
Top-r Influential Community Search in Bipartite Graphs
Yanxin Zhang

∗

yzhang2879@wisc.edu

University of Wisconsin - Madison

Zhengyu Hua
∗

hzysgg@njust.edu.cn

Nanjing University of Science and Technology

Long Yuan
†

longyuan@whut.edu.cn

Wuhan University of Technology

Zi Chen

zichenscs@gmail.com

Wuhan University of Technology

ABSTRACT
Community search on bipartite graphs, especially influential com-

munity detection, has received significant attention. Existing stud-

ies use minimum vertex weights, inadequately reflecting true com-

munity influence when some vertices have low weights. To address

this, we introduce the (𝛼, 𝛽)-influential community model based

on the average vertex weights from both layers, providing a more

comprehensive influence measure. Given the NP-hardness of accu-

rately identifying top-𝑟 communities, we propose an exact recursive

algorithm enhanced by a slim tree structure and upper-bound tech-

niques to improve efficiency. Additionally, we develop a greedy

approximate algorithm with 𝑂 ((𝑛 +𝑚) +𝑚 log𝑛) complexity, fur-

ther optimized by a pruning strategy. Experiments on 10 real-world

graphs demonstrate the effectiveness and efficiency of our proposed

algorithms.

VLDBWorkshop Reference Format:
Yanxin Zhang, Zhengyu Hua, Long Yuan, and Zi Chen. Top-r Influential

Community Search in Bipartite Graphs. VLDB 2025 Workshop: LSGDA.

VLDBWorkshop Artifact Availability:
The source code, data, and/or other artifacts have been made available at

https://github.com/yanxinzhangcs/Top-r-Influential-Community-Search-in-

Bipartite-Graphs.

1 INTRODUCTION
Many real-world relationships can be represented as bipartite graphs,

including customer-product networks[28], user-page networks[1],

gene co-expression networks[11], and collaboration networks[14].

With the growth of bipartite graph applications, extensive research

has addressed fundamental problems related to their management

and analysis, notably community search.

Community search in bipartite graphs traditionally emphasizes

structural cohesiveness using models such as the (𝛼, 𝛽)-core[4, 7,
18, 19], bitruss[27, 29, 30], biplexyuan2025efficient, and biclique[5,

21, 33]. Applications include anomaly detection[22], personalized

recommendation[13], and gene expression analysis[23]. Other stud-

ies integrate vertex attributes into community detection[6, 8, 10, 32].

∗
Both authors contributed equally to this research.

†
Corresponding author.

This work is licensed under the Creative Commons BY-NC-ND 4.0 International

License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of

this license. For any use beyond those covered by this license, obtain permission by

emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights

licensed to the VLDB Endowment.

Proceedings of the VLDB Endowment. ISSN 2150-8097.

Motivations. Existing community search typically overlooks ver-

tex weights, prompting studies into influential community search

that connect vertex importance to community influence[2, 9, 12, 15–

17, 20, 24–26, 31, 34, 35]. For instance, [34] introduces a model

where community influence is measured by the minimum vertex

weights across layers, ensuring high overall vertex influence. How-

ever, a single low-weight vertex significantly reduces measured

community influence. To overcome this, we propose an (𝛼, 𝛽)-
influential community model based on the (𝛼, 𝛽)-core structure,

defining community influence as the sum of average weights from

both vertex layers. An (𝛼, 𝛽)-influential community is thus a max-

imal connected (𝛼, 𝛽)-core not included in another (𝛼, 𝛽)-core of
equal influence.

Applications. Our model has diverse real-world applications:

• TeamFormation. In developer-project graphs, developerweights
represent ability, and project weights represent importance. Our

model can help identify cohesive teams comprising skilled de-

velopers associated with significant projects.

• Movie Recommendation. User-movie networks, where user

weights indicate activeness and movie weights indicate ratings,

allow recommendations of quality movies liked by active users.

• Fraud Detection. Customer-item graphs from platforms like

Amazon and Alibaba, with vertex weights indicating transaction

and purchase frequencies, can identify potentially fraudulent

communities involving suspicious customers or items.

Challenges. Previous minimum-weight-based influential models

allow efficient, linear-time solutions through effective pruning.

However, using average vertex weights as community influence

renders the problem NP-hard, posing significant computational

challenges.

Our Approach.We propose exact and approximate solutions to

address these challenges. Initially, we present an exact recursive

algorithm exploring all subgraphs. Enhancements include using

a slim-tree structure to reduce search width and an upper-bound

pruning strategy to reduce search depth. Given the NP-hardness,

exact searches remain computationally intensive, motivating our

development of a greedy approximate algorithm balancing accuracy

and efficiency.

