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ABSTRACT
Real-world data often is noisy and error-prone which can nega-
tively influence machine learning models. Graph Neural Networks
(GNNs) introduce the additional challenge that during training,
node information is iteratively passed through the graph along
the edges. Consequently, errors or deviations in the graph data
could highly impact the model’s predictive capability. Our work
systematically investigates how quality deviations in graph datasets
influence the GNN model performance. We focus on the node fea-
tures and explore three dimensions: the rate of modified features,
the amplitude of modification, and the feature precision. Based on
our results, we give insights and recommendations for practition-
ers. For instance, when using highly clustered graphs, modifying
around 40% of the features only results in a slight decrease of per-
formance and the rate of modified features is more crucial than the
amplitude of modification. We illustrate practical implications of
our results by establishing connections to real world domains such
as graph dataset acquisition and efficient GNN training.
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1 INTRODUCTION
Graph Neural Networks (GNNs) have gained significant attention
in recent years due to their ability to process and learn on graph-
structured data effectively. Their versatility has made them appli-
cable to a wide range of domains, ranging from natural language
processing [32, 50] and computer vision [5, 23] to recommender
systems [12, 20, 47]. As the interest in GNNs continues to grow, a
variety of graph datasets [18, 19, 30, 34] have been developed and
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are commonly adopted for benchmarking, research, and experimen-
tation.

Data encountered in real-world applications is often noisy, error-
prone, and incomplete which could (negatively) affect the ML mod-
els [11, 15, 21, 36, 40, 46]. This is furthermore exacerbated as data
collection itself is a difficult task, and it is hard to get reliable and
unbiased data all the time. This holds true across different data
collection instruments such as online surveys [35], data mining
[26], and online tracking [7]. Considering that most datasets used
in academia nowadays are a result of a combination of these data
collection instruments, it becomes clear that perfect data is hard
to achieve [37]. Further restrictions are the definition of what a
perfect dataset constitutes and, in large datasets, the increasing
costs to check all data entries for validity [33].

Graphs pose an additional challenge: The graph structure deter-
mines the flow of information. During GNN training, information
is passed iteratively along edges from the nodes to their neighbors.
Consequently, even small deviations and biases in the data could
highly influence the training and prediction quality. Errors in the
data can be propagated across the graph during the training process
which could lead to a decrease in terms of model performance. [43]

In this paper, we therefore focus on the quality of graph-structured
data when training GNN models. Our work investigates the impact
of varying graph data quality, especially with deviations in the
node features and target labels. Through extensive experiments,
we aim to quantify the level of imperfection that GNNs can toler-
ate while maintaining their ability to learn effectively. We explore
three dimension: the rate of modified features, the amplitude of
modification, and the feature precision. In parallel, we examine
common data quality metrics including feature accuracy, target
accuracy, and class balance to understand their relationship with
model robustness. Our findings provide insights for researchers
and practitioners working with GNNs and graph data. We derive
practical recommendations on the trade-offs between data qual-
ity and resource investment, assessing when and where errors in
datasets may be acceptable without significantly compromising
model performance. Going further, we connect our findings to ap-
plication domains including dataset acquisition, and efficient GNN
training. By bridging the gap between petridish datasets and real-
world graphs, this work contributes to the development of more
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realistic and effective approaches to training and evaluating GNNs
in noisy environments.

Our contributions are as follows:

(1) We systematically investigate the impact of perturbed fea-
tures in the training data on the GNN performance. We
systematically increase the number of node features that is
modified to determine an upper limit of bias in the data that
can be handled by our models. Evaluation is done based
on common machine learning metrics such as accuracy,
precision, area under the curve, and loss.

(2) We analyze whether graph characteristics such as average
node degree and clustering coefficient impact the model
when dealing with modified features. Therefore, our experi-
ments include 12 graph datasets with varying average node
degree and clustering coefficient. To quantify this, we per-
form a line of experiments where features of high-degree
nodes have a higher probability of being modified.

(3) We investigate the influence of the GNN architecture when
using graphs with modified node features. We focus on six
commonly used architectures, GCN, GAT, GATv2, SAGE,
GIN, GGNN, to assess which impact the architecture has.

(4) We explore the impact of feature precision in terms of deci-
mal places. As rounding errors occur in the real-world, it is
important to investigate to which extent our GNN models
are affected when trained on less precise data.

(5) We give insights on how our results impact the meaning
of good graph data, the acquisition of new graph datasets,
and quantization.

