
Hyracks Unchained: Efficient Recursion for
NavigationalQueries in Apache AsterixDB
Glenn Galvizo

∗

Couchbase

glenn.galvizo@couchbase.com

Michael J. Carey

University of California, Irvine

mjcarey@ics.uci.edu

ABSTRACT
Navigation is a central construct in most modern graph query lan-

guages, though the execution of navigational queries are often sub-

optimal at scale. Navigational queries, in contrast to other graph-

based problems, do not benefit from the bulk-synchronization pro-

cess that most graph processing systems hinge on. Graphix, an

extension of the Big Data management system Apache AsterixDB,

enables its users to author navigational queries. In this paper we ex-

plain how Hyracks, the underlying execution engine of AsterixDB

(and subsequently Graphix) was extended to realize navigational

queries on a shared-nothing cluster of nodes without per-step bulk

synchronization. We include an evaluation of our solution using a

workload of operational and analytical queries to show that inde-

pendence, a property of path finding, can be exploited in Hyracks

to efficiently execute Graphix queries.

VLDBWorkshop Reference Format:
Glenn Galvizo and Michael J. Carey. Hyracks Unchained: Efficient

Recursion for Navigational Queries in Apache AsterixDB. VLDB 2025

Workshop: Large-Scale Graph Data Analytics.

VLDBWorkshop Artifact Availability:
The source code, data, and/or other artifacts have been made available at

https://github.com/graphix-asterixdb/.

1 INTRODUCTION
Recursive computation on Big Data is required in many modern

applications. From the iterative processes found in machine learn-

ing to the evaluation of recursive Datalog programs, the efficient

execution of recursive queries and programs remains an active

area of research. A particular class of interesting queries are nav-
igational queries over graph data, which aim to enumerate paths

(sequences of related vertices and edges) between two vertices.

These queries are most commonly expressed in graph query lan-

guages like Cypher [13] or GQL [12, 20]. Evaluation of these queries

are commonly delegated to graph databases that tightly couple their

storage (i.e., how vertices and edges are physically represented)

and their query languages. As a consequence, users aiming to pose

navigational queries over existing non-graph data must ultimately

develop and maintain some form of ETL (extract-transform-load)

pipeline to duplicate their existing data to a graph database. This

paradigm leads to a higher cost to “own your data” (i.e., storage

∗
Also with University of California, Irvine.

This work is licensed under the Creative Commons BY-NC-ND 4.0 International

License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of

this license. For any use beyond those covered by this license, obtain permission by

emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights

licensed to the VLDB Endowment.

Proceedings of the VLDB Endowment. ISSN 2150-8097.

cost, compute cost, and development cost). We contrast the compo-

sition of multiple, narrow-purpose systems with one system that

offers multiple (non-materialized) views of the same data. Graph

processing systems such as Pregel [21], Giraph [5], and Pregelix [9]

allow users to specify graph algorithms over their existing data

to execute at massive scale using bulk synchronous parallelism

(BSP). While BSP enables the efficient computation of algorithms

like PageRank, navigational queries benefit less due to the fact

that path finding is a) sequential (i.e., a path grows one vertex at

a time), and b) independent (i.e., paths can be enumerated without

synchronization).

In this paper, we will focus on how navigational queries can be

executed by a distributed database in-situ and in a manner that ex-

ploits path finding’s independence property. Specifically, we will de-

tail how the Graphix extension of Apache AsterixDB leverages the

execution engine Hyracks to realize semi-synchronous recursion

for navigational queries. The remainder of this paper is organized

as follows: Section 2 reviews AsterixDB, its Graphix extension,

and the Hyracks execution engine. Section 3 introduces how we

extended Hyracks to execute unbounded navigational queries. Sec-

tion 4 details an evaluation of our Hyracks extension. Section 5

reviews related work around recursion for navigation.

2 BACKGROUND
In this section, we give an overview of i) AsterixDB, ii) the Graphix

extension for AsterixDB, and iii) Hyracks, the runtime engine un-

derlying AsterixDB. While discussing i), ii), and iii), we will also

describe a) a social network example, b) an example AsterixDB

(plus Graphix) architecture to host the social network example, and

c) a navigational query example.

2.1 Apache AsterixDB
Apache AsterixDB is a Big Data management system (BDMS) de-

signed to be a highly scalable platform for document storage, search,

and analytics [2]. AsterixDB possesses a flexible, semi-structured

data, model that accommodates a range of use cases —from “schema-

first” to “schema-never”. To query AsterixDB, SQL
++
, a generalized

form of SQL that enables the querying of semi-structured data is

used [10]. To scale horizontally AsterixDB follows a shared-nothing

architecture, where each node independently accesses storage and

memory. All nodes are managed by a central cluster controller that

a) serves as an entry point for user requests and b) coordinates

work amongst the individual AsterixDB nodes. After a query ar-

rives at the cluster controller, the query is translated into a logical

plan and subsequently rewritten in a rule-based and cost-based

manner to produce an optimized physical plan [7]. This optimized

physical plan is then translated into a job that can run across all

nodes in the cluster [8]. Datasets in AsterixDB are hash-partitioned

https://github.com/graphix-asterixdb/
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org

Figure 1: Architecture for the two-node AsterixDB / Graphix
example cluster that supports the social network database.

across the cluster on their primary key into primary B
+
tree in-

dexes, where the data records reside, with secondary indexes being

local to the primary data on each node. Both internal datasets and

secondary indexes are LSM (Log-Structured Merge) based, enabling

fast ingestion performance [3].

To illustrate many of the concepts discussed in this paper, we will

assume a social network example database defined as collections

of AsterixDB documents. Two major entities are captured in our

example: (i) Users and (ii) Messages. Two relationships are captured
in our social network: (I) a User may post one or more Message(s)
and (II) a Message may reply to exactly one Message.

To host our social network example, we will assume the two-

node AsterixDB architecture in Figure 1 going forward. In Figure 1,

a user first submits a query to the cluster controller process on

machine 𝐴. The cluster controller process builds an optimized job

that is distributed to both node controller processes on machine

𝐴 and machine 𝐵. When the job is finished executing, the cluster

controller responds back to the user with the results of the query.

To scale outward in this architecture, an AsterixDB user would

spawn more node controller processes on additional machines.

2.2 Graphix Extension
Graphix is an Apache AsterixDB extension that enables users to

perform ad-hoc, partitioned-parallel, and synergistic graph plus

document analytics over existing AsterixDB data in-situ [14, 15].

Graphix allows users to define property graph views that map their

original AsterixDB documents to (virtual) labeled collections of ver-

tices and edges. Using the Users and Messages datasets from Sub-

section 2.1, our running example consists of a Graphix property

graph view SocialNetworkGraph with vertex types (:User) and

� �
1 FROM GRAPH SocialNetworkGraph
2 (u:User) −[: WROTE]−>(m1: Message),
3 (m1)−[r: REPLY_OF +]−>(m2: Message)
4 WHERE u.id = $uid
5 SELECT u, m1 , m2 , r;
� �

Listing 1: The running query example: find a) a specific user
u, b) messages m1 written by u, c) messages m2 that m1 replied
to, and d) paths of message responses r from m1 to m2.