Contributions. This paper makes the following contributions:

• New community model. Introduces the (𝛼, 𝛽)-influential com-

munity model integrating vertex importance and structural co-

hesiveness.

• Exact algorithms. Proposes three exact algorithms: a basic

recursive approach, a slim-tree optimization, and an upper-bound

pruning approach.

https://github.com/yanxinzhangcs/Top-r-Influential-Community-Search-in-Bipartite-Graphs
https://github.com/yanxinzhangcs/Top-r-Influential-Community-Search-in-Bipartite-Graphs
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org

• Approximate algorithms. Develops two efficient approximate

algorithms, including a greedy strategy (complexity𝑂 ((𝑛 +𝑚) +
𝑚 log𝑛)) and its pruned improvement.

• Extensive experiments. Conducts thorough experiments on 10

real-world datasets, validating model effectiveness and algorithm

efficiency.

2 PROBLEM DEFINITION
An undirected vertex-weighted bipartite graph 𝐺 = (𝑈 ,𝑉 , 𝐸) is a
graph consisting of two disjoint sets of vertexs called layers𝑈 and

𝑉 such that every edge from 𝐸 ⊆ 𝑈 × 𝑉 connects one vertex of

𝑈 and one vertex of 𝑉 . We use U (G) to denote the set of vertices
in the upper layer, V (G) to denote the set of vertices in the lower

layer, E(G) denotes the set of edges. We denote the number of

vertexs in U and V as nu and nv , the total number of vertexs as n
and the number of edges in E(G) as m. The set of neighbours of

a vertex u in G denotes NG (u), and the degree of u is denoted as

deg(u,G) = |NG (u) |. Moreover, in each vertex u ∈ U (G) ∪ V (G)
has a weight w(u).

Definition 2.1. ((𝛼, 𝛽)-core) Given a bipartite graph G and two

integers 𝛼 and 𝛽 , the (𝛼, 𝛽)-core of G, denoted by 𝐶𝛼,𝛽 , consists of

two vertex sets U ′ ⊆ U (G) and V ′ ⊆ V (G) such that the bipartite

subgraph G′ induced by U ′ ∪ V ′ is the maximal subgraph of G
in which all the vertexs in U ′ have degree at least 𝛼 and all the

vertexs in V ′ have degree at least 𝛽 , i.e., ∀u ∈ U ′, deg(u,G′) ≥ 𝛼 ,

and ∀v ∈ V ′, deg(v,G′) ≥ 𝛽 .

Definition 2.2. (Influence value of a community) Given an

induced subgraph S of a bipartite graph G, its influence value

f (S) = fU (S) + fV (S), where fU (S) is the average value of theweights
of all vertices in upper layer (i.e., fU (S) =

∑
u∈U (S) w(u)/|U (S) |),

fV (S) is the average value of the weights of all vertices in lower

layer (i.e., fV (S) =
∑
v∈V (S) w(v)/|V (S) |).

Definition 2.3. ((𝛼, 𝛽)-influential community) Given a bipartite

graph G = (U ,V , E) and two integers 𝛼 and 𝛽 , an (𝛼 ,𝛽)-influential

community is an induced subgraph S of G that meets all the follow-

ing constraints.

• Connectivity: S is connected;
• Cohesiveness: Each vertex u ∈ U (S) satisfies deg(u, S) ≥ 𝛼 and

each vertex v ∈ V (S) satisfies deg(v, S) ≥ 𝛽 ;

• Maximality: there does not exist another induced subgraph S′

of G such that (1) S′ satisfied connectivity and cohesiveness

constraints, (2) S′ contains S, and (3) f (S′) = f (S).

Problem statement. Given a bipartite graph G = (U ,V , E) and
three integers 𝛼 , 𝛽 and 𝑟 , the problem is top-𝑟 influential community

search to compute 𝑟 (𝛼 ,𝛽)-influential communities in G with the

highest influence value.

Example 2.4. Consider the bipartite graph G in Figure 1. The

weight of each vertex is shown as the circled value. There ex-

ist three (2, 2)-communities which are marked with three differ-

ent colors (H1, which contains {u1, u2, u3, v1, v2, v3}. H2 , which

contains {u2, u3, v2, v3}. H3 , which contains {u6, u7 , v7 , v8}). How-
ever, H4 = {u1, u3, v1, v2} is not a (2,2)-influential community as

f (H4) = f (H1) =4 and H4 ⊆ H1 which does not satisfy the maxi-

mality constraint.

