
GAL: Topology-Aware Serialization for Graph Traversals
Zeynep Korkmaz

University of Waterloo

zkorkmaz@uwaterloo.ca

M. Tamer Özsu

University of Waterloo

tamer.ozsu@uwaterloo.ca

Khuzaima Daudjee

University of Waterloo

khuzaima.daudjee@uwaterloo.ca

ABSTRACT
Graph traversals are expensive and storage systems need to be opti-

mized for them. Identifying the connectivity structure is important

to estimate the likelihood of graph objects being accessed together.

Developing a storage layout for graph objects in consideration of the

connectivity structure is important to perform low latency graph

operations. Irregular access patterns of the input graphs also con-

tain valuable information that can be used for locality optimization.

Although hard to capture, real-world graphs have well-connected

community structures where the vertices share common neigh-

bours. In this paper, we address the challenges in identifying the

access likelihood and connectivity structure of graphs to increase

the locality of accesses. We propose Graph-Aware Layout (GAL), a

workload-agnostic approach that orders graphs vertices by exploit-

ing the connectivity structure born out of graph traversals. GAL

exploits graph structure, determines the vertices that are likely

to be accessed together, and imposes a serialization layout. With

respect to common locality metrics, GAL performs better than or

is competitive with other approaches.

VLDBWorkshop Reference Format:
Zeynep Korkmaz, M. Tamer Özsu, and Khuzaima Daudjee. GAL:

Topology-Aware Serialization for Graph Traversals. VLDB 2025 Workshop:

Proc. 4th International Workshop on Large-Scale Graph Data Analytics

(LSGDA 2025).

VLDBWorkshop Artifact Availability:
The source code, data, and/or other artifacts have been made available at

https://github.com/zeynepsaka/graphs-GAL.

1 INTRODUCTION
Graphs are popular data structures to represent a variety of data

where it is important to represent the relationships among data

items as first-class objects [30]. Vertices in these graphs represent

entities (e.g., people, processes, assets, and devices), and the re-

lationships among these entities are well captured as edges. The

volume of graph-structured data as well as the sizes of these graphs

continue to grow, tracking the general data volume growth [15]. In

response to this need, graph DBMSs (GDBMS) have been an active

area of research and development – these are the fastest-growing

NoSQL category [1] – and their performance and scalability have

practical importance [29].

This work is licensed under the Creative Commons BY-NC-ND 4.0 International

License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of

this license. For any use beyond those covered by this license, obtain permission by

emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights

licensed to the VLDB Endowment.

Proceedings of the VLDB Endowment. ISSN 2150-8097.

0 500 1,000 1,500 2,000 2,500 3,000

0

1,000

2,000

3,000

4,000

5,000

6,000

7,000

8,000

9,000

Access Timestamp

P
a
g
e
I
D

(a) The graph is serialized without structure awareness.

0 500 1,000 1,500 2,000 2,500 3,000

0

1,000

2,000

3,000

4,000

5,000

6,000

7,000

8,000

9,000

Access Timestamp

P
a
g
e
I
D

(b) The graph is serialized with structure awareness.

Figure 1: Temporal data accesses of disk pages

Most graph processing applications need to perform expensive

read-intensive traversals over large graphs. Locality in graphs cap-

tures the degree of correlated data accesses in time and space. Graph

applications are known to have poor locality
1
[23]. This usually

causes random access to disk pages during navigation, increasing

the IO overhead. The culprit for random access is that GDBMSs

typically serialize vertex and edge data on disk in the order that is

given by the user in the input file without any attention to the graph

topology. Figure 1a shows random accesses to disk pages when the

input graph is serialized on disk without topology awareness using

the storage layout of one of the popular GDBMSs [2]. The figure

shows the scattered access causing high IO overhead.

Poor locality and inattention to graph topology also make in-

memory caching algorithms ineffective. Access probabilities of

graph objects can vary, and this yields non-uniform activity levels

[4]. Random accesses tend not to have much locality [23], and they

are hard to predict ahead of time to exploit caching. In previous

work, we proposed a new caching algorithm, called LAC, for graph

traversals and demonstrated that caching is greatly helped if the

graph is serialized with attention to graph topology [20].

In this paper, we address the complementary problem of seri-

alization and propose a workload-agnostic approach to serialize

real-world graphs on disk by exploiting the connectivity structure

born out of graph traversals.

We have two objectives: the first is to improve the ordering qual-

ity as evaluated by commonly used locality metrics, and the second

is to minimize the number of page IOs in servicing user requests.

Identifying the connectivity structure is important to estimate the

likelihood of vertices being accessed together. Developing a stor-

age layout of graph objects in consideration of this estimation is

essential to perform low latency graph operations. Figure 1b shows

a plot of the same graph data and query as in Figure 1a but with a

changed data layout that correlates with the graph topology, e.g.,

adjacent vertices and neighbourhoods in the graph are stored on the

same page or on adjacent pages on disk by using a topology-aware

1
Poor locality in graph data is when vertices or edges which are frequently accessed

together are not stored or laid out close to each other in memory or on disk.

https://github.com/zeynepsaka/graphs-GAL
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org

serialization approach [35]. The resulting improved locality of data

accesses generates more more clustered and consecutive disk page

accesses.

A Small World Network graph consists of tightly-knit groups

of vertices, closed triangles, and a number of local bridges [34]. As

noted earlier, GDBMSs typically read vertices in ID-order from the

input file, and those with consecutive IDs are stored consecutively.

Usually, no attention is paid to the connectivity structure of the

graph (if that structure is not represented in the order of items

within the input file), which potentially leads to divergence of the

physical data order on disk from the connectivity structure. We

propose Graph-Aware Layout (GAL), which determines the vertices

that would be frequently accessed together from the graph structure

and generates a serialization order for graph objects on disk with

the objective of increasing page access locality.

Some of the existing approaches that address similar problems

force access locality in graph objects by performing community

extraction or partitioning the graphs to preserve locality in sub-

graphs [16, 36]. In real graphs with power-law distribution of vertex

degrees, edge-cut-based partitioning does not perform well [21]. A

recent approach finds a permutation of graph vertices to minimize

the CPU cache miss ratio [35]. It uses a cost function to maximize

the weights that are assigned to the direct neighbour and sibling

relations of vertices in the serialization order. Although identifying

these direct relations gives some information about the access like-

lihood of the algorithms, it does not capture the locality in access

patterns that are beyond immediate neighbourhoods.

GAL, by contrast, generates a serialization order of graph objects

without relying on a partitioning algorithm; it examines the connec-

tions beyond the immediate neighbours and siblings by considering

vertices that may be farther with respect to number of hops, but are

in the same access sequence in graph traversals. For this purpose,

GAL uses random walks to explore the connections farther than

the immediate neighbours. These beyond-neighbourhood connec-

tions play an important role in the execution of reachability queries

and have been shown to be important [14, 17, 21, 24, 27]. Small

World Networks require both closely knit communities (strong

ties) and a sufficient number of long-range neighbours (weak ties)

[34]. Weak ties represent the local bridges where the vertices at the

end points of such edges have no common immediate neighbours,

such as acquaintances. Although there are many closed triangles in

Small World Networks, branching structure appears as a result of

local bridges that enable reaching many nodes in a few steps, and

their endpoint vertices can access the parts of the graph that are

otherwise hard to reach [7, 9].