(:Message) (defined as the Users and Messages datasets respec-

tively) and the following edge types:

(1) (m1:Message)−[:REPLY_OF]−>(m2:Message), defined as the
JOIN between two messages m1, m2 where m1.reply_of =

m2.id; and
(2) (u:User)−[:WROTE]−>(m:Message), defined as the JOIN be-

tween a user u and a message m where u.id = m.user_id.
The complete definition for SocialNetworkGraph is given in [15].

Once a Graphix graph is defined, users are free to immediately issue

queries about their graph using gSQL
++
, an extended version of

SQL
++

with Cypher-inspired path syntax. gSQL
++

extends the FROM
clause of SQL

++
to additionally bind vertex, edge, and path patterns

of a navigational graph pattern to SQL
++

variables. A gSQL
++

query

issued to the cluster controller of a Graphix cluster is rewritten

into a SQL
++
-esque query (more accurately, an abstract syntax tree)

that is then processed and executed using AsterixDB’s optimizer

and runtime.

As discussed in the introduction, our work here addresses the

specific class of recursion that is required to specify navigational
query patterns in Graphix. A navigational query pattern includes

one or more path patterns, which qualify paths using regular ex-

pressions of edge labels. For example, the gSQL
++

query in List-

ing 1 specifies the regular expression REPLY_OF+. The variable r
is bound to all paths containing at least one REPLY_OF edge. Paths

in Graphix are AsterixDB documents that contain two list-valued

fields: i) Vertices, a list of vertices represented as virtual AsterixDB
documents, and ii) Edges, a list of edges also represented as virtual

AsterixDB documents. Section 3 will focus on how Line 3’s pattern

in Listing 1 is evaluated on the architecture of Figure 1.

2.3 Hyracks Runtime
Hyracks is the runtime engine used by AsterixDB and Graphix,

enabling partitioned parallel data-flow computations on shared-

nothing clusters of machines. The top-level unit of work in Hyracks

is a job, described as a directed graph of operators and connectors.
Hyracks operators consume and produce data, while connectors re-

distribute data between operators. A Hyracks operator is composed

of one or more activities, each of which specifies logic for handling

a frame of data. As an example, the hash JOIN operator is composed

of two activities: one to build the hash table, and another to probe

the hash table (i.e., execute the JOIN). We refer to the graph of all

activities across all operators in a Hyracks job as an activity graph.
Each activity later becomes instantiated as several identical tasks

that are distributed to different partitions to realize the associated

Hyracks job. A Hyracks operator may also have blocking require-

ments on its activities (e.g., a hash JOIN operator must finish the

activity to build its hash table before starting the activity to probe

its hash table), which the Hyracks scheduler then uses to define

groups of activities (known as stages) to execute in series.

At runtime, data in Hyracks is pushed from producers to con-

sumers in the units of fixed-size, contiguous byte-arrays known as

frames. Hyracks activity developers implement a set of methods

that operate on frames. The primary carriers of data are records that
are contained within frames. Activities and connectors are typically

implemented in a way that maximizes the number of records in a

frame before sending it to downstream consumers, although this

is not a Hyracks requirement. Hyracks was designed to be data

model agnostic, thus the contents of a frame are not inherent to

Hyracks. As long as all Hyracks activities and connectors in a job

agree on the frame format, Hyracks will move data through a job

appropriately.

3 HYRACKS (UNCHAINED)
Prior to gSQL

++
, Hyracks jobs were acyclic. In this section, we

will describe three problems that can emerge in the event of cycles
in Hyracks activity graphs: 1) the problem of liveness, where no
progress is being made, 2) the problem of safety, where activity
instances can deadlock due to an over-allocation of resources, and

3) the problem of mortality, where activity instances may never

terminate. We will then describe two additions to Hyracks to realize

semi-synchronous navigational Graphix queries: the FIXED POINT
operator and a minimally invasive “decorator” to supplement the

responsibility of an existing Hyracks activity.

We begin our discussion with a review of the existing “internals”

of Hyracks activities. A Hyracks activity must, at a minimum, im-

plement the IFrameWriter interface.
∗
The IFrameWriter interface

consists of following core methods, all of which are only called by

the activity’s upstream (data providing) activity.

(1) open(), which initializes resources and subsequently calls

the open() method for its own downstream activities;

(2) nextFrame(f), which accepts an input frame f to perform

some computation on using the contents of the frame; and

(3) close(), which a) deallocates any acquired resources, b) for-
wards any partial frame data that the activity currently

has buffered to its downstream activities, and c) calls the

close() method for its own downstream activities.

The typical lifecycle of a Hyracks activity instance involves (i) get-

ting its own open() method called and calling open() for its own

(downstream) consumers, (ii) accepting full frames of tuples from

an upstream producer via its own nextFrame(f) method and calling

the nextFrame(f) method for its own consumers when its output

buffer becomes full, and finally (iii) getting its own close() method

called and calling close() for its own downstream consumers.

3.1 Single Partition Recursion
Now let us consider a two-activity group composed of activities

𝑎1 and 𝑎2 within a single partition. To support recursion, activity
𝑎1’s output will be connected to activity 𝑎2’s input, and activity

𝑎2’s output will be connected to activity 𝑎1’s input. Figure 2 depicts

∗
Activities that act as a source in an activity cluster (i.e., activities that do not have

any input to themselves) do not implement this interface, but source activities cannot

appear inside of a cyclic activity graph (otherwise they would not be sources). For

clarity, we will consider each activity as both a producer and consumer in this section.

Figure 2: Depiction of activity 𝑎1 forwarding its output buffer
to activity 𝑎2 via 𝑎2’s nextFrame(f) method.

an instance of 𝑎1 directly pushing a full frame to 𝑎2 by calling 𝑎2’s

nextFrame(f) method. To understand how most Hyracks activi-

ties implement the IFrameWriter interface, the activities associated

with 𝑎1 and 𝑎2 will only call each other’s nextFrame(f) method

when: 1) their own output buffer frame is full or 2) their upstream

producer has indicated that it has no tuples left to offer (i.e., by

having its own close() method called). This IFrameWriter imple-

mentation maximizes the amount of information held in a frame

before the activity forwards the output buffer frame downstream,

ultimately leading to better utilization of frame-transferring re-

sources like network bandwidth. In our example in Figure 2, we

note that activity 𝑎1 is forwarding a full frame from its output buffer

to the input of 𝑎2. Activity 𝑎2 still has a partial frame, so it does not

forward its output to 𝑎1 yet.

3.1.1 Maintaining Liveness. Wewill first consider the liveness prop-
erty, which describes a group of activities that are always “making

progress”. In the context of navigation, liveness describes a group of

activities that will eventually generate all (satisfiable) paths. Below,

we describe a scenario where this liveness property is violated:

Scenario .

