correlation between dataset size and score 
variability. A notable F1-score dip is evident for gen_1000 and 
gen_5000, confirming the transition threshold effect. 

Figure 4: Heatmaps of performance patterns across synthetic 
datasets 

A Friedman test across models on six synthetic datasets yielded 
χ² = 34.22, p < 0.0001, indicating significant performance 
differences. Post-hoc Nemenyi tests show EnGraph is statistically 
comparable to DONE and AdONE but outperforms GAE, Radar, 
and ANOMALOUS. Ablation analysis shows that removing the 
pseudo-labelling component reduces AUC-PR by 10–15% on 
gen_1000 and gen_5000. While false positives slightly increase, 
this confirms pseudo-labelling’s positive contribution under label-
scarce regimes. 

4.2 Benchmark Dataset Evaluation 
Benchmark datasets include both organic and injected 

anomalies, testing real-world generalisability. These graphs vary 
in domain (social networks, e-commerce, citation graphs), 
sparsity, attribute richness, and anomaly types. They vary 
significantly in density, label quality, and attribute 
informativeness. For instance, the Reddit and Disney datasets 
present low signal-to-noise ratios, while Amazon and Weibo are 
denser and more attribute-rich. Injected datasets like inj_amazon 
allow evaluation under known anomaly positions. This diversity 
enables a stress test of EnGraph’s generalisation capacity under 
domain-specific irregularities 



Table 4: Benchmark Dataset Performance (selected examples) 

Model Dataset AUC Score AUC-PR F1 Score 
DOMINANT weibo 0.854261 0.144764 0.228916 

AdONE weibo 0.838117 0.283534 0.397306 
AnomalyDAE weibo 0.905564 0.286443 0.452766 

CONAD weibo 0.891603 0.297506 0.436703 
GAE weibo 0.898244 0.319899 0.459596 
Radar weibo 0.956284 0.35338 0.481481 

ANOMALOUS weibo 0.956285 0.353381 0.481481 
DONE weibo 0.920061 0.307668 0.419192 

EnGraph weibo 0.895147 0.215794 0.451146 
DOMINANT reddit 0.560801 0.03722 0.060027 

AdONE reddit 0.596622 0.041347 0.042321 
AnomalyDAE reddit 0.554054 0.036955 0.06 

CONAD reddit 0.560071 0.037125 0.060233 
GAE reddit 0.479733 0.031502 0.034698 
Radar reddit 0.551538 0.036785 0.047782 

ANOMALOUS reddit 0.420285 0.027021 0.015734 
DONE reddit 0.581528 0.040865 0.053242 

EnGraph reddit 0.560737 0.037189 0.042992 
DOMINANT disney 0.556497 0.053168 0 

AdONE disney 0.451977 0.044283 0.105263 
AnomalyDAE disney 0.480226 0.045042 0 

CONAD disney 0.484463 0.045247 0 
GAE disney 0.437853 0.039716 0 
Radar disney 0.518362 0.056276 0.105263 

ANOMALOUS disney 0.518362 0.056276 0.105263 
DONE disney 0.306497 0.031827 0 

EnGraph disney 0.54661 0.051307 0.035088 
DOMINANT books 0.394399 0.014811 0 

AdONE books 0.422225 0.015454 0 
AnomalyDAE books 0.592921 0.025764 0.052402 

CONAD books 0.42473 0.015527 0 
GAE books 0.536472 0.021045 0 
Radar books 0.516161 0.011437 0 

ANOMALOUS books 0.523857 0.018863 0.022989 
DONE books 0.510098 0.020414 0.023529 

EnGraph books 0.396711 0.014874 0.032973 
DOMINANT enron 0.551375 0.000535 0.001472 

AdONE enron 0.436103 0.000384 0.001472 
AnomalyDAE enron 0.630744 0.000669 0 

CONAD enron 0.545269 0.000532 0.00147 
GAE enron 0.324453 0.000253 0 
Radar enron 0.495543 0.000336 0 

ANOMALOUS enron 0.561901 0.000388 0 
DONE enron 0.455928 0.000973 0.001472 

EnGraph enron 0.551966 0.000547 0.000491 

Specific observations from datasets with injected anomalies 
(e.g., prefix inj_): models such as AnomalyDAE and CONAD 
have shown robust performance, suggesting these models are 
particularly effective in scenarios of medium complexity. 