Identifying tightly knit communities motivates many graph par-

titioning approaches, which define some level of cohesion for each

vertex in a partition by assigning a fraction of its immediate neigh-

bourhood in the same partition. However, a pair of vertices in a

partition do not necessarily have much in common due to the ex-

istence of densely connected vertices as well as some number of

weak edges [35]. Therefore, GAL stores hub vertices that are not

immediate neighbours of each other, endpoints of local bridges,

and their important neighbours that are likely to appear together

in graph traversal. GAL may not serialize a vertex with all of its

immediate neighbours on the same page. This potentially results

in accessing more than one disk page to answer a single hop neigh-

bour query. However, frequent accesses to disk pages consisting of

the graph objects that appear in most of the traversals reduces the

overall amount of IO.

In summary, our major contributions are the following:

• We propose GAL that generates a serialization order for

graph objects by considering their structural roles in their

placement and increasing the distance to look ahead, greater

than that of the immediate successor in the access sequence

of traversals.

• GAL captures the access likelihood of graph objects by

looking at the graph topology; therefore, its disk layout is

not tailored to a specific query type.

• GAL outperforms its competitors in various widely used

locality metrics.

2 RELATEDWORK
Efficient placement of graph objects to minimize IO is a challeng-

ing problem due to graph connectivity and unpredictable access

patterns of graph workloads. Collocating vertices/edges together in

a page is fundamentally a clustering problem. There are several ex-

isting studies that use graph partitioning methods and community

extraction algorithms for clustering graph objects into pages. Xie

et al. [36] propose a block-level abstraction of vertex-centric graph

processing with the objective of achieving good cache performance.

It uses a graph partitioner [19] to divide a graph into partitions

in a manner that minimizes the number of cross-partition edges

(i.e., edge-cuts) and each partition is stored as a block. However,

power-law degree distribution of real graphs affects the partitioning

quality [21, 23]. Steinhaus et al. [33] propose a storage manager for

graph data that tries to minimize the number of adjacent vertices

that are placed on different disk pages as well as the distance be-

tween disk pages with adjacent vertices. Another heuristic serializes

graph data on disk by extracting communities based on modularity-

optimized-driven algorithm [22]. However, this requires solving

NP-hard minimum linear arrangement problem [16]. These ap-

proaches do not scale to large graphs.

Although community extraction and graph partitioning approaches

explore groups of vertices that are likely to communicate, they can-

not capture access likelihood of vertices in navigating through

communities that follow a pattern unique to the graph. This is

important for efficient placement of graph objects on pages in order

to exploit the access locality in traversals and therefore, reduce the

number of page accesses to answer a query. Vertex/edge reordering

that is based on the statistical characteristics of the graph or cost

functions that try to optimize accesses with the likelihood of ver-

tices (similar to what we do) has also been studied [3, 6, 11, 35, 39].

Some of these target main memory placement, while others tar-

get on-disk placement. However, there is no intrinsic obstacle to

using main memory placement techniques for on-disk placement;

therefore, in the remainder, we assume they are used as on-disk

approaches.

Reverse Cuthill-McKee (RCM) [8] graph ordering algorithm min-

imizes the maximum gap distance, which is known as graph band-

width. RCM traverses the vertices at each level by following a

specialized breadth-first search where vertices are ordered by their

2

degrees and vertex identifiers of their parents. Some of the ordering

approaches rely on vertex degree [11] [39], placing higher degree

vertices together on the same page. Degree-based Grouping (DBG)

[11] has multiple bins for vertices and places them into the bins

according to their “hotness level”, which is defined based on their

degrees. These techniques assume that the vertices have already

assigned vertex identifiers consistent with the graph topology in

the input file. This assumption holds for some input graphs, but

not all. In contrast to these, GAL exploits the access likelihood

of graph objects by considering the degree property of vertices.

Gorder (GO) [35] is similar to GAL in that it reorders graph vertices

prior to loading. It defines access locality of vertex pairs by a score

function that considers their immediate neighbourhood and the

number of common friends. Although identifying the immediate

neighbourhood gives important information about the access like-

lihood of graph objects in the graph traversals, it does not explore

the connections at further depths that are not easy to predict.

ICBL [38], considers neighbourhood at further depths. ICBL finds

an ordering for graph data in order to serialize it on disk. It employs,

similar to GAL, uniform random walks to extract diffusion sets and

to explore the neighbourhood of a vertex in order to label their

access likelihood. However, unlike GAL, it uses this information

in k-means clustering to obtain 𝑘 vertex-disjoint subgraphs, which

may select local bridges as edge cuts that potentially carry most

of the traffic between the different parts of the graph. In contrast

to ICBL, GAL explores the global stability of the graph and the

structural roles of graph objects, such as local bridges, in addition

to identifying strong relations between the vertices and their access

likelihood together.

3 GRAPH-AWARE LAYOUT
In this section, we describe GAL (Graph-Aware Layout), a topology-

aware serialization technique that focuses on ordering graph ver-

tices and projects this order on edges to obtain an edge ordering.

GAL considers the roles vertices play in the graph structure, such

as hubs or endpoints of local bridges. It goes beyond considering

immediate neighbours and looks further for successor vertices in

the access sequence of traversals to identify strong relations be-

tween the vertices and their likelihood of being accessed together.

GAL orders hub vertices close to each other even if they are not

immediate neighbours but are likely to be accessed together in

graph traversal. The other ordering algorithms discussed in the

previous section only consider vertices.

A graph 𝐺 = (𝑉 , 𝐸) consists of set of vertices 𝑉 and edges 𝐸 =

{(𝑢, 𝑣) |𝑢, 𝑣 ∈ 𝑉 }. The number of edges linked to a given vertex

𝑣 is its degree, 𝑑 (𝑣). The reordering is based on the joint access

likelihood of vertices, which is computed as follows. A set of random

walks are started from each vertex 𝑣𝑖 in the graph, during which

virtual edges are created between the source vertex 𝑣𝑖 and all the

reachable vertices in the walk, and weights are assigned to each

virtual edge based on their distance to the source vertex 𝑣𝑖 – edges

to vertices that are closer to the source (in terms of hop distance)

have higher weights. The resulting weighted, denser graph 𝐺𝑤 =

(𝑉 , 𝐸𝑤) captures the connection strength of vertices.𝐺𝑤 has edges

that are not in 𝐺 , representing the multi-hop connections between

vertices that are captured through the traversals. While capturing

the strength between important vertices that are not necessarily

connected, it can sacrifice some of the immediate neighbours for

not being ordered very closely.