2 PRELIMINARIES
In the following, we give an overview of graphs and Graph Neural
Networks (GNNs) (Section 2.1), describe the properties of graphs
(Section 2.2).We also cover data quality and present selectedmetrics
(Section 2.3).

2.1 Graph Theory and Graph Neural Networks
A graph 𝐺 captures the relationship between objects. Formally, the
graph is denoted by 𝐺 = (𝑉 , 𝐸) with the set of vertices 𝑉 and the
set of edges 𝐸 ⊆ {{𝑢, 𝑣}|𝑢, 𝑣 ∈ 𝑉 }. A vertex 𝑣 depicts an object
whereas an edge 𝑒 indicates a relationship between two vertices.

In order to learn and predict on graph-structured data, a special-
ized machine learning method has been developed, namely Graph
Neural Networks (GNNs) [13, 44]. Alongside neural network (NN)
operations such as matrix-multiplication, back-propagation, and
weight updates, message passing is performed. A forward pass can
be described as follows. First, each vertex is assigned an initial
representation. At each training step, each vertex 𝑣 exchanges and
aggregates messages from its neighbors according to an aggregation
function

𝑎
(𝑙 )
𝑣 = AGGREGATE (𝑙 ) ({ℎ (𝑙−1)𝑢 |𝑢 ∈ 𝑁 (𝑣)}) (1)

where ℎ (𝑙−1)𝑢 |𝑢 ∈ 𝑁 (𝑣) denotes the activations at layer 𝑙 − 1 of the
neighbors 𝑁 (𝑣) [17, 22]. The aggregated messages 𝑎 (𝑙 )𝑣 are then
used to update the current representation ℎ (𝑙 )𝑣 of vertex 𝑣 . This can

be formalized by

ℎ
(𝑙 )
𝑣 = UPDATE (𝑙 ) (𝑎 (𝑙 )𝑣 , ℎ

(𝑙−1)
𝑣 ) (2)

The aggregation and update steps are repeatedly performed until
the given number of layers is reached. After 𝑘 layers, the 𝑘-hop
neighborhood is captured. According to a loss function, the model
weights are adapted in an NN-like fashion. The subsequent iteration
is performed on the updated model.

In the following, we introduce the GNN architectures used in
our experiments, namely Graph Convolutional Network (GCN),
Graph Attention Network (GAT), SAGEConv, Graph Isomorphism
Network (GIN), and Gated Graph Neural Network (GGNN).

Graph Convolutional Network (GCN). The Graph Convolutional
Network (GCN) [29] uses a parameter matrix to transform the node
representations of the previous layer and assigns weights according
to the graph adjacency matrix. The updated node representations
can be obtained with 𝐻 (𝑡+1) = 𝜎 (𝐴𝐻 (𝑡 )𝑊 (𝑡 ) ) with the matrix
𝐻 (𝑡+1) of stacked node representationsℎ𝑡𝑣 for a node 𝑣 at the current
layer 𝑡 . 𝜎 represents an activation function (e.g., ReLU), 𝐴 is the
normalized adjacency matrix 𝐴, and there is the parameter matrix
𝑊 . A shared weight is used for all edges leading to a simple, but
expressive model.

Graph Attention Network (GAT). The Graph Attention Network
(GAT) [49] assigns different weights to different neighbors in the
aggregation function by usingmasked self-attentional layers. In this
way, the model is able to focus on local dependencies. The update
function is given through ℎ

(𝑡+1)
𝑣 = 𝜎 ( 1

𝐾

∑𝐾
𝑘=1

∑
𝑢∈𝑁𝑣

𝛼𝑘𝑣𝑢𝑊𝑘ℎ
𝑡
𝑢 )

where 𝛼𝑘𝑣𝑢 is the normalized attention coefficient, 𝑘 the attention
head and𝑊 the weight matrix.

GATv2 [3] introduces an attention scoring layer after the acti-
vation to rank the attention scores based on the query node. This
helps to make the model even more expressive.

SAGE. SAGE [17] is an inductive variant of GCN. The update func-
tion is denoted asℎ (𝑡+1)𝑣 = 𝜎 (𝑊 (𝑡+1) ·𝐶𝑂𝑁𝐶𝐴𝑇 (ℎ (𝑡 )𝑣 , ℎ

(𝑡+1)
𝑁 (𝑣) )) with

a non-linear activation function 𝜎 .