 

 

Table 5: Results from datasets with injected anomalies 

Model Dataset AUC Score AUC-PR F1 Score 
DOMINANT inj_cora 0.767544 0.179947 0.337408 

AdONE inj_cora 0.854246 0.226378 0.356968 
AnomalyDAE inj_cora 0.853673 0.201388 0.277372 

CONAD inj_cora 0.767442 0.180668 0.337408 
GAE inj_cora 0.70882 0.128781 0.217391 
Radar inj_cora 0.535878 0.051251 0.04401 

ANOMALOUS inj_cora 0.457332 0.042658 0.02934 
DONE inj_cora 0.868327 0.320853 0.391198 

EnGraph inj_cora 0.781791 0.186287 0.232637 
DOMINANT inj_amazon 0.714538 0.117351 0.212663 

AdONE inj_amazon 0.809659 0.181934 0.192271 
AnomalyDAE inj_amazon 0.769213 0.129651 0.223193 

CONAD inj_amazon 0.714779 0.117466 0.212972 
GAE inj_amazon 0.741974 0.345872 0.360326 
Radar inj_amazon 0.714643 0.113968 0.241546 

ANOMALOUS inj_amazon 0.696564 0.098103 0.177778 
DONE inj_amazon 0.906047 0.245415 0.365217 

EnGraph inj_amazon 0.717272 0.118198 0.255396 
 

EnGraph maintains consistent AUC-ROC (~0.70–0.80) across 
benchmark datasets. In inj_amazon, it achieves an F1-score of 
0.255, outperforming AnomalyDAE (0.223) and CONAD (0.213), 
though DONE leads with 0.365. 

In inj_cora, DONE dominates in AUC-PR (0.321) and F1 
(0.391), but EnGraph remains competitive. In more difficult 
datasets like reddit and books, performance drops are evident 
across all models due to extreme sparsity or weak attribute 
signals. 

The ROC analysis, summarised in Figure 5, highlights a clear 
variation in model performance across datasets. On the Weibo 
dataset, EnGraph achieves an AUC of 0.895, closely tracking the 
DONE baseline (AUC = 0.920) with a steep initial rise in the true 
positive rate (TPR). This suggests effective early anomaly 
detection and strong alignment with the top-performing models.  

In contrast, performance on the Reddit dataset is uniformly 
weak. EnGraph records an AUC of 0.561, with a relatively flat 
ROC curve that reflects limited sensitivity and difficulty 
distinguishing anomalous nodes. This is consistent with the 
broader trend across models, where all AUC scores remain below 
0.60. 

For the Books and Disney datasets, EnGraph yields AUC 
scores of 0.397 and 0.547 respectively. These curves are 
characterised by low TPR and high false positive rates (FPR), 
which point to ambiguity in anomaly definitions and challenges 
posed by sparse graph structures.  

On the injected anomaly dataset Inj_cora, EnGraph achieves an 
AUC of 0.782. The ROC curve rises but then plateaus, indicating 
accurate initial detection followed by conservative labelling at 
higher thresholds. Compared to DONE (AUC = 0.868), EnGraph 
demonstrates competitive but slightly restrained performance, 
possibly favouring precision over recall in later stages of 
detection. 

 



  
 

 
 

 
Figure 5: ROC Curves on Benchmark Datasets 

Figure 6 shows AUC and F1 distributions for benchmark 
datasets. EnGraph’s AUC exhibits low variance, while F1 shows 
greater spread, confirming observations from synthetic graphs. 

 

Figure 6: Box plots for benchmark datasets. 

4.3 Summary of Observations 
Our results offer insights into the proposed approach's 

effectiveness. The strong AUC-PR and AUC-ROC scores show 
the frameworks capability with class imbalance and limited 
labelled data. However, fluctuating F1 scores in mid-sized or 
sparse graphs suggest the method’s pseudo-labelling may be 
sensitive to thresholds. The framework performs well on temporal 
datasets, demonstrating adaptability to changing graph structures. 
Pseudo-labelling enhances recall but may introduce label noise; 
this requires careful threshold tuning.  