Based on the edge weights in 𝐺𝑤 and the number of common

neighbours in𝐺 , GAL computes the access likelihood of all pairs

of vertices (𝑣𝑖 , 𝑣 𝑗) (𝑣 𝑗 ∈ 𝑉 , 𝑣𝑖 ≠ 𝑣 𝑗) using a closeness function that

is explained in Section 3.2. Finally, GAL generates a new order of

graph objects while maximizing the closeness of vertices.

Algorithm 1 shows the main steps of GAL. RandomWalk per-

forms a number of random walks rooted at each vertex 𝑣𝑖 ∈ 𝑉 (𝐺)
to generate𝐺𝑤 (Section 3.1. Then, VertexOrdering creates a new

ordering of graph vertices by using the connection strength of

vertices captured in 𝐺𝑤 (Section 3.2).

Algorithm 1 GAL: Graph-Aware Layout Generation

Input: 𝑉 (𝐺), 𝐸 (𝐺)
Output: A new order of vertices in 𝑉 (𝐺)
1: for all 𝑣𝑖 ∈ 𝑉 (𝐺) do
2: RandomWalk(𝑣𝑖) ⊲ Generate and update 𝐺𝑤 in every

iteration

3: end for
4: VertexOrdering(𝐺𝑤)

3.1 RandomWalks
Exploring the structural distance between graph vertices is im-

portant to evaluate their similarity. GAL performs a number of

random walks 𝑅(𝑣𝑖) rooted at each vertex 𝑣𝑖 ∈ 𝑉 (𝐺) to extract

access sequences of vertices.

In the remainder, for ease of exposition, we denote each step

of the random walk rooted at 𝑣𝑖 as 𝑣
𝑘
𝑖
, where 𝑘 is the depth in the

walk: 𝑣0
𝑖
= 𝑣𝑖 , 𝑣

1

𝑖
= 𝑣 𝑗 , 𝑣

2

𝑖
= 𝑣𝑘 , . . . , 𝑣

𝑘
𝑖
= 𝑣𝑠 .

𝑅(𝑣𝑖) = {𝑣0𝑖 , 𝑣
1

𝑖 , 𝑣
2

𝑖 , . . . , 𝑣
𝑘
𝑖 } (1)

Each move of the random walk rooted at 𝑣𝑖 is defined by the

transition probability matrix 𝑃 which has elements 𝑝 (𝑣𝑡
𝑖
, 𝑣𝑡+1
𝑖
) =

𝑃 [𝑣𝑡+1
𝑖
|𝑣𝑡
𝑖
] representing the probability of moving from a vertex at

depth (step) 𝑡 to a vertex at depth (step) 𝑡 + 1 as shown in Equation

2.

𝑃 [𝑣𝑡+1𝑖 |𝑣
𝑡
𝑖] =

{
𝑝 (𝑣𝑡

𝑖
, 𝑣𝑡+1
𝑖
) 𝑣𝑡+1

𝑖
∈ 𝑁 (𝑣𝑡

𝑖
)

0 𝑣𝑡+1
𝑖

∉ 𝑁 (𝑣𝑡
𝑖
)

(2)

The computation of 𝑝 (𝑣𝑡
𝑖
, 𝑣𝑡+1
𝑖
) depends on the type of random

walk, which may be uniform or biased. In uniform biased walk, each

vertex in 𝑁 (𝑣𝑡
𝑖
) is equally likely to be chosen as the next visited

vertex. The return time of vertex 𝑣𝑖 , is defined as the expected time

it takes a walk that starts at vertex 𝑣𝑖 to return to vertex 𝑣𝑖 . The

return time of a vertex is independent of the structural properties

of vertices that are visited at uniform random walk steps. However,

the return time of a vertex is related to the degree property of

vertices, 𝑑 (𝑣 𝑗), that are visited in the case of biased walks. When

the walk reaches a high degree vertex, it decreases the return time

of 𝑣𝑖 which yields an exploration in the local neighbourhood. On the

other hand when the walk reaches a low degree vertex, it increases

the return time of 𝑣𝑖 and, therefore, increases the probability of

3

traversing through the more sparse paths to a different part of the

graph.

Walks involving higher degree vertices can obtain the connec-

tion between hub vertices that are not immediate neighbours but

connected to each other through their successor neighbours and

frequently accessed together in multi-hop traversals, while walks

involving lower degree vertices can reach farther parts of the graph.

GAL can use either uniform or biased random walks in capturing

connection strength between vertices in different input graphs.

Algorithm 2 shows GAL’s random walk procedure. It takes a

root vertex 𝑣𝑖 , the number of walks rooted at 𝑣𝑖 , 𝑁𝑊𝐴𝐿𝐾𝑆 , and the

length of the walk, 𝑁𝑆𝑇𝐸𝑃𝑆 , as input and produces the weighted

graph 𝐺𝑤 as output.

Algorithm 2 RandomWalk

Input: 𝑣𝑖 , 𝑁𝑊𝐴𝐿𝐾𝑆 , 𝑁𝑆𝑇𝐸𝑃𝑆

Output: 𝐺𝑤

1: 𝐺𝑤 = {}
2: 𝑁 is an array of vertices ∀𝑣 𝑗 ∈ 𝑁 (𝑣𝑖).
3: if biased then
4: 𝑁 is sorted based on 𝑑 (𝑣 𝑗).
5: 𝑁𝑐𝑢𝑚 is a cumulative growing array of 𝑑 (𝑣 𝑗).
6: end if
7: for 𝑛 = 0 to 𝑁𝑊𝐴𝐿𝐾𝑆 do
8: for 𝑘 = 0 to 𝑁𝑆𝑇𝐸𝑃𝑆 do
9: 𝑝 = 𝑟𝑎𝑛𝑑𝑜𝑚()%𝑑 (𝑣𝑖)
10: if biased then
11: 𝑣𝑘

𝑖
← 𝑁𝑐𝑢𝑚 [𝑝]

12: else
13: 𝑣𝑘

𝑖
← 𝑁 [𝑝]

14: end if
15: insert 𝑣𝑘

𝑖
in 𝑅(𝑣𝑖)𝑛 ⊲ 𝑅(𝑣𝑖)𝑛 is the 𝑛𝑡ℎ random walk

rooted at 𝑣𝑖
16: end for
17: BuildWeightedGraph(𝑣𝑖 , 𝑅(𝑣𝑖)𝑛,𝐺𝑤)

18: end for

The number of walks (𝑁𝑊𝐴𝐿𝐾𝑆) rooted at the same vertex is

important to increase the probability of capturing different neigh-

bours at different walks. However, when the number of walks in-

creases, the parameter sensitivity experiments show that the size of

𝐺𝑤 increases dramatically without improving the ordering quality.

Therefore, 𝑁𝑊𝐴𝐿𝐾𝑆 is set to the average degree of the input graph.

Random walks can also be performed biased. 𝑁𝑐𝑢𝑚 is the cumu-

lative distribution over neighbouring vertices degrees. This cumu-

lative degree array is constructed such that 𝑁𝑐𝑢𝑚 [𝑘] =
∑𝑘

𝑗=1 𝑑 (𝑣 𝑗).
Selecting from 𝑁𝑐𝑢𝑚 biases the sampling toward neighbors with

higher degrees. This results in transition probabilities proportional

to neighbor degrees, effectively biasing the walk toward high-

degree nodes.