Graph Isomorphism Network (GIN). The Graph Isomorphism Net-
work (GIN) [55] is inspired by the Weisfeiler-Lehman (WL) graph
isomorphism test and incorporates multi-layer perceptrons (MLPs)
to achieve high discriminative power. The nodes are updated via
ℎ
(𝑡+1)
𝑣 = 𝑀𝐿𝑃 (𝑡+1) ((1+𝜖 (𝑡+1) ) ∗ℎ (𝑡 )𝑣 +∑𝑢∈𝑁 (𝑣) ℎ

(𝑡 )
𝑢 ) where 𝜀 can

be a learnable or fixed parameter. The features are aggregated using
a sum operator to optimize both expressivity and computational
efficiency.

Gated Graph Neural Network (GGNN). A GRU-like gating mech-
anism for message passing is used by the Gated Graph Neural
Network (GGNN) [31] to capture sequential and long-range depen-
dencies. An update step is defined as ℎ (𝑡+1)𝑣 = 𝐺𝑅𝑈 (ℎ (𝑡 )𝑣 , 𝑎

(𝑡+1)
𝑣 ).

2.2 Statistical Properties of Graphs
Due to the mathematical definition of a graph 𝐺 = (𝑉 , 𝐸) (Section
2.1), a regular graph doesn’t have any structure or hierarchy beyond
the set of nodes 𝑉 and set of edges 𝐸. This also means that a graph
can not be ordered. More generally, all vertices and edges exist on



the same plane. This canmake it difficult to interpret how individual
vertices and edges contribute to a graph on a macro scale.

As the mathematical foundations and methods focus on a mi-
cro scale, e.g. updating and aggregating information to immediate
neighbors as described in equation 1 and equation 2, it is hard to
estimate how these changes affect the overall graph and GNN on
a global level. Changing a value in one vertex on one end of the
graph might relate to a big, small or even no change in another
vertex on the other end of the graph 𝑘 hops away.

For this reason, we investigate this problem in an experimental
way to better understand how the micro-scale methods and founda-
tions affect a graph on a macro level. A related study takes a similar
angle at this by randomly deleting nodes in homogeneous graphs
[48]. The results are encouraging as up to 40% smaller graphs show
the same performance as their complete siblings. This is different to
our approach as deletion of information is not the same as a change
of information. In graphs, the removal of an edge might, counter-
intuitively, add information as the missing connection between two
points is an information itself. By systematically altering vertices
and features, we aim to explore the behavior of aggregation and
updating functions. In this way, we aim to understand the impact
of data perturbations during training on the GNN performance; in
particular, to what extent data quality degradations can be tolerated
before performance collapses.

2.3 Data Quality
Recently, research not only focuses on improving machine learn-
ing models, but also highlights the importance of data quality
[4, 14, 21, 56]. For that reason, a plethora of data quality metrics has
emerged, including correctness, class balance, completeness,
and consistency [4, 56]. We focus on correctness and class
balance in our experiments as these metrics specifically investi-
gate the dataset features. Correctness can be distinguished into
two categories: Feature Accuracy and Target Accuracy. The
following definitions are oriented on Budach et al. [4].

Feature Accuracy. The feature accuracy metric indicates to which
extent the feature values deviate from their correct values. For
numerical values, it is given by

𝐹𝑒𝑎𝑡𝑢𝑟𝑒𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 (𝑑) = 1
𝑛𝑛𝑢𝑚

∗
𝑛𝑛𝑢𝑚−1∑︁
𝑖=0

𝐹𝐴𝑐𝑐 (𝑐𝑖 ) (3)

where 𝑑 is the dataset, 𝑛𝑛𝑢𝑚 the number of numerical features, and
𝑐𝑖 a feature. FAcc(ci) is denoted by

𝐹𝐴𝑐𝑐 (𝑐𝑖 ) = 1 − 𝑎𝑣𝑔_𝑑𝑖𝑠𝑡 (𝑐𝑖 )
𝑚𝑒𝑎𝑛_𝑔𝑡 (𝑐𝑖 )

(4)

with the average absolute distance avg_dist (ci) between the ground
truth and the given values, and the mean value of the ground truth
mean_gt (ci).

Target Accuracy. In contrast to feature accuracy, the target accuracy
measures how accurate the target labels that should be learned
and predicted by the model are compared to the ground truth. The
target accuracy for categorical values is the ratio of correct target
values with respect to the ground truth.