Assume that both activities 𝑎1 and 𝑎2 from Figure 2 cur-

rently possess partially full output buffers.

Violation .

The two activities possess the potential to perform more

work, but they will not due to their “forward when full”

implementation. 𝑎1 has a partially full output buffer that it

could forward to 𝑎2 but does not. Similarly, 𝑎2 has a partially

full output buffer that it could forward to 𝑎1 but does not.

A starting point to remedy this liveness violation involves adding

the following requirements for each activity within a loop: i) the

ability to forward partially full output buffers, and ii) some method

of invoking this ability. We note that the first requirement has

already been implemented for all activities, as a flush() method

(originally purposed for AsterixDB feeds), so our solution only

needs to consider the second requirement (i.e., by invoking the

flush() method).

At a high level, to guarantee liveness we must add a form of

inter-activity communication beyond the method calls provided

by the existing IFrameWriter interface. Our solution is an in-band

approach that leverages the IFrameWriter interface that each ac-

tivity already implements: 1) We define two classes of frames: (i) a

data frame, full of tuples, and (ii) a newmessage frame, used to pass

information to other activities downstream. 2) We non-invasively

“decorate” (in the object-oriented design pattern sense) each activ-

ity in a Hyracks job that may violate liveness (i.e., those inside of

a loop) to recognize and act on these new message frames. Mov-

ing back to the liveness violation scenario, both 𝑎1 and 𝑎2 would

first be decorated to recognize message frames. Either 𝑎1 or 𝑎2
would then generate and forward a message frame containing a

RELEASE directive to the decorated activity instance 𝑎1/𝑎2 using

𝑎1/𝑎2’s nextFrame(f) method (we will detail when and who gener-
ates these message frames after addressing the two other proper-

ties). The callee activity would then call its own flush() method

to forward its partial frame to the input of the caller activity. Mes-

sage frames can be viewed as a form of “punctuation” [29], which

are used in the context of stream processing as signals for stream

processors to release state.

3.1.2 Maintaining Safety. The second property of interest is the

safety property, which (for our purposes) describes a group of

activities that will never deadlock. Below, we describe a scenario

where this safety property is violated:

Scenario .

Assume that both activities 𝑎1 and 𝑎2 from Figure 2 now

possess full output buffers and full input buffers.

Violation .

𝑎1 and𝑎2 have full input and output buffers, thus no progress

can be made. The resources in contention here are frames

(specifically, frames used to perform network I/O). In this

safety violation scenario, activity 𝑎1 has filled all frames

within its budget and is prepared to send these frames to

activity 𝑎2. 𝑎2, however, cannot receive these frames from

𝑎1 since 𝑎2 has filled all frames within its budget and is

prepared to send these frames to activity 𝑎1. Neither 𝑎1
nor 𝑎2 is aware of the fact that their actions are causing a

deadlock.

To remedy this deadlock violation, we designate (at compile time)

one activity within a cyclic activity group to avoid exhausting

“shared resources” by simply moving any acquired frames (via its

nextFrame(f)method) to a separate secondary buffer. This separate

buffer possesses its own memory budget with an ability to spill to

disk when full. After some point, all activities within the cyclic activ-

ity group will have forwarded everything stored in their secondary

buffer to this designated activity. The designated activity will then

forward everything stored in its secondary buffer, repeating this

buffer-and-then-forward process until all frames are exhausted.

Suppose that activity 𝑎1 is designated to store each frame sent by

𝑎2 to its own secondary buffer. After 𝑎2 has given all of its frames

to 𝑎1, 𝑎1 then forwards all of the frames in its secondary buffer to

activity 𝑎2. At a glance, this buffer-and-then-forward process may

seem like Graphix is performing a form of global synchronization

at each step of the computation. We reminder the reader here that

all of our explanations and examples thus far have been local to a

single partition. As we will later see, Graphix performs this buffer-

and-then-forward process locally per partition without a need for

inter-partition synchronization.

3.1.3 Maintaining Mortality. The last property we will consider is

the mortality property, which guarantees that every activity will

eventually terminate (i.e., call close()) when there is no work left

to do. For activity groups with cycles, we can easily show a violation

of this mortality property:

Scenario .

Assume that both activities 𝑎1 and 𝑎2 from Figure 2 now

possess completely empty input and output buffers. There

exists no work left to do.

Violation .

The two activities 𝑎1 and 𝑎2 could terminate but do not. In

order for activity 𝑎1 to finish, its upstream producer 𝑎2 must

call 𝑎1’s close() method. Conversely, activity 𝑎2 will only

call the close() of 𝑎1 when activity 𝑎1 calls 𝑎2’s close()
method. Clearly, neither 𝑎1 nor 𝑎2 can call close(). This
termination problem is inherent to all Hyracks jobs with
cycles, as an activity is only aware of its upstream producers

(indirectly via the IFrameWriter interface).

We will first detail our solution for a single partition and later show

that we can remedy this mortality violation globally so as to adhere

to our previously defined “non-globally-blocking” objective. To

start, we note that an activity 𝑎 can only reason about the termina-

tion status of its own immediate upstream producer (i.e., by having

𝑎’s own close() method invoked). Our solution requires i) desig-

nating (at compile time) one activity to call close() when there

exist no tuples left to process, ii) getting all activities within the

loop to report on their status, and iii) sending the statuses of each

activity to the designated “close()-er” activity. Graphix realizes

these requirements by extending the use of message frames in the

previous liveness section. Our solution starts with either activity 𝑎2
or 𝑎1 giving the RELEASE directive along with an uncolored marker
inside a message frame to activity 𝑎1/𝑎2 via 𝑎1/𝑎2’s nextFrame(f)
method. If the callee activity has any tuples left to process, it will

color in the marker and forward the message frame downstream

(back to the caller activity). Otherwise, the callee activity will push

an uncolored marker frame. When our caller activity receives the

inevitable uncolored marker frame, the caller will then invoke the

close() method of 𝑎1/𝑎2. The callee activity will subsequently in-

voke the close() method of the original caller, terminating the

computation. This use of message frames was inspired by the use

of punctuation in the FFP (flying fixed point) operator of [11] for

the problem of cyclic stream processing.

3.2 Fixed Point Operator
Returning to our running example query (specifically, the path pat-

tern (m1)−[r:REPLY_OF+]−>(m2)), Figure 3 defines a partial graph
of activity instances distributed across a two-node cluster that finds

all paths r from the source messages m1 to the destination messages

m2 while satisfying our liveness, safety, andmortality properties. For

brevity, we omit the subgraph of activities (the “...” at the bottom) in-

volved in the computation of the variables u (the source user), m1 (the
source message) and r0 (an initial zero-length path). As described in
the previous three sections, the solution to each problem caused by

cycles in the activity graph involves (at a minimum) elevating the

responsibility of some designated activity. Starting at the bottom,

we define a new group of activities controlled by a FIXED POINT
operator. Algebraically, this operator acts like a UNION ALL operator

with one output and two inputs: the anchor input (from below) and

the recursive input. In Figure 3, FIXED POINT binds the variable mprev

Figure 3: Subgraph of Hyracks activity instances (distributed
across a two-node cluster) used to find the positive closure
of REPLY_OF edges connecting Message vertices.

to m1 (from the anchor input) and mprev (from the recursive input).