The path length of a randomwalk rooted at a vertex is also impor-

tant for capturing the connection strength of vertices. GAL defines

this distance as number of steps, 𝑁𝑆𝑇𝐸𝑃𝑆 , of a random walk. As-

sume 𝑁𝑆𝑇𝐸𝑃𝑆 is 3, and the access sequence of three vertices rooted

at 𝑣𝑖 are 𝑣
1

𝑖
, 𝑣2

𝑖
, and 𝑣3

𝑖
. In this case, 𝑣1

𝑖
is the immediate neighbour

of 𝑣𝑖 , while the others may not be. GAL determines the connection

strength between 𝑣𝑖 and all the vertices in this access sequence of

vertices. Thus 𝐺𝑤 will have the following weighted edges: (𝑣𝑖 , 𝑣1𝑖),
(𝑣𝑖 , 𝑣2𝑖) and (𝑣𝑖 , 𝑣

3

𝑖
) in𝐺𝑤 . The default value for 𝑁𝑆𝑇𝐸𝑃𝑆 represents

the reachability distance between vertices; therefore, we set it as

the effective diameter value of the input graph.

Edge weights in 𝐺𝑤 represent the likelihood that two vertices

might be accessed together – higher weights indicate a closer rela-

tionship (in terms of graph topology) between the vertices incident

on the edge. GAL employs a linear decremental weight assignment

approach, in which an increase in the successor distance decreases

the corresponding edge weight.

A random walk rooted at 𝑣𝑖 has an initial weight assigned to

the edge (𝑣𝑖 , 𝑣1𝑖). Starting each random walk with the same initial

weight could hide valuable information. Relations between a high-

degree vertex and its neighbourhood can be more important to

capture than relations between a lower-degree vertex and its neigh-

bourhood. Thus, the initial weight is set as the degree of the rooted

vertex on each random walk. For subsequent edges, the weight

decreases with increasing distance to 𝑣𝑖 as shown in Algorithm 3.

Algorithm 3 BuildWeightedGraph

Input: 𝑣𝑖 , 𝑅(𝑣𝑖)𝑛,𝐺𝑤

1: for all 𝑣𝑘
𝑖
∈ 𝑅(𝑣𝑖)𝑛 do

2: if weight assignment is skewed then
3: 𝐺𝑤 [𝑣𝑖] [𝑣𝑘𝑖] + = 𝑑 (𝑣𝑖) − 𝑘×

𝑑 (𝑣𝑖)
𝑁𝑆𝑇𝐸𝑃𝑆

4: else
5: 𝐺𝑤 [𝑣𝑖] [𝑣𝑘𝑖] + = 𝑁𝑆𝑇𝐸𝑃𝑆 − 𝑘
6: end if
7: end for

The skewed weight assignment can be useful when ordering

the graphs whose degree distribution exhibits significant skewness

in order to capture high locality pages with hub graph objects.

Otherwise, a linearly decreasing weight assignment can be used.

3.2 Vertex Ordering
GAL uses 𝐺𝑤 to compute the “closeness” of vertices in 𝑉 ∈ 𝐺
and obtain an ordered vertex set 𝑉𝑜 . It does this by considering

the vertices that are already in 𝑉𝑜 focusing on the more recent 𝑝

insertions where 𝑝 is the size of a window it maintains over 𝑉𝑜 –

this is denoted as𝑉
𝑝
𝑜 . The next vertex in𝑉 \𝑉𝑜 to be added to𝑉𝑜 is

the one that is closest to those currently in 𝑉
𝑝
𝑜 .

Closeness of a vertex 𝑣𝑖 to the vertices in𝑉
𝑝
𝑜 (𝐶𝐿(𝑣𝑖 ,𝑉 𝑝

𝑜)) is based
on the edge weights and is computed by Equation 3 and has two

components: edge weight score 𝑒𝑠 and common neighbour score

𝑛𝑠 .

𝐶𝐿(𝑣𝑖 ,𝑉 𝑝
𝑜) = 𝑒𝑠 (𝑣𝑖 ,𝑉

𝑝
𝑜) × 𝑛𝑠 (𝑣𝑖 ,𝑉

𝑝
𝑜) (3)

Edgeweight score 𝑒𝑠 (𝑣𝑖 ,𝑉 𝑝
𝑜) is the sum of the edge weights between

𝑣𝑖 and the vertices in 𝑉
𝑝
𝑜 , 𝑒𝑤 (𝑣𝑖 , 𝑣 𝑗):

𝑒𝑠 (𝑣𝑖 ,𝑉 𝑝
𝑜) =

∑︁
𝑣𝑗 ∈𝑉 𝑝

𝑜

𝑒𝑤 (𝑣𝑖 , 𝑣 𝑗) (4)

The common neighbour score 𝑛𝑠 is the number of neighbour ver-

tices of 𝑣𝑖 in 𝑉
𝑝
𝑜 :

𝑛𝑠 (𝑣𝑖 ,𝑉 𝑝
𝑜) = |𝑁 (𝑣𝑖) ∩𝑉

𝑝
𝑜 |. (5)

4

GAL starts by computing the weight of each vertex as the sum of

the weights of its incident edges in 𝐺𝑤 (Algorithm 4) . That is the

first vertex inserted into 𝑉𝑜 – the first vertex in the order. This is

followed by finding the “closest” vertices to those already ordered

using the method described above. Naturally, it is not desirable to

compute 𝐶𝐿(𝑣𝑖 ,𝑉 𝑝
𝑜) on the entire graph; therefore, a candidate list

is generated for the vertices that should be considered for the next

ordering. The candidate list consists of the neighbour vertices of

those in 𝑉
𝑝
𝑜 that are not already in 𝑉𝑜 : 𝑉

𝑝
𝑐 =

⋃
𝑁 (𝑉 𝑝

𝑜) \𝑉𝑜 .

Algorithm 4 VertexOrdering

Input: 𝐺𝑤 , 𝑝

Output: 𝑉𝑜
1: 𝑉𝑜 = {}
2: 𝑉

𝑝
𝑜 = {}

3: 𝑣𝑖 ← the vertex with the highest sum of the weights of its

incident edges in 𝐺𝑤 .