𝑇𝑎𝑟𝑔𝑒𝑡𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 (𝑑) = 1 − 𝑚𝑖𝑠𝑚𝑎𝑡𝑐ℎ𝑒𝑠 (𝑡𝑎𝑟𝑔𝑒𝑡)
𝑛

(5)

where mismatches(target) denotes the number of incorrect target
features, 𝑛 is the total number of samples.

Target Class Balance. Many ML methods benefit from relatively
balanced numbers of samples per class. The presence of a large
majority class can lead to overfitting on this class. Therefore, it is
important to explore the target class balance. The Balance can be
described through

𝐵𝑎𝑙𝑎𝑛𝑐𝑒 (𝑑) = 1 − 𝐼𝑚𝐵𝑎𝑙𝑎𝑛𝑐𝑒 (𝑑)
𝜖

(6)

𝐼𝑚𝐵𝑎𝑙𝑎𝑛𝑐𝑒 (𝑑) = 1
2
∗

∑︁
𝑖, 𝑗∈1,...,𝑚

|𝑛𝑐𝑙𝑖 − 𝑛𝑐𝑙 𝑗 | (7)

where 𝜖 = ⌈𝑚2 ⌉ · ⌊
𝑚
2 ⌋ · 𝑛𝑐𝑚𝑎𝑥 ,𝑚 is the number of target classes,

𝑛𝑐𝑚𝑎𝑥 the maximum number of samples a class can have, and 𝑛𝑐𝑙𝑥
is the number of samples in class 𝑥 .

3 EXPERIMENTAL METHODOLOGY
This section presents our experimental methodology, including the
datasets we use (Section 3.1), how we modify the features (Section
3.2) and the GNN architectures we experiment with (Section 3.4).
As a framework, we use the well-known Deep Graph Library (DGL)
[9, 51] in combination with PyTorch [39].

3.1 Datasets
For our experiments, we use 12 publicly available graphs of sizes
ranging from 2,700 nodes to over 2,4 million nodes (Table 1). The
graphs are either available in the Open Graph Benchmark (OGB)
[19, 38] or in the Deep Graph Library (DGL) [9, 51]. The graphs
depict various domains including scientific citations, product co-
purchasing, and forum social networks. Consequently, their char-
acteristics in terms of average node degree (ND) and average clus-
tering coefficient (CC) also differ. In this manner, we ensure a wide
variety of graph datasets are included. We use the node features
and train/validation/test splits that are provided with the datasets.

3.2 Feature Modification
Input and output features (ground truth labels) are modified alike.
We modify the features across two dimensions: the rate of modi-
fied features (RMF) and the amplitude of modification (AM). RMF
illustrates the percentage of features that is modified, while AM
descripes the degree of modification. For AM, we go in steps of 20%
and for RMF, in steps of 10%. Let’s assume we modify 10% of the
features (RMF) up to 10% (AM). First, we select 10% of all features
to be modified. The values of these 10% of all features are modified
by up to ±10% meaning some feature values are modified more
than others. This procedure ensures there is no systematic data
drift. In contrast to the input features, the output features are the
classes we want to predict, i.e., we deal with categorical data. Here,
instead of modifying by up to ±10%, we randomly select one of the
possible prediction classes. It should be noted that we modify the
set of training nodes only. The test nodes are left untouched.

3.3 Degree-aware Feature Modification
In addition to randomly selecting the features that are modified, we
introduce a line of experiments where the features are perturbed



Table 1: Characteristics of the datasets based on [19] (ND: average node degree, CC: average clustering coefficient)

Name #Nodes #Edges ND CC #Classes Feature Size Domain
Cora 2,708 10,556 3.9 0.241 7 1,433 citation network

CiteSeer 3,327 9,228 2.8 0.141 6 3,703 citation network
AmazonPhoto 7,650 238,163 31.1 0.404 8 745 product co-purchasing

AmazonComputer 13,752 491,722 35.8 0.344 10 767 product co-purchasing
CoAuthorCS 18,333 163,788 8.9 0.433 15 6,805 citation network
PubMed 19,717 88,651 4.5 0.06 3 500 citation network

CoAuthorPh 34,493 495,924 14.8 0.378 5 8,415 citation network
Flickr 89,250 899,756 10.1 0.033 7 500 image network
arxiv 169,343 1,166,243 13.7 0.226 40 128 citation network
Reddit 232,965 114,615,892 492 0.579 50 602 forum social network
Yelp 716,847 13,954,819 20.5 0.092 100 300 reviews about businesses

products 2,449,029 61,859,140 50.5 0.411 47 100 product co-purchasing

based on the node degree. Higher probability to be perturbed is
given to node features belonging to high-degree nodes. Then, we
use a random choice with weights to select the node features. In
this way, we investigate whether high-degree nodes have a higher
influence on the overall GNN performance since they have more
neighbors to which perturbed features are propagated to.