Instances of the FIXED POINT operator are additionally responsible

for: (i) generating message frames with the RELEASE directive and

an uncolored marker to forward to their immediate downstream ac-

tivity (here, the PIDX SEARCH); (ii) buffering incoming frames from

the REPLICATE activity to maintain safety; and (iii) determining

whether or not it is appropriate to call close().
Datasets in AsterixDB are hash partitioned using their primary

key, thus records into the FIXED POINT operator must first be for-

warded to the appropriate partition using the same hash function

used to partition the Messages dataset and the Messages search key

(the reply_id field of our previous message mprev). mprev is then

used to probe the Messages dataset for reachable messages m us-

ing the PIDX SEARCH operator. After performing this primary index

search, the record ro is built to capture this traversal of a REPLY_OF-
labeled edge. To avoid cycles that may emerge from the underlying

data, the subsequent SELECT operator is used to check if m or ro
already exist in rprev. The topmost ASSIGN then assembles the path

r using m, ro, and rprev. Finally, tuples are forwarded downstream

to the MESSAGE SINK operator and back to the recursive input of the

FIXED POINT for instances of the previous path to grow in length.

Each activity in the loop (𝑎 ∈ 𝐴
loop

, where 𝐴
loop

represents a

cyclic activity group) is decorated with a “MESSAGE AWARE” wrap-
per. A decorated activity proxies the open(), close(), and flush()
methods of 𝑎, but alters the functionality of nextFrame(f). Upon
receiving a message frame it: 1) calls 𝑎’s flush() method; 2) colors

the marker of the message frame if the previous flush() call sent

any tuples downstream; and 3) forwards the potentially modified

message frame to its downstream consumer. To localize the use of

message frames (to avoid having to decorate all downstream ac-

tivities in a plan with MESSAGE AWARE), a MESSAGE SINK operator is

used to forward only the data frames to the RESULT SINK operator.

Note that the “modify-and-forward” action that each decorated

activity performs here for message frames allows the FIXED POINT
operator to reason about the status of all activities in the loop

after generating the message frames. If the FIXED POINT operator

receives a message frame containing a marker that has been colored,

then it knows that at least one activity within the loop has generated

more tuples (thus, it would be erroneous to call close()). In this

case of a frame with a colored marker, FIXED POINT generates a new
message frame containing the RELEASE directive and an uncolored

marker to push downstream. If FIXED POINT receives a message

frame containing a marker that has not been colored, then it can

conclude that the loop has no tuples left to process locally (see

the next section for reasoning about the distributed case). When

FIXED POINT has no tuples left to process, FIXED POINT calls the

close() method of its downstream consumer to close all activities

within the loop.

3.3 Distributed Termination
The liveness and safety properties of the previous section do not

require coordination from activity instances of other partitions. The

mortality property, however, requires the consideration of all activ-
ity instances across all partitions to avoid premature / incorrect calls

to close(). Similar to howwe designated the FIXED POINT operator
to manage the termination of all activities in a cyclic activity group,

we designate one FIXED POINT instance out of all FIXED POINT in-

stances to coordinate the termination for every cyclic activity group.

By default in Graphix, we designate the FIXED POINT in the first

machine (node controller #1 in Figure 3) as the “coordinator” to

manage this activity cluster state. To facilitate communication be-

tween each FIXED POINT across machines, a custom communication

channel is used between the coordinating FIXED POINT instance

and the other FIXED POINT instances (depicted in Figure 3 by the

double pink dotted lines)
†
. To minimize the network chatter be-

tween machines and to reduce the message-to-data-frame ratio

during runtime, message frames remain local; they do not travel
across the network at partitioned or broadcast connectors.

†
In practice, this communication channel between different FIXED POINT instances

is realized using an M:N hash-partitioned connector with a self-loop connecting

the FIXED POINT back to itself. Consequently, we did not need to modify the task

distribution infrastructure built for AsterixDB.

Algorithm 1 Algorithm used by the FIXED POINT coordinator to

terminate all FIXED POINT instances.

1: wait until REQ is received from all participants

2: broadcast VOTE_ON_A to all participants ⊲ Parallel voting!
3: while not all participants have voted with ACK_A do
4: if any participant responds with NACK_A then
5: broadcast CONTINUE to all participants

6: goto line 1

7: for all participant ∈ participants do ⊲ Sequential voting!
8: send VOTE_ON_B to the participant

9: if the participant responds with NACK_B then
10: broadcast CONTINUE to all participants

11: goto line 1

12: broadcast TERMINATE to all participants

We now move to the actions the coordinator FIXED POINT must

take to inform each “participant” FIXED POINT that it can safely ter-

minate. Algorithm 1 depicts the process the coordinator performs.

The coordinator starts by waiting for each participant to send a

“request-to-terminate” (dubbed the REQ event). This REQ event is

given to the coordinator by a participant when the participant ob-

serves that it has no tuples (we detail the participant algorithm next).

When the coordinator receives a REQ event from each participant,

the coordinator can conclude that each participant has observed a

lack of tuples in its own partition for some instant. Calling close()
nowwould be erroneous, however, because partitions pass tuples to

other partitions asynchronously. We can easily visualize an example

where a participant sends REQ to the coordinator, only to receive

more tuples immediately after transmitting its status. To handle

this asynchronous nature, the status-checking that each partici-

pant performs must inevitability be serialized in order to guarantee

correctness [22, 28].

To minimize the impact of serialized participation, the status

checking has been divided into two phases: the 𝐴 phase and the 𝐵

phase. At the start of the𝐴 phase (starting on Line 1 of Algorithm 1),

the coordinator has received the REQ event from all participant. The

coordinator then broadcasts the VOTE_ON_A event to each participant.
A participant during the 𝐴 phase responds with either ACK_A or

NACK_A. If any participant responds with NACK_A, the coordinator
i) eagerly informs all participants that their request-to-terminate is

not granted and ii) returns to Line 1 to wait for all participants to

send a new REQ event. The purpose of the 𝐴 stage is to increase the

liveness / throughput of the looping computation, as the message

frame that each participant uses to check the status of its own

partition also contains the RELEASE directive to flush the buffers of

its corresponding activities. If all participants respond with ACK_A,
then the coordinator moves to the 𝐵 phase. The 𝐵 phase (starting on

Line 6) consists of serialized status checking, where each participant

is issued a VOTE_ON_B event. If a participant responds with NACK_B,
our coordinator informs all participants that their REQ is not granted
and returns to Line 1. If all participants respond with ACK_B, our
coordinator broadcasts the TERMINATE event to all participants to

conclude the looping computation.