1

𝑢1

3 3 5 4

𝑢2 𝑢3 𝑢4 𝑢5 𝑢6 𝑢7

3 2 3 4 5 4

𝑣1 𝑣2 𝑣3 𝑣4 𝑣5 𝑣6 𝑣7 𝑣8

𝑉(𝐺)

𝑈(𝐺) 3

2

2

1

Figure 1: A bipartite graph G

Problem Hardness. The top-𝑟 (𝛼 ,𝛽)-inflential community search

problem is NP-hard, which is shown as follows:

Theorem 2.5. The top-𝑟 (𝛼 ,𝛽)-influential community search prob-
lem is NP-hard.

Proof: We prove this theorem based on the NP-Hardness of top-𝑟

k-influential community search [26]. Given an unipartite vertex-

weighted graph 𝐺 , a k-influential community C is a connected

k-core, and there does not exist another subgraph C′ of 𝐺 such

that: (1) C′ is a connected k-core, (2) C is a subgraph of C′ and the

influence value of C is the same as that of C′, i.e., f (C′) = f (C),
where f (G) = ∑

u∈V (G)w(u)/|V (G) |. Top-𝑟 𝑘-influential commu-

nity search aims to compute 𝑟 𝑘-influential communities with the

highest influence value in 𝐺 . For a given vertex-weighted unipar-

tite graph 𝐺 , we can transfer 𝐺 into a bipartite graph 𝐺 ′ as fol-
lows: for each vertex 𝑣 ∈ 𝑉 (𝐺), there exist two mirror vertices

𝑢′ ∈ 𝑈 (𝐺 ′) and 𝑣 ′ ∈ 𝑉 (𝐺 ′) with 𝑤 (𝑢′) = 𝑤 (𝑣 ′) = 𝑤 (𝑣). For each
edge (𝑢, 𝑣) ∈ 𝐸 (𝐺), there exists two edges (𝑢′, 𝑣 ′) ∈ 𝐸 (𝐺 ′) and
(𝑢′′, 𝑣 ′′) ∈ 𝐸 (𝐺 ′), where 𝑢′/𝑣 ′ and 𝑢′′/𝑣 ′′ are the mirror vertices

of 𝑢 and 𝑣 in 𝑈 (𝐺 ′)/𝑉 (𝐺 ′). It is clear that each 𝑘-influential com-

munity corresponds to a (𝑘, 𝑘)-influential community in𝐺 ′, which
means the top-𝑟 𝑘-inflential community search problem in𝐺 can be

reduced to the problem of top-𝑟 (𝛼 ,𝛽)-influential community search

problem in𝐺 ′. As the top-𝑟 𝑘-inflential community search problem

is NP-hard, our top-𝑟 (𝛼 ,𝛽)-influential community search problem

is also NP-hard.

3 EXACT ALGORITHMS
In this section, we focus on developing exact algorithms for the

problem. Our algorithms are based on recursion that derive the

optimum result.

3.1 The Basic Algorithm
Lemma 3.1. For any graph𝐺 , each maximal connected component

of the maximal (𝛼 ,𝛽)-core of 𝐺 is an (𝛼 ,𝛽)-influential community.

Proof: The proof can be easily obtained by definition.

Algorithm. Algorithm 1 outlines the basic recursive procedure.

Starting with inputs 𝐺 , 𝛼 , 𝛽 , and 𝑟 , it initializes a priority queue

𝑆 ordered by community influence. The algorithm identifies the

maximal (𝛼, 𝛽)-core and its connected components (lines 6-7). It

recursively explores subgraphs potentially containing optimal solu-

tions (lines 18-21) and checks feasibility and maximality conditions

(lines 9-17). When a feasible solution ℎ with higher influence is

found, it ensures maximality by comparing against existing com-

munities in 𝑆 and updates accordingly (lines 10-17).

Example 3.2. Figure 2 illustrates Algorithm 1 finding the top-1

(2,2)-influential community. The algorithm identifies the maximal

2

Figure 2: An example of basic search

Algorithm 1: Basic Algorithm
Input: 𝐺 = (𝑈 ,𝑉 , 𝐸), 𝛼 , 𝛽 , 𝑟
Output: Top-𝑟 (𝛼 ,𝛽)-influential communities