3.4 GNN architecture
The Graph Convolutional Network (GCN) [29], the Graph Atten-
tion Network (GAT) [49], GATv2 [3], GraphSAGE [17], Graph Iso-
morphism Network (GIN) [55], and Gated Graph Neural Network
(GGNN) [31] are used for our experiments with two layers, a learn-
ing rate of 0.001 and the Adam optimizer [28]. Mini-batch training
with random neighbor sampling [17] is performed for 20 epochs
with sample size 10 and each experiment is repeated 3 times with 3
different random seeds. This means we create and train on three
modified graphs for each experiment configuration. The prediction
task is node classification.

4 EMPIRICAL EVALUATION
We cluster the graphs into categories depending on the graph
characteristics and results. In the following, we present the re-
sults of one representative of each category. Cora, CiteSeer, and
PubMed share a node degree (ND) between 2.8-5 and low cluster-
ing coefficient (CC) with 0.06-0.25. An ND of 8-15 and CC of 0.3-
0.44 can be observed for CoAuthorCS, CoAuthorPh, and Flickr.
Graphs with an even higher ND (34-36), but similar CC (0.3-0.41)
are AmazonComputer and AmazonPhoto. The two graphs with the
highest ND (50-500) and CC (0.41-0.6) are Reddit and products.
The remaining graphs are arxiv (ND: 13.7, CC: 0.226) and Yelp
(ND: 20.5, CC: 0.092).

4.1 Model performance
This section presents our results for experiments on the model
performance. First, we vary the number of features that aremodified
and explore three GNN architectures (Section 4.1.1). After that, we
show how the degree of modification influences the models (Section
4.1.2) and investigate the impact of the feature precision in terms
of decimal places (Section 4.1.4).

4.1.1 Rate of Modified Features. For the following experiments,
we vary the rate of features that are modified (RMF) from 0-100%
in steps of 10%, the amplitude of modification remains 20%. We use
six GNN architectures, namely GCN, GAT, GATv2, SAGE, GIN, and
GGNN.

In Figure 1, we summarize our findings. For graphs with low
ND and low CC, such as PubMed (Figure 1a), the accuracy linearly
decreases with increasing RMF. Since each node only has a few
connections to neighboring nodes, diverging features highly impact
the model training and following prediction task. For graphs with
medium to high ND and CC (CoAuthorCS, arxiv, products), the
performance of themodel only slightly decreaseswith a higher num-
ber of modified features. For instance, the accuracy for CoAuthorCS
(Figure 1b) only decreases ∼ 5% when modifying 50% of features.
Since each node has numerous connections, the impact of a cor-
rupted neighbor is not as high compared to nodes with only few
connections.

It is interesting that the accuracy when using GCN, SAGE, or
GIN, usually does not decrease as fast as for GAT and GATv2.
Further, the curve for GAT and GATv2 is not as stable as for most
other architectures. An explanation is that GAT and GATv2 both
use the attention mechanism within their aggregation function.
Besides global features, these architectures focus on local features.
Consequently, a modified feature has a much higher impact on
the overall performance compared to architectures such as GCN
leading to a decrease of accuracy and less stability with a higher
degree of modification.

4.1.2 Amplitude of Modification. In the following, we present the
results for different amplitudes of modification (AM) ranging from
0-100% in steps of 20% and RMF from 0-100% in steps of 10%. The
x-axis shows the RMF, the y-axis the accuracy, and the different
linestyles represent the different AM values. Here, we are using the
GCN as architecture. Across all datasets (Figure 2), the accuracy only
slightly differs when transitioning from 0% to 100% of modification.
Our experiments show that when training and applying GNNs, not
only the node features are important, but also the graph structure.
How nodes relate to each other, also across multiple hops, plays
a large role for GNNs. Although some node features are highly
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Figure 1: Accuracy for different datasets, architectures, and
rate of modified features (RMF)

modified, the structure and relations are preserved leading to a
stable accuracy.