Algorithm 2 Algorithm used by every FIXED POINT participant to

work with its coordinator to call close().
1: function CheckAndFlushPartition()

2: 𝑓 ← uncolored marker frame with RELEASE directive

3: push 𝑓 downstream

4: while 𝑓 is not returned do
5: forward all data frames downstream

6: return 𝑓

7: while anchor input is not closed do
8: forward all frames downstream

9: repeat
10: 𝑓 ← CheckAndFlushPartition()

11: until 𝑓 is uncolored

12: send REQ to coordinator

13: for phase ∈ [𝐴, 𝐵] do
14: wait for VOTE_ON_A / VOTE_ON_B from coordinator

15: if CheckAndFlushPartition() is uncolored then
16: send ACK_A / ACK_B to coordinator

17: else
18: send NACK_A / NACK_B to coordinator

19: goto line 10 ⊲ Eagerly continue local processing!
20: wait for coordinator to respond

21: if coordinator responds with CONTINUE then
22: goto line 10

23: call close() downstream

To finish our discussion on the FIXED POINT operator, we de-

scribe the process that every FIXED POINT participant performs

in Algorithm 2. Starting on Line 7, a participant does not perform

any election related actions until all of its anchor input tuples have

been exhausted. Before participating in the election, a participant

simply forwards all frames from both inputs downstream. Once

the upstream activity bound to the FIXED POINT operator’s anchor

input calls close(), the routine CheckAndFlushPartition() is in-

voked. This routine pushes a message frame 𝑓 with the special

RELEASE directive to mandate that recipient activities (i.e., those

decorated with “MESSAGE AWARE”) must invoke their own flush()
method. The aforementioned “modify-and-then-forward” actions

of every decorated activity in the loop will eventually move 𝑓 back

to the FIXED POINT operator (via the FIXED POINT operator’s re-

cursive input). If 𝑓 is colored, then a FIXED POINT instance cannot

safely conclude that there is no work on its local partition. While

FIXED POINT is waiting to receive 𝑓 (on Line 4), data frames are

forwarded downstream. On Line 9, CheckAndFlushPartition() is

repeated until an uncolored marker is returned to the FIXED POINT.
We note that a partition will never have more than one message

frame in circulation along with its data frames, thus minimizing

the message-to-data-frame ratio.

Once a FIXED POINT participant receives an uncolored marker,

the participant sends a REQ event to the election coordinator. On

Line 13, our participant enters the 𝐴 phase. The FIXED POINT par-

ticipant waits for a VOTE_ON_A message from the coordinator, at

which it performs the CheckAndFlushPartition() routine to check

𝑛 = 1 𝑛 = 2 𝑛 = 4 𝑛 = 8

Workload Time (𝑠) 15591.53 5300.60 2886.64 72.89

% from BI−17 99.9% 99.7% 99.3% 63.4%

% from IS−∗ 0.1% 0.3% 0.7% 36.6%

Overhead (𝑀/𝑀+𝐷) 0.004 0.008 0.081 0.17

Table 1: Table enumerating the LDBC SNB workload execu-
tion times and per-node marker overhead (as a percentage
of all frames during the progress determination phase) for
Hyracks clusters of varying size (𝑛).

the status of its local partition. If a colored marker is received as a

result of this status checking, the participant responds with NACK_A
and returns to Line 7. Otherwise (if an uncolored marker is re-

ceived), the participant responds to the coordinator with ACK_A
and waits for the coordinator’s response. If the coordinator then

responds with CONTINUE, then some other FIXED POINT participant

has received a colored marker on its partition (thus, all participants

subsequently return to Line 7). Otherwise, the 𝐵 phase is entered

for all participants. With respect to the FIXED POINT participant,

there exists no functional difference between the 𝐴 phase and the

𝐵 phase. Once a FIXED POINT participant advances through both 𝐴

and 𝐵 phases, the participant can safely call close() downstream.

4 EVALUATION
In this section, we detail two experiments to answer a) “How perfor-

mant is our solution?”, b) “What overhead does the use of marker

frames incur?”, and c) “How asynchronous is our solution?” For

a more comprehensive evaluation comparing the end-to-end per-

formance of the Graphix extension with a modern graph database,

Neo4j, see [14, 15].

4.1 Experimental Setup
Our experiments use a subset of the LDBC social network bench-

mark (abbrv. LDBC SNB) [4], which describes a set of operational

and analytical queries about a social network. With respect to

the structure of the social network graph, LDBC’s data generator

produces networks that adhere to the Homophily principle (i.e.

persons with similar interests and behavior know each other) and

with vertex degrees similar to Facebook. The specific graph used for

our experiments possesses 3.7M vertices and 10.2M edges. For our

workload, we chose three LDBC SNB queries whose query plans in

Graphix utilize the FIXED POINT operator (i.e., those that require

unbounded recursion): IS−2, IS−6, and BI−17, where IS refers to

the “short-interactive” queries of the benchmark and BI refers to

the “business intelligence” queries of the benchmark. A total of 110

individual executions comprise the full workload: a) 50 executions

of query IS−2, b) 50 executions of query IS−6, and c) 10 executions

of query BI−17. All artifacts used for the experiments in this paper

can be found at: https://github.com/graphix-asterixdb/benchmark.

4.2 Measuring Overhead
We begin our discussion with the sum of execution times of all

three queries (i.e., all 110 executions) for Hyracks clusters of sizes

0% 25% 50% 75% 100%

0

2

4

P
a
t
h
L
e
n
g
t
h
(
ℓ)

Query BI−12

0% 25% 50% 75% 100%

0

2

4

Progress (% of query 𝑡)

P
a
t
h
L
e
n
g
t
h
(
ℓ)

Query IS−2

Figure 4: Plots illustrating the average (in blue), minimum,
and maximum path lengths over the per-query progress for
our LDBC SNB workload running on a cluster of size 𝑛 = 8.

𝑛 = 1 to 𝑛 = 8 in Table 1. We observe a roughly 3x speedup from

𝑛 = 1 to 𝑛 = 2, a 2x speedup from 𝑛 = 2 to 𝑛 = 4, and a 39x speedup

from 𝑛 = 4 to 𝑛 = 8. The large scale up factor from 𝑛 = 4 to 𝑛 = 8 is

because all queries are able to execute entirely in memory when

𝑛 = 8. As would be expected, most of the execution time for each

cluster configuration is dominated by the analytical query BI−17.
The BI−17 query plan (compiled by Graphix, before optimization

by Algebricks) involves two FIXED POINT operators and nine JOIN
operators. Furthermore, BI−17 accesses a larger portion of the entire
graph when compared to IS−2 and IS−6. At 𝑛 = 8, the impact of

our experiment logging (used to log each frame and each individual

path specifically for this paper) starts to dominate the “actual”

execution time (i.e., the time without our experiment logging). For

a more thorough discussion on end-to-end performance without

this logging impact, we refer the interested reader to [14, 15].