4: 𝑉𝑜 ← 𝑉𝑜 ∪ {𝑣𝑖 } ⊲ insert 𝑣𝑖 in 𝑉𝑜
5: 𝑉

𝑝
𝑜 = 𝑉

𝑝
𝑜 ∪ {𝑣𝑖 }

6: 𝑉 ← 𝑉 \ {𝑣𝑖 } ⊲ remove 𝑣𝑖 from 𝑉

7: while 𝑉 is not empty do
8: 𝑉

𝑝
𝑐 ←

⋃
𝑁 (𝑉 𝑝

𝑜) \𝑉𝑜
9: if 𝑉 𝑝

𝑐 is not empty then
10: for all 𝑣𝑛 ∈ 𝑉 𝑝

𝑐 do
11: Calculate 𝐶𝐿(𝑣𝑛,𝑉 𝑝

𝑜)
12: end for
13: 𝑣𝑛𝑒𝑥𝑡 ← 𝑣𝑛 with the maximum 𝐶𝐿(𝑣𝑛,𝑉 𝑝

𝑜)
14: 𝑉𝑜 ← 𝑉𝑛𝑒𝑥𝑡 ∪ {𝑣𝑖 } ⊲ insert 𝑣𝑛𝑒𝑥𝑡 in 𝑉𝑜
15: 𝑉 ← 𝑉 \ {𝑣𝑛𝑒𝑥𝑡 } ⊲ remove 𝑣𝑛𝑒𝑥𝑡 from 𝑉

16: if |𝑉 𝑝
𝑜 | = 𝑝 then

17: 𝑉
𝑝
𝑜 ← 𝑉

𝑝
𝑜 \𝑉

𝑝
𝑜 [0]

18: end if
19: 𝑉

𝑝
𝑜 ← 𝑉

𝑝
𝑜 ∪ {𝑣𝑛𝑒𝑥𝑡 } ⊲ insert 𝑣𝑛𝑒𝑥𝑡 in 𝑉

𝑝
𝑜

20: end if
21: end while

4 EXPERIMENTAL EVALUATION
This section describes the test environment, datasets and evaluation

metrics used in the experiments.

4.1 Setup
The graph datasets are serialized into disk pages using Compact

Sparse Row (CSR) format. CSR Offsets array has |𝑉 | entries and
each entry determines the alignment of the corresponding vertex’s

neighbourhood in the Edges array which is split into edge pages.

Vertices are stored in the Vertices array which is split into vertex

pages. When a query starts with a source vertex, its neighbouring

vertices are found by following the offsets in the Edges array, and

depending on the application, destination vertices’ properties are

visited in the Vertices array. We follow the data layout in [26] where

each vertex page can store 512 vertices and each edge page can

store 1024 edges.

4.2 Datasets
Our datasets are representative of three graph application domains:

social networks, web graphs and road networks. SOC-LJ
2
and

FLICKR
3
are mid-size online social networks where vertices and

edges represent the friends and friendship relations, respectively.

Online social networks are dense graphs with small diameters,

meaning that vertices are reachable within a small number of hops.

CIT-PATENT
4
and AMAZON

5
are web graphs whose vertices and

edges represent web pages and hyperlinks between them, respec-

tively. The average degree of web graphs is slightly smaller than

online social networks, but their diameters are larger. Finally, US-

ROAD
6
is a road network where road intersections and endpoints

are represented by vertices and the roads connecting them are rep-

resented by undirected edges. Road networks are grid-type graphs

where the average degree is very small, however the diameter is

large.

4.3 Ordering Algorithms
We compare GAL with uniform random walk and GAL-BW with

biased random walk against some of the ordering techniques given

in Section 2: RCM, DBG and GO.
We also test the performance for the default layout (DEF) of

the input graphs. Default layout refers to the order that vertices

appear in the original input file. The ordering quality of the default

layout is not always well-defined in the data source [32]. The default

layouts of the input graphs have highly variable performance in

practice, because some of the input files have already been ordered

considering the graph topology, although the ordering techniques

have not been mentioned. To show the impact of ordering, we

shuffle the order of vertices in the input graphs and present its

evaluation as SHUFF layout.

4.4 Evaluation Metrics
Weevaluate GAL’s ordering quality bywidely-used andwell-known

locality metrics: conductance, cohesiveness, neighbourhood over-

lap, and gap distance. Graph objects in a cluster should display

strong similarity among themselves. We use the terms “clusters”

and “pages” interchangeably in the rest of the section.

The conductance metric is widely-used to evaluate the cluster-

ing quality and measures how well a page (𝑃𝑖) is separated from the

rest of the graph [5, 12, 18, 31]. The conductance of a page 𝜙 (𝑃𝑖)
measures the ratio of inter-page edges to all the edges in 𝑃𝑖 : lower

conductance, which represents fewer number of inter-cluster edges,

is better.

Awell-identified community’smembers are expected to be closely

connected to each other, so that it should be hard to split it into

disconnected components. This internal structure of a page can

be termed as the cohesiveness (𝜓 (𝑃𝑖)) and characterized by its

density, which is the fraction of the edges (out of all possible edges)

that appear between a pair of vertices in a page [18, 37].

2
http://konect.cc/networks/soc-LiveJournal1/

3
http://konect.cc/networks/flickr-growth/

4
http://konect.cc/networks/patentcite/

5
https://snap.stanford.edu/data/amazon0601.html

6
https://networkrepository.com/road-road-usa.php

5

To evaluate the contribution of each page in the ordering quality

of the graph, the average conductance over all the cuts of the graph
and the average cohesiveness of all 𝑘 pages in the graph are used:

𝜙 (𝐺) = 𝑎𝑣𝑔(𝜙 (𝑃𝑖)), 1 ≤ 𝑖 ≤ 𝑘 and𝜓 (𝐺) = 𝑎𝑣𝑔(𝜓 (𝑃𝑖)), 1 ≤ 𝑖 ≤ 𝑘 .
Another metric that has been used in the literature is neigh-

bourhood overlap that measures goodness of clustering based

on the strength of the relationship between vertices in a cluster or

page. Granovetter [13] first proposed the strength to be measured

by the relative overlap of the neighbourhoods of two vertices in

the graph. Two vertices are similar when they have many common

neighbours. Based on this, neighbourhood overlap of vertices 𝑢 and

𝑣 (𝑛𝑜 (𝑢, 𝑣)) is defined as the ratio of their common neighbours to

the total number of neighbours [25]. The edge (𝑢, 𝑣) is identified as
strong if 𝑛𝑜 (𝑢, 𝑣) is high. Based on this, the neighbourhood overlap

of a page 𝑛𝑜 (𝑃𝑖) is defined as the average of all the 𝑛𝑜 (𝑢, 𝑣) for all
pairs of vertices 𝑢, 𝑣 ∈ 𝑃𝑖 . A page with a higher 𝑛𝑜 (𝑃𝑖) is a better
cluster since that means vertices in 𝑃𝑖 have more common neigh-

bours. Finally, the neighbourhood overlap value of a graph, 𝑛𝑜 (𝐺)
is defined as the average of 𝑛𝑜 (𝐶𝑖) for all identified clusters in 𝐺 :

𝑛𝑜 (𝐺) = 𝑎𝑣𝑔(𝑛𝑜 (𝑃𝑖)), 1 ≤ 𝑖 ≤ 𝑘
The last metric we introduce is gap distance [10, 28], that rep-

resents the difference in vertex identifier values of vertices that are

immediate neighbours in the graph. Given an ordering over 𝑉 (𝐺),
the gap distance is defined on each edge; given two neighbour ver-

tices 𝑢 and 𝑣 , 𝑔𝑎𝑝 (𝑢, 𝑣) is the absolute difference of their identifiers.
When graph serialization is performed with the objective of min-

imizing the gap distance, vertices with smaller gap distance are

considered to better maintain the locality of vertices. Gap distance

of a graph is defined as the average of 𝑔𝑎𝑝 (𝑢, 𝑣) of all edges (𝑢, 𝑣)
in graph 𝐺 .