1 Function Main():
2 𝑆 ← ∅; Find(𝐺); return 𝑆 ;

3 Procedure Find(𝐺):
4 𝐺 ← maximal (𝛼, 𝛽)-core of 𝐺 ; 𝐻 ← connected

components of𝐺 ; ℎ𝑚𝑖𝑛 ← 𝑟 -th largest community in 𝑆 ;

foreach ℎ ∈ 𝐻 do
5 if 𝑓 (ℎ) > 𝑓 (ℎ𝑚𝑖𝑛) then
6 𝑓 𝑙𝑎𝑔← 𝑡𝑟𝑢𝑒; foreach ℎ′ ∈ 𝑆 do
7 if 𝑓 (ℎ) = 𝑓 (ℎ′) and ℎ ⊆ ℎ′ then
8 𝑓 𝑙𝑎𝑔← 𝑓 𝑎𝑙𝑠𝑒; break;

9 if 𝑓 𝑙𝑎𝑔 then
10 𝑆 ← (𝑆 \ ℎ𝑚𝑖𝑛) ∪ ℎ;

11 foreach 𝑢 ∈ 𝑈 do
12 Find(ℎ \ {𝑢});
13 foreach 𝑣 ∈ 𝑉 do
14 Find(ℎ \ {𝑣});

(𝛼, 𝛽)-core (𝑆1), splits into connected components (𝑆2, 𝑆3), and re-

cursively searches these subgraphs. Only part of the search process

is shown to highlight the benefits of subsequent algorithms.

Theorem 3.3. Algorithm 1 correctly identifies the top-𝑟 (𝛼, 𝛽)-
influential communities.

Proof: Algorithm 1 recursively explores subgraphs, verifies cohe-

siveness via the maximal (𝛼, 𝛽)-core (line 6), and ensures connec-

tivity by examining components (line 7). It maintains and updates

the top communities, ensuring maximality (lines 12-15).

Theorem 3.4. Algorithm 1 has a time complexity of 𝑂 ((𝑚 + 𝑛 +
|𝐻 |𝑟) · 2𝑛).

Proof: Each recursion level involves maximal core identification

(𝑂 (𝑚)), component detection (𝑂 (𝑚 + 𝑛)), and updating the com-

munity set (𝑂 (|𝐻 |𝑟)). With binary inclusion/exclusion choices per

vertex, total complexity is 𝑂 ((𝑚 + 𝑛 + |𝐻 |𝑟) · 2𝑛).

Algorithm 2: Slim Tree Structure

Input: 𝐺 = (𝑈 ,𝑉 , 𝐸), 𝛼 , 𝛽 , 𝑟
Output: Top-𝑟 (𝛼 ,𝛽)-influential communities

1 Function Main():
2 𝑆 ← ∅; Find(𝐺); return 𝑆 ;

3 Procedure Find(𝐺):
4 𝐺 ← maximal (𝛼, 𝛽)-core of 𝐺 ; 𝐻 ← connected

components of𝐺 ; ℎ𝑚𝑖𝑛 ← 𝑟 -th largest community in 𝑆 ;

foreach ℎ ∈ 𝐻 do
5 if 𝑓 (ℎ) > 𝑓 (ℎ𝑚𝑖𝑛) then
6 𝑓 𝑙𝑎𝑔← 𝑡𝑟𝑢𝑒; foreach ℎ′ ∈ 𝑆 do
7 if 𝑓 (ℎ) = 𝑓 (ℎ′) and ℎ ⊆ ℎ′ then
8 𝑓 𝑙𝑎𝑔← 𝑓 𝑎𝑙𝑠𝑒; break;

9 if 𝑓 𝑙𝑎𝑔 then
10 𝑆 ← (𝑆 \ ℎ𝑚𝑖𝑛) ∪ ℎ;

11 while𝑈 ≠ ∅ do
12 𝑢 ← 𝑈 .𝑓 𝑟𝑜𝑛𝑡 ;𝑈 ← 𝑈 \ {𝑢}; 𝐺 ′ ← ℎ \ {𝑢};

𝐺𝛼,𝛽 ← maximal (𝛼, 𝛽)-core of 𝐺 ′;
𝑈 ← 𝑈 \ (𝐺 ′ \𝐺𝛼,𝛽); Find(𝐺𝛼,𝛽);

13 while 𝑉 ≠ ∅ do
14 𝑣 ← 𝑉 .𝑓 𝑟𝑜𝑛𝑡 ; 𝑉 ← 𝑉 \ {𝑣}; 𝐺 ′ ← ℎ \ {𝑣};

𝐺𝛼,𝛽 ← maximal (𝛼, 𝛽)-core of 𝐺 ′;
𝑉 ← 𝑉 \ (𝐺 ′ \𝐺𝛼,𝛽); Find(𝐺𝛼,𝛽);

3.2 A Slim Tree Structure
To address Algorithm 1’s inefficiency, we propose a slim tree struc-

ture to reduce unnecessary vertex exploration.