Table 1 also shows the average percentage of marker frames𝑀 to

data frames 𝐷 processed per-node during the progress determination
phase for Hyracks clusters of 𝑛 = 1 to 𝑛 = 8. As a reminder, marker

frames are not sent between nodes (so the overhead here is local

to each node). The ratio of marker frames increases with cluster

size for the same volume of graph data. At 𝑛 = 1, only 0.4% of

frames circulated are marker frames. For the same workload at

𝑛 = 8, roughly 17% of the frames locally circulated are markers.

This is because less data exists per node, but markers still need to

be circulated during the progress determination phase to correctly

terminate. We note that each marker frame possesses 𝐹 −11 bytes of
unused data, where 𝐹 refers to the frame size (by default 𝐹 = 32 KB).

This overhead, however, does not grow with the graph data size, as

only one marker frame is ever in circulation per node. As shown by

the end-to-end execution times, the performance gains enabled by

partitioned-parallelism through Hyracks outweigh this overhead.

https://github.com/graphix-asterixdb/benchmark

4.3 Measuring Asynchronicity
For our second set of experiments, we are interested in determining

whether or not our solution is indeed able to capitalize on the

independent nature of path finding. To quantify asynchronicity,

we will focus on the length ℓ of a path. Every time a path instance

completes a cycle around a cyclic activity graph, the path instance’s

length grows by one. For example, paths bound to r in Figure 3 grow
by one in length every time the path is processed by the topmost

ASSIGN.
In Figure 4, we display the range of concurrently existing path

lengths ℓ over the progress (as a percentage) of queries BI−17 and

IS−2 executed on a Hyracks cluster of size 𝑛 = 8. Data points for ℓ

are recorded whenever paths are created or incremented in length

(via the APPEND_TO_PATH function, illustrated in Figure 3). Visually,

a larger area (i.e., more black dots) indicates more asynchronicity. In

contrast, a bulk-synchronous approach would possess no area since

the length of all of its paths would grow together. The execution of

both BI−17 and IS−2 exhibit asynchronicity, with BI−17 possessing

an average ℓ range of 1.81 and IS−2 possessing an average ℓ range

width of 1.54. In the case of query IS−2, we observe that paths

of length 4 are computed almost immediately (within the first 1%

of the query). All paths that can be computed locally (per-node)

can be computed without waiting for other nodes, minimizing the

“endgame” impact of synchronous-based approaches such as [1].

5 RELATEDWORK
Efficient evaluation of recursive queries has long been an active

field of research. As a reminder, our work specifically targets ad-hoc

navigational queries over virtual property graphs distributed across

a shared-nothing cluster of workers.

We start with the established 1999 SQL standard which expresses

linear recursion through recursive CTEs (common table expres-

sion) [19]. A recursive CTE is composed of two subqueries: i) the

(non-recursive) anchor member and ii) the recursive member. All

navigational queries that do not involve backtracking can be rep-

resented using recursive CTEs. In Equation 1, we represent the

evaluation of a recursive CTE 𝑅 as our anchor member 𝑎 and the

repeated union of our recursive member 𝑟 (𝑅𝑡−1) (where 𝑟 is a func-
tion of the previous iteration of 𝑅) until 𝑟 (𝑅𝑡−1) yields no new

results:

𝑡0 : 𝑅 ⇐ 𝑎

𝑡1 → 𝑡𝑁 : 𝑅 ⇐ 𝑅 ∪ 𝑟 (𝑅) (1)

Naive evaluation of recursive CTEs involves the sequential bottom-

up execution of all steps in Equation 1. Naive evaluation ultimately

incurs duplicate work due to the use of the entire 𝑅 as input to the

recursive member 𝑟 for each iteration. Semi-naive evaluation [25]

avoids this duplicate work by first maintaining a set that possesses

newly generated tuples from the previous iteration: Δ𝑡 = 𝑅𝑡 −𝑅𝑡−1.
Δ𝑡 is then used in place of 𝑅 as input to the recursive member

𝑟 . Systems like Postgres realize recursive CTEs using semi-naive

evaluation (where Δ𝑡 is a table that is updated per iteration) [24].

Navigational queries can also be expressed in Datalog, thus we

point to systems like LogicBlox [6], BigDatalog [27], and Soufflé [26]

for evaluating navigational queries on top of logic databases. Big-

Datalog, Souffle, and early versions of LogicBlox all use semi-naive

evaluation as their core execution method. With respect to gen-

eral execution engines like Hyracks, systems like Naiad [23] and

Myria [17] have been purposed to execute Datalog programs. In

terms of architecture, BigDatalog, Naiad, and Myria are able oper-

ate on a shared-nothing cluster of workers (enabling scale-out like

Hyracks).We draw analogs to these distributed Datalog systems and

to the graph processing systems mentioned in Section 1 (Pregel [21]

and Giraph [5]) that enable massively parallel execution of graph

algorithms in a bulk-synchronous-parallel (BSP) fashion [30]. We

note that systems that accept recursive CTEs, Datalog programs,

and Pregel-like programs ultimately target a broader class of queries

that we are interested in, hindering the sequential and independent

properties of the navigational query subclass. GiraphUC [18] and

Mitos [16] are other systems that leverage similar independence

properties, though for more general recursion. GiraphUC in par-

ticular is a graph processing system that focuses on relaxing the

synchronization required for problems like navigational queries,

but it lacks important features found in more complete database

systems (e.g., a declarative query language, comprehensive query

optimization, secondary indexes, etc...).

6 CONCLUSION
In this paper we have detailed how the Hyracks engine of Aster-

ixDB was extended to handle navigational queries in a partitioned-

parallel and pipelineable manner. Existing solutions for partitioned-

parallel recursion have not targeted navigation, leading to less-

than-optimal executions that do not leverage path-finding’s inde-

pendence property.

To extend Hyracks, which was originally purposed for accepting

a directed acyclic graph of operators, we identified three problems

that emerge in directed cyclic operator graphs: a) liveness (the

lack of progress due to partial output buffers), b) safety (the over-

allocation of resources), and c) mortality (the inability to safely

terminate). A FIXED POINT operator and a marker-aware task deco-

rator were added to Hyracks to solve the aforementioned problems,

enabling the execution of navigational queries for Graphix. As

shown by our evaluation, our solution is able to capitalize on the

independent nature of path finding. Note that although this work

was done within the context of Hyracks and Graphix, many of

the concepts explored here could be applied to other systems with

data-parallel execution engines. We invite readers to try Graphix

at https://graphix.ics.uci.edu.

ACKNOWLEDGMENTS
Wewould like to acknowledge Vinayak Borkar for his input on how

ad-hoc recursion in Hyracks should be handled. We would also like

to thank (former) UCI student Sushrut Borkar for his help writing

the queries used in our evaluation. This research was supported in

part by NSF awards IIS-1838248, IIS-1954962, and CNS-1925610, by

the HPI Research Center in Machine Learning and Data Science at

UC Irvine, and by the Donald Bren Foundation (via a Bren Chair).