𝑔𝑎𝑝 (𝑢, 𝑣) is defined on the incident edge of two neighbouring

vertices 𝑢 and 𝑣 , and is the absolute difference of their identifiers

(recall that ordering schemes change the vertex identifiers, so these

are semantically significant). Since it is defined on the existing

edges in the pages, and it may hide the information about the

pages where vertices without neighbouring relation are collocated.

Since we are evaluating the collocation quality of vertices in the

pages, we slightly modify gap distance and introduce page gap
distance between vertices,𝑔𝑎𝑝𝑝 (𝑢, 𝑣) to better represent the impact

of distance between vertices on the performance: 𝑔𝑎𝑝𝑝 (𝑢, 𝑣) =

|𝑖 − 𝑗 |, 𝑢 ∈ 𝐶𝑖 , 𝑣 ∈ 𝐶 𝑗 , 1 ≤ 𝑖 ≤ 𝑗 ≤ 𝑘 .
Then page gap distance of a graph, 𝑔𝑎𝑝𝑝 (𝐺) is the average page

gap distance of all edges (𝑢, 𝑣) in graph 𝐺 :

𝑔𝑎𝑝𝑝 (𝐺) =
1

|𝐸 (𝐺) |
∑︁

(𝑢,𝑣) ∈𝐸 (𝐺)
𝑔𝑎𝑝𝑝 (𝑢, 𝑣) (6)

𝑔𝑎𝑝𝑝 (𝐺) is not only promoted by the well-clustered pages as

𝑔𝑎𝑝 (𝐺) is, but also demoted by the pages which consist of vertices

whose neighbours are scattered throughout the other pages.

4.5 Ordering Quality Evaluation Results
This section presents the results for ordering quality improvement

achieved by different layout generation approaches. Figure 2 shows

the ordering quality evaluation metrics of cohesiveness (𝜙 (𝐺)),

conductance (𝜓 (𝐺)), page gap distance (𝑔𝑎𝑝𝑝 (𝐺)) and neigh-
bourhood overlap (𝑛𝑜 (𝐺)) results for the input graphs serialized
by different algorithms.

The results show that ordering input graphs has an important

positive impact relative to their default and shuffed layouts. As

noted earlier the ordering quality of the default layout is not always

well-defined in the data source [32]. The input files may already

have some order, so the resulting default layout may reflect that;

hence the default layout performance can vary highly.

A good cluster is usually identified in the literature as having low

conductance and high cohesiveness. When calculating conductance,

we exclude pages that contain vertices that have no incoming or no

outgoing edges. Since lower conductance indicates better perfor-

mance, this exclusion prevents such pages from artificially lowering

the average conductance and distorting the results. Figures 2a and

2b show that GAL significantly reduces the inter-cluster depen-

dency in all of the input graphs and has the highest cohesiveness

and therefore increases the intra-cluster connectivity in all of the

input graphs. GO has the second-best ordering quality in terms

of these metrics, and its performance is close to GAL, especially

in conductance when the input graph is very skewed. GAL-BW

collocates the high-degree vertices that are a few hops of each other

and tries to increase the ordering quality of these pages. However,

it sacrifices low-degree vertices and their neighbourhoods more

than GAL, and this situation reduces the overall quality in averages

of the metrics. This property of GAL-BW is useful when graph

serialization layout is targeted for processing hub graph objects. As

DBG preserves the default layout while grouping vertices based on

their degrees, its performance follows the default layout.

Smaller gap distance represents assigning closer vertex identi-

fiers to the neighbouring vertices. RCM is explicitly designed to

minimize the maximum distance between non-zero entries in rows

(bandwidth) of a sparse matrix. This directly helps to decrease the

gap distance that measures the average (page) distance between

neighbours in a given vertex ordering. This leads to improved data

locality, which is particularly beneficial in sparse graphs where

most vertices have few neighbours, such as US-ROAD. In such

cases, Figure 2c shows that RCM significantly reduces the distance

between connected vertices and improves performance for gap

distance metrics, although it performs less effectively for other eval-

uation criteria. In contrast, GAL demonstrates strong and consistent

performance across different graph types. For example, GAL out-

performs all other techniques in the AMAZON graph and matches

RCM’s performance in CIT-PATENT. GAL also outperforms GO

in the US-ROAD network by considering deeper levels of neigh-

bourhood structure, which is advantageous in graphs with high

diameters like US-ROAD. GAL-BW (bandwidth-focused variant of

GAL) performs closer to the default layout in some cases due to its

biased random walks revisiting vertices and missing low-degree

nodes. However, GAL overall shows that it is more adaptive. Its

ability to leverage structural depth makes it a robust choice for

improving vertex ordering across a range of graph topologies.

Higher neighbourhood overlap represents better collocation of

vertices with their neighbourhood within a page. Figure 2d shows

that GAL outperforms others in neighbourhood overlap for all

input graphs except FLICKR. Although GAL can perform better

in SOC-LJ and it has a very competitive performance, GO has the

6

A
M

A
Z
O
N

C
I
T
-
P
A
T
E
N
T

F
L
IC
K
R

S
O
C
-
L
J

U
S
-
R
O
A
D

0

0
.5

1

·10
−2

M
e
t
r
i
c
V
a
l
u
e

GAL GAL-BW GO RCM DBG DEF SHUFF

(a) Average Cohesiveness: 𝜙 (𝐺) (higher is better)

A
M

A
Z
O
N

C
I
T
-
P
A
T
E
N
T

F
L
IC
K
R

S
O
C
-
L
J

U
S
-
R
O
A
D

0
.5

1

(b) Average Conductance:𝜓 (𝐺) (lower is better)

A
M

A
Z
O
N

C
I
T
-
P
A
T
E
N
T

F
L
IC
K
R

S
O
C
-
L
J

U
S
-
R
O
A
D

0

0
.5

1

1
.5

·10
4

(c) Average Page Gap Distance: 𝑔𝑎𝑝𝑝 (𝐺) (lower is better)

A
M

A
Z
O
N

C
I
T
-
P
A
T
E
N
T

F
L
IC
K
R

S
O
C
-
L
J

U
S
-
R
O
A
D

0

0
.5

1

·10
−2

(d) Average Neighbourhood Overlap: 𝑛𝑜 (𝐺) (higher is better)

Figure 2: Comparison of ordering algorithms according to locality metrics.

best performance in neighbourhood overlap when the input graph

has many closed triangles, such as FLICKR. This is expected as

GO’s objective function tries to maximize the number of common

neighbours that form the closed triangles. When GAL sacrificing

the lower degree vertices, it decreases the number of common

neighbours of low degree vertices in a page. In web graphs and

road networks, the average degree is lower, therefore, this situation

rarely happens.