4.1.3 Degree-aware Feature Modification. In the following, we
present our results for GCN when assigning a higher probabil-
ity of modification to node features of high-degree nodes (Figure
3). Interestingly, the accuracy does not decrease significantly faster
when modifying up to 40% of features for most datasets. With more
than 40% of modified node features, we can see that the degree-
aware modification usually performs slightly worse compared to
random modification. This shows that the node feature quality of
high-degree nodes can influence the GNN more than features of
lower-degree nodes. However, this behavior only occurs after a
certain percentage of perturbed node features is surpassed. This
further supports our findings that not only the quality of features
impacts GNN performance, but also the the graph structure and
global relations.
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Figure 2: Accuracy for different datasets, rate of modified
features (RMF), and amplitude of modification (AM) when
using GCN

4.1.4 Feature Precision. Not only divergent feature values can oc-
cur in the real world, but also reduced precision in terms of decimal
places. This can have various reasons: rounded floating point val-
ues or less precise measurements. In our datasets, the maximum
number of decimal places in the feature tensors ranges from 30
to 50. Therefore, we experiment with less decimal places, from 0
to 32 and compare it to the full precision. In addition to measur-
ing the model’s performance, we also measure the data quality
in terms of Feature Accuracy. Figure 4 shows the results for the
PubMed, ogbn-arxiv, and ogbn-products graph. The accuracy for
PubMed increases along with the Feature Accuracy when using a
larger number of decimal places for the features. The model accu-
racy even increases slightly faster than the Feature Accuracy. With
a precision of 2 decimal places, there is no significant difference
between the model accuracy and the accuracy when using full pre-
cision. A similar behavior can be seen for ogbn-arxiv. The curve
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Figure 3: Accuracy for different datasets, rate of modified
features (RMF), and degree-aware modification when using
GCN

for ogbn-products is slightly different. It is unstable until a preci-
sion of 8 decimal places. The difference of ogbn-products to other
datasets is the higher ND and CC. With more clusters and a lot of
connections within a graph, precision plays a higher influence.

Analogous to our previous experiments, we show that graph
data quality is manifold and is the interaction of multiple criteria.

4.2 Data Quality
To better understand the results and to draw connections between
prediction performance and data quality, we measure Feature
Accuracy, Target Feature Accuracy, and Target Class Balance.
We evaluate all datasets and different RMF, ranging from 0% to 100%
of modified features in steps of 10% as well as 0% to 100% AM in
steps of 20%. We show the results for the CoAuthorCS graphs in
Figure 5. The results are supported by the remaining datasets which
are analogue to CoAuthorCS.
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Figure 4: Varying Feature Precision for different datasets

The Feature Accuracy (Figure 5a) decreases linearly with a higher
RMF. Whenever the features are modified to a higher amplitude
(AM), the Feature Accuracy also is lower compared to a lower ampli-
tude of modification. One could expect to also see a linear decrease
in terms of accuracy in the experimental results and differences
with varying degrees of modification (Figure 2b). Surprisingly, this
does not hold true for all datasets. We can only see a nearly linear
decrease with PubMed, but there is no significant difference between
the amplitude of modification (AM). This further supports our hy-
pothesis that the connections within a graph play a crucial part
when training GNNs, and not only the feature quality.

When investigating the Target Accuracy (Figure 5b), we notice a
similar behavior. While the Target Accuracy decreases linearly, the
accuracy of the predictions does not decrease linearly. Until 6̃0%
of modification (RMF), the values only decrease very slightly, after
that the accuracy usually drops.

It is interesting that the Target Class Balance (Figure 5c) increases
with a higher percentage of modified features (RMF). A reason for
this is that with randomly modified target features, each class gets
chosen with the same probability leading to a more equal class
distribution.

5 KEY INSIGHTS
This section explores the implications our findings have on real
world domains. We draw connections between our experimental
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Figure 5: Data quality metrics for CoAuthorCS

results and various domains, including data quality, dataset acqui-
sition, quantization and differential privacy.

5.1 How do data quality and performance relate
to each other?

We have shown that data quality does not necessarily reflect the
performance of the GNN model. While data quality gives a proxy
to assess the performance, there are more factors to consider. An
example is that a modification of around 50% in the CoAuthorCS
dataset leads to only around 5% loss in terms of accuracy. Only
after that, performance starts to drop more significantly. Across all
experiments we show that between 40% to 50% of node features
can be altered while preserving adequate performance. This has
a clear practical implication: Data quality is important but GNNs
can still deliver sufficient performance on graphs with noisy data.
Certain GNN architectures, like SAGE and GCN, are better suited
for this than others.