REFERENCES
[1] Foto N. Afrati, Vinayak Borkar, Michael Carey, Neoklis Polyzotis, and Jeffrey D.

Ullman. 2011. Map-Reduce Extensions and Recursive Queries. In Proceedings of
the 14th International Conference on Extending Database Technology (Uppsala,

https://graphix.ics.uci.edu

Sweden) (EDBT/ICDT ’11). Association for Computing Machinery, New York, NY,

USA, 1–8. https://doi.org/10.1145/1951365.1951367

[2] Sattam Alsubaiee, Yasser Altowim, Hotham Altwaijry, Alexander Behm,

Vinayak R. Borkar, Yingyi Bu, Michael J. Carey, Inci Cetindil, Madhusudan Chee-

langi, Khurram Faraaz, Eugenia Gabrielova, Raman Grover, Zachary Heilbron,

Young-Seok Kim, Chen Li, Guangqiang Li, Ji Mahn Ok, Nicola Onose, Pouria

Pirzadeh, Vassilis J. Tsotras, Rares Vernica, Jian Wen, and Till Westmann. 2014.

AsterixDB: A Scalable, Open Source BDMS. Proceedings of the VLDB Endowment
7 (2014), 1905–1916.

[3] Sattam Alsubaiee, Alexander Behm, Vinayak Borkar, Zachary Heilbron, Young-

Seok Kim, Michael J. Carey, Markus Dreseler, and Chen Li. 2014. Storage Man-

agement in AsterixDB. Proceedings of the VLDB Endowment 7, 10 (June 2014),
841–852. https://doi.org/10.14778/2732951.2732958

[4] Renzo Angles, János Benjamin Antal, Alex Averbuch, Peter A. Boncz, Orri Erling,

Andrey Gubichev, Vlad Haprian, Moritz Kaufmann, Josep-Lluís Larriba-Pey, Nor-

bert Martínez-Bazan, József Marton, Marcus Paradies, Minh-Duc Pham, Arnau

Prat-Pérez, Mirko Spasic, Benjamin A. Steer, Gábor Szárnyas, and Jack Waudby.

2020. The LDBC Social Network Benchmark. ArXiv abs/2001.02299 (2020).

https://api.semanticscholar.org/CorpusID:264427448

[5] Apache Giraph. [n.d.]. Apache Giraph, an Iterative Graph Processing System

Built for High Scalability. Available at https://giraph.apache.org.

[6] Molham Aref, Balder ten Cate, Todd J. Green, Benny Kimelfeld, Dan Olteanu,

Emir Pasalic, Todd L. Veldhuizen, and Geoffrey Washburn. 2015. Design and

Implementation of the LogicBlox System. In Proceedings of the 2015 ACM SIG-
MOD International Conference on Management of Data (Melbourne, Victoria,

Australia) (SIGMOD ’15). Association for Computing Machinery, New York, NY,

USA, 1371–1382. https://doi.org/10.1145/2723372.2742796

[7] Vinayak Borkar, Yingyi Bu, E. Preston Carman, Nicola Onose, Till Westmann,

Pouria Pirzadeh, Michael J. Carey, and Vassilis J. Tsotras. 2015. Algebricks: A

Data Model-Agnostic Compiler Backend for Big Data Languages. In Proceedings
of the Sixth ACM Symposium on Cloud Computing (Kohala Coast, Hawaii) (SoCC
’15). Association for Computing Machinery, New York, NY, USA, 422–433. https:

//doi.org/10.1145/2806777.2806941

[8] Vinayak Borkar, Michael Carey, Raman Grover, Nicola Onose, and Rares Ver-

nica. 2011. Hyracks: A Flexible and Extensible Foundation for Data-Intensive

Computing. In Proceedings of the 2011 IEEE 27th International Conference on
Data Engineering (ICDE ’11). IEEE Computer Society, USA, 1151–1162. https:

//doi.org/10.1109/ICDE.2011.5767921

[9] Yingyi Bu, Vinayak R. Borkar, Jianfeng Jia, Michael J. Carey, and Tyson Condie.

2014. Pregelix: Big(ger) Graph Analytics on a Dataflow Engine. Proceedings of
the VLDB Endowment 8 (2014), 161–172.

[10] Michael J. Carey, Don Chamberlin, Almann Goo, Kian Win Ong, Yannis Pa-

pakonstantinou, Chris Suver, Sitaram Vemulapalli, and Till Westmann. 2024.

SQL++: We Can Finally Relax!. In 40th IEEE International Conference on Data En-
gineering, ICDE 2024, Utrecht, The Netherlands, May 13-16, 2024. IEEE, 5501–5510.
https://doi.org/10.1109/ICDE60146.2024.00438

[11] Badrish Chandramouli, Jonathan Goldstein, and David Maier. 2009. On-the-

Fly Progress Detection in Iterative Stream Queries. Proceedings of the VLDB
Endowment 2, 1 (aug 2009), 241–252. https://doi.org/10.14778/1687627.1687655

[12] Alin Deutsch, Nadime Francis, Alastair Green, Keith Hare, Bei Li, Leonid Libkin,

Tobias Lindaaker, Victor Marsault, Wim Martens, Jan Michels, Filip Murlak,

Stefan Plantikow, Petra Selmer, Oskar van Rest, Hannes Voigt, Domagoj Vr-

goč, Mingxi Wu, and Fred Zemke. 2022. Graph Pattern Matching in GQL and

SQL/PGQ. In Proceedings of the 2022 International Conference on Management of
Data (Philadelphia, PA, USA) (SIGMOD ’22). Association for Computing Machin-

ery, New York, NY, USA, 2246–2258. https://doi.org/10.1145/3514221.3526057

[13] Nadime Francis, Alastair Green, Paolo Guagliardo, Leonid Libkin, Tobias Lin-

daaker, Victor Marsault, Stefan Plantikow, Mats Rydberg, Petra Selmer, and

Andrés Taylor. 2018. Cypher: An Evolving Query Language for Property Graphs.

Proceedings of the 2018 International Conference on Management of Data (2018).
[14] Glenn Galvizo. 2023. Graphix: View the (JSON) World Through Graph-Tinted

Lenses. PhD Thesis. University of California, Irvine, Irvine, CA.