5 CONCLUSION
In this work, we study the irregular access pattern of graphs that

comes from the structural properties. We propose a serialization

algorithm, GAL, that considers the graph topology and the roles

vertices play in this topology. GAL uses this information in the place-

ment decisions, looking beyond the immediate successor of a vertex

in the access sequence. We evaluate GAL with respect to existing or-

dering algorithms using well-known clustering quality/ordering lo-

cality metrics such as conductance, coheseiveness, neighbourhood

overlap and gap distance. The results show that GAL outperforms

the existing algorithms in most cases while demonstrating that

overall GAL is more adaptive than its competitors. GAL’s ability to

leverage structural depth makes it a robust choice for improving

vertex ordering across a range of graph topologies.

ACKNOWLEDGMENTS
This work was supported by the Natural Sciences and Engineering

Research Council of Canada (NSERC) under grants RGPIN-2024-

03993 and RGPIN-2024-04657. We thank Lori Paniak for supporting

the computing infrastructure used for this work.

REFERENCES
[1] [n.d.]. DB-Engines - Knowledge Base of Relational and NoSQL Database Man-

agement Systems. https://db-engines.com/en/

[2] [n.d.]. Graph Data Platform | Graph Database Management System | Neo4j.

https://neo4j.com/

[3] Junya Arai, Hiroaki Shiokawa, Takeshi Yamamuro, Makoto Onizuka, and Sotetsu

Iwamura. 2016. Rabbit Order: Just-in-Time Parallel Reordering for Fast Graph

Analysis. In Proc. 30th IEEE Int. Parallel & Distributed Processing Symp. 22–31.
https://doi.org/10.1109/IPDPS.2016.110

[4] Timothy G. Armstrong, Vamsi Ponnekanti, Dhruba Borthakur, and Mark

Callaghan. 2013. LinkBench: a database benchmark based on the Facebook

social graph. In Proc. ACM SIGMOD Int. Conf. on Management of Data. 1185–1196.
https://doi.org/10.1145/2463676.2465296

[5] Yuchen Bian, Jingchao Ni, Wei Cheng, and Xiang Zhang. 2019. The multi-walker

chain and its application in local community detection. Knowl. and Information
Syst. 60 (2019), 1663–1691. https://doi.org/10.1007/s10115-018-1247-1

7

https://db-engines.com/en/
https://neo4j.com/
https://doi.org/10.1109/IPDPS.2016.110
https://doi.org/10.1145/2463676.2465296
https://doi.org/10.1007/s10115-018-1247-1

[6] Benjamin Coleman, Santiago Segarra, Alex Smola, and Anshumali Shrivastava.

2022. Graph reordering for cache-efficient near neighbor search. In Proc. 36th Int.
Conf. on Neural Information Processing Systems (New Orleans, LA, USA). Curran

Associates Inc., Article 2789, 13 pages.

[7] Peter. Csermely. 2009. Weak links : the universal key to the stability of networks
and complex systems. Springer.

[8] E. Cuthill and J. McKee. 1969. Reducing the bandwidth of sparse symmetric

matrices. In Proc. 24th National Conference. 157–172. https://doi.org/10.1145/

800195.805928

[9] David Easley and Jon Kleinberg. 2010. Networks, Crowds, and Markets: Reasoning
about a Highly Connected World. Cambridge University Press.

[10] Mohsen Koohi Esfahani, Peter Kilpatrick, and Hans Vandierendonck. 2021. Lo-

cality analysis of graph reordering algorithms. Proc. Int. Symp. on Workload
Characterization (2021), 101–112. https://doi.org/10.1109/IISWC53511.2021.00020

[11] Priyank Faldu, Jeff DIamond, and Boris Grot. 2020. A closer look at lightweight

graph reordering. Proc. Int. Symp. on on Workload Characterization (2020), 1–13.

https://doi.org/10.48550/arxiv.2001.08448

[12] Santo Fortunato. 2010. Community detection in graphs. Physics Reports (2010),
75–174. https://doi.org/10.1016/j.physrep.2009.11.002

[13] Mark S. Granovetter. 1973. The Strength of Weak Ties. Amer. J. Sociology 78, 6

(1973), 1360–1380. http://www.jstor.org/stable/2776392

[14] Aditya Grover and Jure Leskovec. 2016. node2vec: Scalable feature learning for

networks. In Proc. 22nd ACM SIGKDD Int. Conf. on Knowledge Discovery and
Data Mining. 855–864. https://doi.org/10.1145/2939672.2939754

[15] Nicolaus Henke, Jacques Bughin, Michael Chui, J. Manyika, Tamim Saleh, and

Bill Wiseman. 2016. The Age of Analytics: Competing in a data-driven world.

https://api.semanticscholar.org/CorpusID:196173558

[16] Imranul Hoque and Indranil Gupta. 2012. Disk layout techniques for online

social network data. IEEE Internet Comput. 16, 3 (2012), 24–36. https://doi.org/

10.1109/MIC.2012.40

[17] Jinhong Jung. 2016. Random walk with restart on large graphs using block

elimination. ACM Trans. Database Syst. 41, 2 (2016). https://doi.org/10.1145/

2901736

[18] Ravi Kannan, Santosh Vempala, and Adrian Vetta. 2004. On clusterings: Good, bad

and spectral. J. ACM 51, 3 (2004), 497–515. https://doi.org/10.1145/990308.990313

[19] George Karypis and Vipin Kumar. 1998. A fast and high quality multilevel

scheme for partitioning irregular graphs. SIAM J. on Scientific Comput. 20, 1
(1998), 359–392. https://doi.org/10.1137/S1064827595287997

[20] Zeynep Korkmaz, M. Tamer Özsu, and Khuzaima Daudjee. 2025. Locality-Aware

Cache Replacement Policy for Graph Traversals (to appear). Proc. VLDB Endow-
ment 18 (2025).

[21] Jure Leskovec, Kevin J. Lang, Anirban Dasgupta, and Michael W. Mahoney. 2008.

Statistical properties of community structure in large social and information

networks. In Proc. 17th Int. World Wide Web Conf. Association for Computing

Machinery, 695–704. https://doi.org/10.1145/1367497.1367591

[22] Zhenmin Li, Zhifeng Chen, Sudarshan M. Srinivasan, and Yuanyuan Zhou. [n.d.].

C-Miner: Mining block correlations in storage systems. In Proc. 3rd USENIX Conf.
on File and Storage Technologies. USENIX Association, 13.

[23] Andrew Lumsdaine, Douglas Gregor, Bruce Hendrickson, and Jonathan Berry.

2007. Challenges in parallel graph processing. Parallel Processing Letters 17
(2007), 5–20. https://doi.org/10.1142/S0129626407002843

[24] Lovász László, L. Lov, and Of Erdos. 1996. Random Walks on Graphs: A Survey.

Combinatorica, 1–46.

[25] J. P. Onnela, J. Saramäki, J. Hyvönen, G. Szabó, D. Lazer, K. Kaski, J. Kertész,

and A. L. Barabási. 2007. Structure and tie strengths in mobile communication

networks. Proc. National Academy of Sciences of the United States of America 104,
18 (2007), 7332–7336. https://doi.org/10.1073/pnas.0610245104

[26] Tarikul Islam Papon, Taishan Chen, Shuo Zhang, and Manos Athanassoulis. 2024.