In our second row of experiments where we modified node fea-
tures either randomly or by node degree, we show that there is
no significant difference in terms of performance with up to 40%
of modified features. After that, the performance of degree-based
modification decreases faster compared to random perturbations.

Our findings indicate that to a certain extent, global factors
can cover for lacking data quality on a node level. Consequently,
graph data quality is inherently multifaceted, encompassing not
only node features and labels, but also global structural properties
that are hard to capture. This suggests that practitioners working

with real-world noisy graph data should not be discouraged by
possible imperfections in their datasets, as GNNs can often extract
meaningful patterns despite quality limitations.

5.2 Graph dataset acquisition
Acquiring new datasets can be a resource-consuming process. The
goal is to get a good representation of the real world. Why not
perfect? For most use cases, it is practically infeasible to have near-
perfect data points due to bias in measurement instruments or
uncertainty in actual data collection (what is the data we actually
need?). Our experiments support the hypothesis that there is a
trade-off between the model’s performance and the expenditure
of dataset acquisition. This is supported by two findings: 1) To
a certain degree, the GNN model is able to handle deviations in
the features. 2) Less feature precision influences the GNN model’s
performance, but for our datasets, 4 decimal places are sufficient to
achieve similar results compared to the original precision. These
findings lead to the theory that training on faulty or biased graph
data (to a certain degree) does not influence the GNN model as
crucially as expected and might be negligible as performance is
only affected for very stark deviations. For data acquisition, this
would mean that certain inaccuracies can be tolerated which could
make overall data capturing simpler.

According to our experiments, data acquisition should be less
focused on collecting overly perfect datasets but more focused on
trying to collect the connections between data points.

5.3 Feature precision in GNN training
Graphs can get extremely largewith over billions of nodes and edges
[16, 18]. Consequently, methods to train efficiently on those graphs
are needed. Using lower precision for graph features, weights, and
parameters is one of these methods. In this way, one can achieve fast
andmemory-efficient training [6, 10, 52]. When using less precision,
valuable information might be lost. Therefore, some approaches use
sophisticated compression techniques [10], modification of the mes-
sage propagation scheme [52], as well as binarized representations
and bit-wise operations [6].

We show that to a certain degree, we can use less precision in
the graph data without using a specialized method with almost no
decrease in terms of predictive performance. The key question is:
How much precision is truly necessary? If we were to predict a
person’s height at the age of 18, is giving the height centimeters
enough, or do we want to have millimeters or even micrometers? If
we have the height in millimeters, is this really superior to having
only centimeters or do we just discard the additional precision in
favor of practicality anyway? In conclusion, it is most important to
choose the right precision for the right question and not just add
more decimal places.

For our experiments, we show that in some experiments only 4
decimal places are sufficient. In PyTorch, a popular Python Machine
Learning framework, the standard data type is float32. By using
4 decimal places instead of 32, the precision is 8 times lower, and
we still achieved satisfactory results. For practitioners of Graph
Machine Learning frameworks this means that it might be a good
option to use significant less precision as it can deliver comparable
model performance.



6 RELATEDWORK
In their work, Renggli et al. [40] provide a general, data-centric view
of MLOps. They propose a framework CPClean which analyzes the
impact of noisy data on the corresponding general ML model to
clean the data in relation to the gained insight. Northcutt et al. [37]
investigate label errors in commonly used benchmark datasets in
the fields of computer vision, natural language, and audio datasets.
They identify and quantify errors in the datasets and their impact on
ML model performance. Jain et al. [21] highlight the importance of
data quality forML in general. They present data qualitymetrics and
show how to transform the data to address quality gaps. Conversely,
our work is focused on data quality of graphs and their impact on
GNN training.

Zügner et al. [57] perform adversarial attacks on graphs, meaning
certain information is manipulated. Here, the authors modify the
graph structure and features. Their objective is to make the changes
as unnoticeable as possible. For instance, they change features
but aim to preserve the feature statistics. This is contrary to our
work where we focus on noticeably modifying graph features and
measuring the influence on GNN models. Wu et al. [54] investigate
adversarial attacks leading to incorrect predictions. They focus on
gradient-based adversarial attacks and explore how such an attack
can be performed and how to defend it. We distinguish ourselves
by exploring modified graph features. Pro-GNN [25] proposes a
novel strategy to defend adversarial attacks. The graph structure
is learned alongside the model parameters given a pertubed graph.
In this way, robustness is ensured. Jin et al. [24] concentrate on
adversarial attacks that concern the edges. The authors give an
overview of existing attacks and defenses. Our work differs by
focusing on perturbations of node features.