[15] Glenn Galvizo and Michael J. Carey. 2024. Graphix: “One User’s JSON is Another

User’s Graph” . In 2024 IEEE 40th International Conference on Data Engineering
(ICDE). IEEE Computer Society, Los Alamitos, CA, USA, 3070–3083. https:

//doi.org/10.1109/ICDE60146.2024.00238

[16] Gábor E. Gévay, Tilmann Rabl, Sebastian Breß, LorándMadai-Tahy, Jorge-Arnulfo

Quiané-Ruiz, and Volker Markl. 2021. Efficient Control Flow in Dataflow Systems:

When Ease-of-Use Meets High Performance. In 2021 IEEE 37th International
Conference on Data Engineering (ICDE). 1428–1439. https://doi.org/10.1109/

ICDE51399.2021.00127

[17] Daniel Halperin, Victor Teixeira de Almeida, Lee Lee Choo, Shumo Chu,

Paraschos Koutris, Dominik Moritz, Jennifer Ortiz, Vaspol Ruamviboonsuk,

Jingjing Wang, Andrew Whitaker, Shengliang Xu, Magdalena Balazinska, Bill

Howe, and Dan Suciu. 2014. Demonstration of the Myria Big Data Manage-

ment Service. In Proceedings of the 2014 ACM SIGMOD International Conference
on Management of Data (Snowbird, Utah, USA) (SIGMOD ’14). Association for

Computing Machinery, New York, NY, USA, 881–884. https://doi.org/10.1145/

2588555.2594530

[18] Minyang Han and Khuzaima S. Daudjee. 2015. Giraph Unchained: Barrierless

Asynchronous Parallel Execution in Pregel-like Graph Processing Systems. Pro-
ceedings of the VLDB Endowment 8 (2015), 950–961.

[19] ISO Central Secretary. 1999. Information Technology — Database Languages —
SQL — Part 2: Foundation (SQL / Foundation). Standard ISO/IEC 9075-2:1999.

International Organization for Standardization, Geneva, CH. https://www.iso.

org/standard/62711.html

[20] ISO/IEC. [n.d.]. Graph Query Language GQL Standard. Available at https:

//www.gqlstandards.org.

[21] Grzegorz Malewicz, Matthew H. Austern, Aart J. C. Bik, James C. Dehnert, Ilan

Horn, Naty Leiser, and Grzegorz Czajkowski. 2010. Pregel: a System for Large-

Scale Graph Processing. Proceedings of the 2010 ACM SIGMOD International
Conference on Management of Data (2010).

[22] Jayadev Misra. 1983. Detecting Termination of Distributed Computations Using

Markers. In Proceedings of the Second Annual ACM Symposium on Principles of
Distributed Computing. 290–294.

[23] Derek G. Murray, Frank McSherry, Rebecca Isaacs, Michael Isard, Paul Barham,

and Martín Abadi. 2013. Naiad: A Timely Dataflow System. In Proceedings of
the Twenty-Fourth ACM Symposium on Operating Systems Principles (Farminton,

Pennsylvania) (SOSP ’13). Association for Computing Machinery, New York, NY,

USA, 439–455. https://doi.org/10.1145/2517349.2522738

[24] PostgreSQL. 02-05-2025. 7.8.2 Recursive Queries in WITH Queries (Com-

mon Table Expressions). https://www.postgresql.org/docs/current/queries-

with.html#QUERIES-WITH-RECURSIVE.

[25] Y. Sagiv. 1987. Optimizing Datalog Programs. In Proceedings of the Sixth ACM
SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems (San
Diego, California, USA) (Principles of Database Systems ’87). Association for

Computing Machinery, New York, NY, USA, 349–362. https://doi.org/10.1145/

28659.28696

[26] Bernhard Scholz, Herbert Jordan, Pavle Subotić, and TillWestmann. 2016. On Fast

Large-Scale Program Analysis in Datalog. In Proceedings of the 25th International
Conference on Compiler Construction (Barcelona, Spain) (CC ’16). Association for

Computing Machinery, New York, NY, USA, 196–206. https://doi.org/10.1145/

2892208.2892226

[27] Alexander Shkapsky, Mohan Yang, Matteo Interlandi, Hsuan Chiu, Tyson Condie,

and Carlo Zaniolo. 2016. Big Data Analytics with Datalog Queries on Spark.

In Proceedings of the 2016 International Conference on Management of Data (San
Francisco, California, USA) (SIGMOD ’16). Association for Computing Machinery,

New York, NY, USA, 1135–1149. https://doi.org/10.1145/2882903.2915229

[28] Rodney W. Topor. 1984. Termination Detection for Distributed Computations.

Inform. Process. Lett. 18, 1 (1984), 33–36. https://doi.org/10.1016/0020-0190(84)

90071-1

[29] Peter A. Tucker, David Maier, Tim Sheard, and Leonidas Fegaras. 2003. Exploit-

ing Punctuation Semantics in Continuous Data Streams. IEEE Transactions on
Knowledge and Data Engineering 15 (2003), 555–568. https://api.semanticscholar.

org/CorpusID:3155983

[30] Da Yan, Yingyi Bu, Yuanyuan Tian, and Amol Deshpande. 2017. Big Graph

Analytics Platforms. Foundations and Trends in Databases 7, 1–2 (Jan 2017),

1–195. https://doi.org/10.1561/1900000056

https://doi.org/10.1145/1951365.1951367
https://doi.org/10.14778/2732951.2732958
https://api.semanticscholar.org/CorpusID:264427448
https://giraph.apache.org
https://doi.org/10.1145/2723372.2742796
https://doi.org/10.1145/2806777.2806941
https://doi.org/10.1145/2806777.2806941
https://doi.org/10.1109/ICDE.2011.5767921
https://doi.org/10.1109/ICDE.2011.5767921
https://doi.org/10.1109/ICDE60146.2024.00438
https://doi.org/10.14778/1687627.1687655
https://doi.org/10.1145/3514221.3526057
https://doi.org/10.1109/ICDE60146.2024.00238
https://doi.org/10.1109/ICDE60146.2024.00238
https://doi.org/10.1109/ICDE51399.2021.00127
https://doi.org/10.1109/ICDE51399.2021.00127
https://doi.org/10.1145/2588555.2594530
https://doi.org/10.1145/2588555.2594530
https://www.iso.org/standard/62711.html
https://www.iso.org/standard/62711.html
https://www.gqlstandards.org
https://www.gqlstandards.org
https://doi.org/10.1145/2517349.2522738
https://www.postgresql.org/docs/current/queries-with.html#QUERIES-WITH-RECURSIVE
https://www.postgresql.org/docs/current/queries-with.html#QUERIES-WITH-RECURSIVE
https://doi.org/10.1145/28659.28696
https://doi.org/10.1145/28659.28696
https://doi.org/10.1145/2892208.2892226
https://doi.org/10.1145/2892208.2892226
https://doi.org/10.1145/2882903.2915229
https://doi.org/10.1016/0020-0190(84)90071-1
https://doi.org/10.1016/0020-0190(84)90071-1
https://api.semanticscholar.org/CorpusID:3155983
https://api.semanticscholar.org/CorpusID:3155983
https://doi.org/10.1561/1900000056

	Abstract
	1 Introduction
	2 Background
	2.1 Apache AsterixDB
	2.2 Graphix Extension
	2.3 Hyracks Runtime

	3 Hyracks (Unchained)
	3.1 Single Partition Recursion
	3.2 Fixed Point Operator
	3.3 Distributed Termination

	4 Evaluation
	4.1 Experimental Setup
	4.2 Measuring Overhead
	4.3 Measuring Asynchronicity

	5 Related Work
	6 Conclusion
	Acknowledgments
	References