Lemma 3.5. For a graph 𝐺 containing an (𝛼, 𝛽)-community 𝐻 , if
removing vertex 𝑢 violates (𝛼, 𝛽)-core constraints, then there must
exist a vertex 𝑣 ∈ 𝑁𝐺 (𝑢) not in 𝐻 .

Proof: Assuming all neighbors remain in 𝐻 after removal of 𝑢, 𝐺 ′

would still satisfy (𝛼, 𝛽)-core constraints, contradicting the assump-

tion.

Algorithm. According to Lemma 3.5, we know that there are many

redundant vertices that need to be addressed. Algorithm 2 shows the

3

details of slim tree structure. In Algorithm 2, when U is not empty,

we select the first vertex of U and remove it from U (lines 11-12).

For the current graph h, we delete u and find its maximal (𝛼, 𝛽)-core
𝐺𝛼,𝛽 (lines 13-14) . This operation can effectively delete redundant

vertices which not satisfy (𝛼, 𝛽)-core. In this way, Algorithm 2 can

turn a relatively fat search tree into a slim tree. After update U , we

We continue to call recursion (lines 15-16). Next we will give an

example to describe the slim tree structure in detail.

Example 3.6. As Figure 3 shows, We demonstrate the process of

Algorithm 2 based on Figure 2. In 𝑆2, after deleting 𝑣6, we need to

continue deleting redundant vertices. Then we obtain 𝑆4, where 𝑢7,

𝑣7, and 𝑣8 are also deleted. Thus, in the next level of the search, the

number of vertices searched decreases from 3 in to 0 , making the

third level of the search tree slimmer. Similarly, in 𝑆3, deleting 𝑢1
simultaneously deletes 𝑣1, resulting in 𝑆8, which reduces the number

of vertices to be searched from 5 to 4. Ultimately, we achieve the

goal of pruning and significantly enhance both time and space

efficiency.

Theorem 3.7. The time complexity of Algorithm 2 is 𝑂 ((𝑚 + 𝑛 +
|𝐻 | (𝑟 +𝑚)) · 2𝑛).

Proof: Based on Algorithm 1, we performed a maximal (𝛼, 𝛽)-core
search operation for each connected component, which has a time

complexity of 𝑂 (𝑚). Therefore, the total complexity is 𝑂 ((𝑚 + 𝑛 +
|𝐻 | (𝑟 +𝑚)) · 2𝑛).

3.3 Upper Bound Algorithm
Algorithm 2 only reduces the width of the search, and the efficiency

of the algorithm still cannot reach the desired effect. Therefore, we

propose an upper bound-based algorithm to reduce the depth of

the search as Algorithm 4 shows. The idea is that we estimate the

upper bound of the weight of the current search branch. If the upper

bound is smaller than the weight of the r-th largest influence value

community found so far, we terminate the search branch. Before

we introduce Algorithm 4, we will first introduce three different

upper bounds.

For a connected (𝛼, 𝛽)-core G = (U ,V , E), where 𝑈 = {𝑢1, 𝑢2,
. . . , 𝑢𝑛𝑢

}
and 𝑉 =

{
𝑣1, 𝑣2, . . . , 𝑣𝑛𝑣

}
, for ease of expression, we de-

note |𝑈 | as 𝑛𝑢 , |𝑉 | as 𝑛𝑣 , |𝑈 ∪𝑉 | as 𝑛, the maximum weight among

the vertices in𝑈 as𝑤 (𝑢)𝑚𝑎𝑥 and the maximum weight among the

vertices in 𝑉 as as𝑤 (𝑣)𝑚𝑎𝑥 .

Lemma 3.8. Given a connected (𝛼, 𝛽)-core G = (U ,V , E), the first
upper bound for G is defined as follows.

ub1 (G) = 𝑤 (𝑢)𝑚𝑎𝑥 +𝑤 (𝑣)𝑚𝑎𝑥 (1)

Proof: For a connected (𝛼, 𝛽)-core G = (U ,V , E), we can get,

𝑓 (𝐺) =
∑
𝑢∈𝑈 (𝐺) 𝑤 (𝑢)