There is also work on robust GNN training. For instance, the
framework NIFTY [2] can be used to achieve‚ fair and stable GNN
training. To ensure stability during training, the similarity between
representations of perturbed graphs (node features and graph struc-
ture) and a counterfactual graph aremaximized. This leads to overall
stable graph representations and predictions. Dai et al. [8] propose
a robust structural noise-resistant GNN (RS-GNN) framework. First,
a graph with structure noise and missing labels is used to generate
a dense, denoised graph. Alongside the original graph, the denoised
graph is trained on to improve the predictions on unlabeled nodes.
While the framework has been proven to work well, it only ad-
dresses structural noise and not attribute noise. The random GCN
[45] enhances the message passing step by adding a node feature
kernel. The GCN performance on perturbed graphs is improved and
the model is more robust. Wang et al. [53] augment sets of nodes
which are trained alongside the original ones to strengthen the
consistency of GCN models. It is shown that semi-supervised node
classification can be improvedwith their data augmentationmethod.
Aburidi et al. [1] use meta-gradients for robust GNN training. The
graph structure is regarded as hyperparameter which needs to be
optimized. In this way, GNNs can be trained in a robust way. We
distinguish ourselves by exploring attribute perturbations instead
of structural perturbations.

7 CONCLUSIONS
Real-world graph data often is noisy and error-prone. Therefore,
we investigate how deviations of benchmark datasets influence the

performance of GNNmodels by modifying node features and labels.
We explore the impact of the rate of modified node features (RMF)
and the amplitude of modification (AM) by using various graphs
of different characteristics and size. We derive the rule that with
GCN, around 40% of features can be modified while maintaining
a stable accuracy. The degree of modification is not as influential
as the number of modified features. Further, we vary the number
of decimal places of the node features to simulate reduced preci-
sion. For our datasets, 2 decimal places usually are sufficient for
an acceptable accuracy. In addition, we establish connections to
application domains such as dataset acquisition and using lower
precision for training.
Future Work. Our work focuses on homogeneous graphs. How-
ever, there are many different graph types, such as heterogeneous
or temporal graphs which pose different challenges. Heterogeneous
graphs can consist of multiple node and edge types. One could in-
vestigate whether errors only concerning certain types influence
the GNN model. Temporal graphs change over time. Here, devi-
ations in the data are not only potentially propagated across the
graph, but also possibly passed across multiple time steps which
could highly affect the model.

As graphs are all around us, they can also include sensitive data.
Depending on the use case, one might want to learn and predict
on this kind of data in a privacy preserving manner. One way to
achieve this is by employing differential privacy (DP). Multiple
approaches have emerged, from adding noise to the aggregation
function [42] and training submodels [41] to perturbation of the
graph structure by replacing similar nodes [27]. Another work
states that random sparsification of large-scale graphs can be done
with deleting up to 60% of the nodes without experiencing a large
decrease in terms of accuracy [48]. Combined with our findings
of random feature modification, this highlights the usability of DP
with random modifications and opens new opportunities for DP
research.

With our experiments showing that graph data can be altered
considerably while still achieving satisfactory performance, the
question arises how this behavior can be described in a generalized
way for the whole graph or GNN models, namely the macro level.
It is currently unclear how graphs and their characteristics can
be described concisely on a global level. By changing data, it is
expected that performance should degrade as vertex information is
lost and it becomes harder to achieve convergence. However, we
observe the opposite where a decrease of data quality only leads to
a slight drop in terms of model performance up to a certain degree
(4̃0% of modified features). After that, the performance usually
collapses. Therefore, future research could focus on the formal
description of graphs on the macro-level.

Current research in non-graph based Machine Learning suggest
that having lower quality data leads to performance losses in classi-
fication and regression tasks [4, 15, 21]. The key difference between
classical methods and graph-based ones needs to be investigated
further alongside how data alterations change model performance.
Additionally, if decreased data quality does not impact graph-based
methods as much as traditional ones, the question arises if graph-
based approaches should be favored in situations where traditional
methods struggle.
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