CAVE: Concurrency-Aware Graph Processing on SSDs. Proc. ACM Manag. Data
2, 3, Article 125 (2024). https://doi.org/10.1145/3654928

[27] Bryan Perozzi, Rami Al-Rfou, and Steven Skiena. 2014. DeepWalk: online learning

of social representations. In Proc. 20th ACM SIGKDD Int. Conf. on Knowledge
Discovery and Data Mining. Association for Computing Machinery, 701–710.

https://doi.org/10.1145/2623330.2623732

[28] Ilya Safro, Dorit Ron, and Achi Brandt. 2006. Graph minimum linear arrangement

by multilevel weighted wdge contractions. Journal of Algorithms 60, 1 (2006),
24–41. https://doi.org/10.1016/J.JALGOR.2004.10.004

[29] Siddhartha Sahu, Amine Mhedhbi, Semih Salihoglu, Jimmy Lin, and M. Tamer

Özsu. 2017. The ubiquity of large graphs and surprising challenges of graph

processing. Proc. VLDB Endowment 11, 4 (2017), 420–431. https://doi.org/10.

1145/3186728.3164139

[30] Sherif Sakr, Angela Bonifati, Hannes Voigt, Alexandru Iosup, Khaled Ammar,

Renzo Angles, Walid Aref, Marcelo Arenas, Maciej Besta, Peter A. Boncz, Khuza-

ima Daudjee, Emanuele Della Valle, Stefania Dumbrava, Olaf Hartig, Bernhard

Haslhofer, Tim Hegeman, Jan Hidders, Katja Hose, Adriana Iamnitchi, Vasiliki

Kalavri, Hugo Kapp, Wim Martens, M. Tamer Özsu, Eric Peukert, Stefan Plan-

tikow, Mohamed Ragab, Matei R. Ripeanu, Semih Salihoglu, Christian Schulz,

Petra Selmer, Juan F. Sequeda, Joshua Shinavier, Gábor Szárnyas, Riccardo Tom-

masini, Antonino Tumeo, Alexandru Uta, Ana Lucia Varbanescu, Hsiang-Yun

Wu, Nikolay Yakovets, Da Yan, and Eiko Yoneki. 2021. The Future is Big Graphs:

A Community View on Graph Processing Systems. Commun. ACM 64, 9 (2021),

62—71. https://doi.org/10.1145/3434642

[31] Satu Elisa Schaeffer. 2007. Survey: Graph clustering. Comput. Sci. Rev. 1, 1 (2007),
27–64. https://doi.org/10.1016/j.cosrev.2007.05.001

[32] George M. Slota, Sivasankaran Rajamanickam, and Kamesh Madduri. 2017. Order

or shuffle: Empirically evaluating vertex order impact on parallel graph computa-

tions. Proc. 31st IEEE Int. Parallel & Distributed Processing Symp. (2017), 588–597.
https://doi.org/10.1109/IPDPSW.2017.164

[33] Robin Steinhaus, Dan Olteanu, and Tim Furche. 2010. G-Store : A storage

manager for graph data. https://api.semanticscholar.org/CorpusID:13046587

[34] Duncan J. Watts and Steven H. Strogatz. 1998. Collective dynamics of ‘small-

world’ networks. Nature 393 (1998), 440–442. https://doi.org/10.1038/30918

[35] HaoWei, Jeffrey Xu Yu, Can Lu, and Xuemin Lin. 2016. Speedup graph processing

by graph ordering. In Proc. ACM SIGMOD Int. Conf. on Management of Data.
ACM Press, 1813–1828. https://doi.org/10.1145/2882903.2915220

[36] Wenlei Xie, Guozhang Wang, David Bindel, Alan Demers, and Johannes Gehrke.

2013. Fast iterative graph computation with block updates. Proc. VLDB Endow-
ment 6, 14 (2013), 2014–2025. https://doi.org/10.14778/2556549.2556581

[37] Jaewon Yang and Jure Leskovec. 2012. Defining and evaluating network commu-

nities based on ground-truth. Knowledge and Information Systems 42, 1 (2012),
181–213. https://doi.org/10.48550/arxiv.1205.6233

[38] Abdurrahman Yaşar, Buğra Gedik, and Hakan Ferhatosmanoğlu. 2017. Dis-

tributed block formation and layout for disk-based management of large-

scale graphs. Distributed and Parallel Databases 35, 1 (2017), 23–53. https:

//doi.org/10.1007/s10619-017-7191-3

[39] Yunming Zhang, Vladimir Kiriansky, Charith Mendis, Saman Amarasinghe, and

Matei Zaharia. 2017. Making caches work for graph analytics. In Proc. 2017 IEEE
Int. Conf. on Big Data. 293–302. https://doi.org/10.1109/BigData.2017.8257937

8

https://doi.org/10.1145/800195.805928
https://doi.org/10.1145/800195.805928
https://doi.org/10.1109/IISWC53511.2021.00020
https://doi.org/10.48550/arxiv.2001.08448
https://doi.org/10.1016/j.physrep.2009.11.002
http://www.jstor.org/stable/2776392
https://doi.org/10.1145/2939672.2939754
https://api.semanticscholar.org/CorpusID:196173558
https://doi.org/10.1109/MIC.2012.40
https://doi.org/10.1109/MIC.2012.40
https://doi.org/10.1145/2901736
https://doi.org/10.1145/2901736
https://doi.org/10.1145/990308.990313
https://doi.org/10.1137/S1064827595287997
https://doi.org/10.1145/1367497.1367591
https://doi.org/10.1142/S0129626407002843
https://doi.org/10.1073/pnas.0610245104
https://doi.org/10.1145/3654928
https://doi.org/10.1145/2623330.2623732
https://doi.org/10.1016/J.JALGOR.2004.10.004
https://doi.org/10.1145/3186728.3164139
https://doi.org/10.1145/3186728.3164139
https://doi.org/10.1145/3434642
https://doi.org/10.1016/j.cosrev.2007.05.001
https://doi.org/10.1109/IPDPSW.2017.164
https://api.semanticscholar.org/CorpusID:13046587
https://doi.org/10.1038/30918
https://doi.org/10.1145/2882903.2915220
https://doi.org/10.14778/2556549.2556581
https://doi.org/10.48550/arxiv.1205.6233
https://doi.org/10.1007/s10619-017-7191-3
https://doi.org/10.1007/s10619-017-7191-3
https://doi.org/10.1109/BigData.2017.8257937

	Abstract
	1 Introduction
	2 Related Work
	3 Graph-Aware Layout
	3.1 Random Walks
	3.2 Vertex Ordering

	4 Experimental Evaluation
	4.1 Setup
	4.2 Datasets
	4.3 Ordering Algorithms
	4.4 Evaluation Metrics
	4.5 Ordering Quality Evaluation Results

	5 Conclusion
	Acknowledgments
	References