𝑛𝑢
+
∑

𝑣∈𝑈 (𝐺) 𝑤 (𝑣)
𝑛𝑣

≤ 𝑤 (𝑢)𝑚𝑎𝑥 · 𝑛𝑢
𝑛𝑢

+ 𝑤 (𝑣)𝑚𝑎𝑥 · 𝑛𝑣
𝑛𝑣

= 𝑤 (𝑢)𝑚𝑎𝑥 +𝑤 (𝑣)𝑚𝑎𝑥

For the subgraph 𝐺 ′ of 𝐺 , it can also be easily proved that its

upper bound is the same as that of 𝐺 . Therefore, when the upper

bound of 𝐺 is detected to be less than smaller than the weight of

the r-th largest influence value community, there is no need to

Algorithm 3: Compute the upper bound

Data: A set𝑊 (𝑈) = {𝑤 (𝑢1),𝑤 (𝑢2), . . . ,𝑤 (𝑢𝑛)}
Result: Compute the upper bound

1 Shown in the [3]

continue searching its subgraphs. The computational cost of 𝑢𝑏1
is cheap. It would take 𝑂 (𝑛). Similarly, the next two upper bounds

we will introduce follow the same logic.

Lemma 3.9. Given a connected (𝛼, 𝛽)-core G = (U ,V , E), the sec-
ond upper bound for G is defined as follows.

ub2 (G) =
∑
𝑢∈𝑈 (𝐺) 𝑤 (𝑢)

𝛽
+
∑

𝑣∈𝑈 (𝐺) 𝑤 (𝑣)
𝛼

(2)

Proof: For a connected (𝛼, 𝛽)-core G = (U ,V , E), we can easily

conclude that 𝑛𝑢 ≥ 𝛽 and 𝑛𝑣 ≥ 𝛼 . So we can get,

𝑓 (𝐺) =
∑
𝑢∈𝑈 (𝐺) 𝑤 (𝑢)

𝑛𝑢
+
∑

𝑣∈𝑈 (𝐺) 𝑤 (𝑣)
𝑛𝑣

≤
∑
𝑢∈𝑈 (𝐺) 𝑤 (𝑢)

𝛽
+
∑

𝑣∈𝑈 (𝐺) 𝑤 (𝑣)
𝛼

Similarly, For a subgraph 𝐺 ′ of 𝐺 , if 𝐺 ′ is also a connected (𝛼, 𝛽)-
core, then we can get,

𝑓 (𝐺 ′) =
∑
𝑢∈𝑈 (𝐺 ′) 𝑤 (𝑢)

𝑛′𝑢
+
∑

𝑣∈𝑈 (𝐺 ′) 𝑤 (𝑣)
𝑛′𝑣

≤
∑
𝑢∈𝑈 (𝐺) 𝑤 (𝑢)

𝑛′𝑢
+
∑

𝑣∈𝑈 (𝐺) 𝑤 (𝑣)
𝑛′𝑣

≤
∑
𝑢∈𝑈 (𝐺) 𝑤 (𝑢)

𝛽
+
∑

𝑣∈𝑈 (𝐺) 𝑤 (𝑣)
𝛼

The computational cost of 𝑢𝑏2 is also cheap. It would take 𝑂 (𝑛).
The second upper bound would only be tight when 𝐺 contains

an optimum result with the size of 𝑈 close to 𝛽 and the size of 𝑉

close to 𝛼 . However, it has limited pruning effectiveness when 𝐺

contains large-size results. Next we study tight bounds for arbitrary

𝐺 .

Lemma 3.10. Given a connected (𝛼, 𝛽)-core G = (U ,V , E), the
third upper bound for G is defined as follows.

ub3 (G) =𝑚𝑎𝑥 {𝑓 (𝑆) |𝑆 ⊆ 𝐺} (3)

Proof: For a connected (𝛼, 𝛽)-core G = (U ,V , E), let 𝑆∗ be the

(𝛼, 𝛽)-influential community in 𝐺 and 𝑆 be max{𝑓 (𝑆) |𝑆 ⊆ 𝐺}. Ac-
cording to the definition, 𝑆∗ must satisfy (𝛼, 𝛽)-core, however, 𝑆 ′
relaxes this constraint, so 𝑓 (𝑆∗) ≤ 𝑓 (𝑆 ′) must be hold.

The computational cost of 𝑢𝑏3 is expensive. If using exhaus-

tive method, it would take 𝑂 (2𝑛+𝑚). However, there is a simple

and effective approximate algorithm [3] that can achieve (1/2)-

approximation with complexity 𝑂 (𝑛). As such we can use the ap-

proximation algorithm to get an at least 1/2 𝑢𝑏3 (𝐺) value first and
then multiple it by 2 to derive a slightly loose bound. The specific

calculation of 𝑢𝑏3 is shown in Algorithm 3.