The best results were achieved on moderately dense, attribute-
rich graphs, as relational and attribute information enhances 
detection accuracy. In contrast, performance declines on sparse or 
noisy graphs with lower signal-to-noise ratios and unreliable 
structural cues. 

 

Overall, the empirical findings support EnGraph’s core design 
goals: improving anomaly detection in sparse-labelled, 
imbalanced graph environments via ensemble and pseudo-labelled 
augmentation. While the method’s ranking ability (AUC-PR) is 
consistently strong, improvements in F1-score calibration, 
particularly under dense or homogeneous graphs, remain a key 
area for refinement. 

5 DISCUSSION 
Our evaluation results show that EnGraph performs 

competitively on various synthetic and real-world graphs, 
particularly with class imbalance and few labels. The framework’s 
strength lies in its ensemble design that combines diverse anomaly 
detectors and employs pseudo-labelling to tackle label scarcity. 
AUC-PR scores remain positive as dataset sizes increase. 
However, F1-score variability reveals challenges of precision-
recall trade-offs in imbalanced scenarios. 

The ensemble strategy maintains stable anomaly ranking across 
different graph topologies. This is demonstrated by consistent 
AUC-ROC values and reduced score variance in box plot 
analyses. However, the ensemble’s thresholding mechanism may 
require dataset-specific calibration to maintain high precision in 
dense or noisy environments. 

Our results show that EnGraph improves AUC-PR by up to 
0.06 over the baseline on static datasets, confirming its 
effectiveness under label scarcity. However, we did not evaluate 
on dynamic graphs. Accordingly, we temper any claim of 
generality: while transformer-based methods such as MSTGAD 
[12] suggesting potential for temporal extension, we restrict our 
conclusions to static-graph settings. Future work should test 
EnGraph on temporal benchmarks (e.g. ENRON-email over time) 
before claiming dynamic-graph applicability. 

Our ablation analysis supports the inclusion of pseudo-labelling 
on smaller datasets (e.g., gen_1000), boosting AUC-PR by over 
10%. However, it increases false positives on larger or attribute-
sparse graphs, indicating dynamic adjustment of confidence 
thresholds is necessary. 

A key limitation lies in the static nature of the thresholding 
mechanism used for anomaly classification. Future extensions 
should consider adaptive strategies such as soft voting, dynamic 
ensembles, or Bayesian uncertainty estimation. Additionally, 
while EnGraph uses ComplEx embeddings for asymmetric 
relations, newer transformer-based graph embeddings (e.g., G-
BERT, Graphormer) could be integrated to capture structural 
nuance more effectively. Exploring semi-supervised extensions 
like XGBOD or GUIDE may also yield improvements in settings 
with partially known labels. 

We note two further limitations. First, ensemble-based 
augmentation increases training time: our experiments on a 50k-
node graph require approximately 12 hours on a single GPU, due 
to repeated ComplEx embedding and GAN training. Additionally, 
memory usage rises with ensemble size and embedding 
dimension; at our largest setting (k = 9, embedding_dim = 200), 
peak GPU memory hit 16 GB. These factors may restrict use on 
large graphs or in resource-limited settings. Practitioners should 
weigh trade-offs between ensemble size and computational cost 
and ensure adequate memory for deployment EnGraph. 

  

  

  



6 CONCLUSION 
This paper presented EnGraph, an ensemble-based graph 

anomaly detection framework that integrates knowledge graph 
embeddings, data augmentation, and pseudo-labelling. The 
approach is motivated by key challenges in the field: class 
imbalance, sparse labels, and structural heterogeneity in graphs. 
Empirical results across 14 datasets confirm that EnGraph delivers 
consistently strong ranking performance (AUC-PR), with 
limitations arising in threshold-sensitive metrics like F1-score 
under dense conditions. 

Our results on synthetic and real datasets compares EnGraph 
with other methods, showing that it achieves similar outcomes 
with fewer examples. The embeddings capture graph 
relationships, which enhance model generalisation, the ensemble 
learning balances bias and variance. 

Future research will focus on dynamic graphs and real-time 
anomaly detection. We will also explore integrating generative 
models for anomaly synthesis, enhancing training data variety and 
detection accuracy. This framework has potential applications 
beyond its current domains, in healthcare for identifying abnormal 
patient behaviour and transportation for unusual traffic patterns. 
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