In Algorithm 3, all vertices of bipartite graph 𝐺 are denoted

by𝑈 , with weights stored in𝑊 (𝑈). The algorithm initializes two

sets (line 1), then computes the impact of adding or removing each

𝑤 (𝑢𝑖) (lines 3-4). Based on 𝑎′𝑖 and 𝑏
′
𝑖
, it makes greedy choices (lines

4

Figure 3: An example of a slim tree structure

Algorithm 4: Upper Bound Algorithm

Input: 𝐺 = (𝑈 ,𝑉 , 𝐸), 𝛼 , 𝛽 , 𝑟
Output: Top-𝑟 (𝛼 ,𝛽)-influential communities

1 Function Main():
2 𝑆 ← ∅; Find(𝐺); return 𝑆 ;

3 Procedure Find(𝐺):
4 𝐺 ← maximal (𝛼, 𝛽)-core of 𝐺 ; 𝐻 ← connected

components of𝐺 ; ℎ𝑚𝑖𝑛 ← 𝑟 -th largest community in 𝑆 ;

foreach ℎ ∈ 𝐻 do
5 if 𝑓 (ℎ) > 𝑓 (ℎ𝑚𝑖𝑛) then
6 𝑓 𝑙𝑎𝑔← 𝑡𝑟𝑢𝑒; foreach ℎ′ ∈ 𝑆 do
7 if 𝑓 (ℎ) = 𝑓 (ℎ′) and ℎ ⊆ ℎ′ then
8 𝑓 𝑙𝑎𝑔← 𝑓 𝑎𝑙𝑠𝑒; break;

9 if 𝑓 𝑙𝑎𝑔 then
10 𝑆 ← (𝑆 \ ℎ𝑚𝑖𝑛) ∪ ℎ;

11 while𝑈 ≠ ∅ do
12 𝑢 ← 𝑈 .𝑓 𝑟𝑜𝑛𝑡 ;𝑈 ← 𝑈 \ {𝑢}; 𝐺 ′ ← ℎ \ {𝑢};

𝐺𝛼,𝛽 ← maximal (𝛼, 𝛽)-core of 𝐺 ′;
𝑈 ← 𝑈 \ (𝐺 ′ \𝐺𝛼,𝛽); 𝐿 ← three upper bounds

of 𝐺𝛼,𝛽 ; 𝑢𝑏 ← min(𝐿); if 𝑢𝑏 > ℎ𝑚𝑖𝑛 then
13 Find(𝐺𝛼,𝛽);

14 while 𝑉 ≠ ∅ do
15 𝑣 ← 𝑉 .𝑓 𝑟𝑜𝑛𝑡 ; 𝑉 ← 𝑉 \ {𝑣}; 𝐺 ′ ← ℎ \ {𝑣};

𝐺𝛼,𝛽 ← maximal (𝛼, 𝛽)-core of 𝐺 ′;
𝑉 ← 𝑉 \ (𝐺 ′ \𝐺𝛼,𝛽); 𝐿 ← three upper bounds

of 𝐺𝛼,𝛽 ; 𝑢𝑏 ← min(𝐿); if 𝑢𝑏 > ℎ𝑚𝑖𝑛 then
16 Find(𝐺𝛼,𝛽);

6-12) and finally returns avg(𝑋 [𝑛]). A formal (1/2)-approximation

proof is provided in [3] and omitted here.

Algorithm. The difference between Algorithm 4 and Algorithm 2

lies in the reduction of the search depth. For the current graph being

searched, three upper bounds are calculated, and the tightest upper

bound is compared with ℎ𝑚𝑖𝑛 . If it is greater than ℎ𝑚𝑖𝑛 , the search

continues; otherwise, the current branch is terminated.Therefore,

The total number of recursions in Algorithm 4 is significantly re-

duced compared to Algorithm 2, greatly reducing both space and

time requirements.

Example 3.11. As Figure 4 shows, We demonstrate the process of

Algorithm 4.We find that the communitywith the greatest influence

is 𝑆2. Next, we process 𝑆3 and delete𝑢1, resulting in 𝑆8. We discover

that the upper bound of the influence value of the current graph is

smaller than that of 𝑆2, so we do not need to perform the next level

of search. This approach reduces the depth of the search.

Theorem 3.12. The time complexity of Algorithm 4 is𝑂 ((𝑚 +𝑛 +
|𝐻 | (𝑟 +𝑚)) · 2𝑛).

Proof: Based on the process of Algorithm 4, we can easily conclude

that the time complexity of this algorithm is the same as that of

Algorithm 2.

4 APPROXIMATE ALGORITHMS
Due to the time-consuming nature of exact algorithms, we propose

a heuristic algorithm in this section. The algorithm is based on a

greedy strategy and aims to find a sufficiently good solution within

a reasonable time frame, thus ensuring efficiency and practicality.

4.1 New Framework
The heuristic algorithm employs a greedy strategy, selecting the

highest-weight vertex iteratively to build an (𝛼, 𝛽)-influential com-

munity.

Algorithm. Algorithm 5 begins similarly to previous algorithms

(lines 6-8). For each connected component, it initializes an empty

queue 𝑄 and an empty graph 𝐺 ′ (line 10). The algorithm selects

and enqueues the maximum-weight vertex from 𝑈 (lines 11-12).

Vertices dequeued from 𝑄 are added to 𝐺 ′ and marked as visited

(lines 13-16). For each dequeued vertex 𝑣 ∈ 𝑈 , its neighbors are

sorted by weight and the top𝛾 are selected using the𝐶ℎ𝑒𝑐𝑘 function

(lines 17-21). Unvisited neighbors are then enqueued (lines 22-24).

The process is analogous for 𝑣 ∈ 𝑉 . The procedure continues until

5

Figure 4: An example of upper bound algorithm

the queue is empty, after which 𝐺 ′ is added to the solution set 𝑆

(lines 27-28).

Example 4.1. Figure 5 demonstrates Algorithm 5, identifying a

top-1 (2,2)-influential community. Starting from the highest-weight

vertex 𝑢6, vertices are iteratively added based on their weights and

connections until forming the final community 𝑆7.

Algorithm 5: New Framework

Input: 𝐺 = (𝑈 ,𝑉 , 𝐸), 𝛼 , 𝛽 , 𝑟
Output: Top-𝑟 (𝛼 ,𝛽)-influential communities

1 Function Main():
2 𝑆 ← ∅; Find(𝐺); return 𝑆 ;

3 Procedure Find(𝐺):
4 𝐺 ← maximal (𝛼, 𝛽)-core of 𝐺 ; 𝐻 ← connected

components of 𝐺 ; ℎ𝑚𝑖𝑛 ← 𝑟 -th largest influence

community in 𝑆 ; foreach ℎ ∈ 𝐻 do
5 𝑄 ← ∅, 𝐺 ′ ← ∅; 𝑢 ← max-weight vertex in𝑈 (ℎ);

𝑄.𝑝𝑢𝑠ℎ(𝑢); while 𝑄 ≠ ∅ do
6 𝑣 ← 𝑄.𝑝𝑜𝑝 (); 𝐺 ′ .𝑎𝑑𝑑 (𝑣); 𝑣𝑖𝑠 [𝑣] ← 𝑡𝑟𝑢𝑒; if

𝑣 ∈ 𝑈 (ℎ) then
7 𝑁 ← neighbors of 𝑣 , sorted by descending

weight; 𝛾 ← Check(𝑁); 𝑁 ← top 𝛾

vertices; foreach 𝑢′ ∈ 𝑁 do
8 if !𝑣𝑖𝑠 [𝑢′] then
9 𝑄.𝑝𝑢𝑠ℎ(𝑢′)

10 if 𝑣 ∈ 𝑉 (ℎ) then
11 lines 9-14 with 𝛼 and 𝛽 swapped;

12 if 𝐺 ′ is (𝛼, 𝛽)-core and 𝑓 (𝐺 ′) > 𝑓 (ℎ𝑚𝑖𝑛) then
13 𝑆 ← (𝑆 \ ℎ𝑚𝑖𝑛) ∪𝐺 ′;

14 Procedure Check(𝑁):
15 𝑛𝑢𝑚 ← 0; 𝑢0 ← first vertex in 𝑁 ; foreach 𝑢 ∈ 𝑁 do
16 if 𝑤 (𝑢) = 𝑤 (𝑢0) then
17 𝑛𝑢𝑚 + +;
18 else
19 break;

20 return max(𝑛𝑢𝑚, 𝛼);

Theorem 4.2. Algorithm 5 correctly identifies and finds the (𝛼, 𝛽)-
influential communities.

Proof: We will discuss the correctness of Algorithm 5. We ensure

the connectivity of the community by adding neighboring ver-

tices each time, and after each addition, we determine whether

it is an (𝛼, 𝛽)-core to ensure the cohesiveness of the community.

Finally, we will specifically explore how to satisfy the maximal-

ity constraint. Assuming the current graph 𝐺 , since the weight of

each vertex we add is non-increasing, the new graph 𝐺 ′ obtained
will definitely have 𝑓 (𝐺 ′) ≤ 𝑓 (𝐺). 𝑓 (𝐺 ′) = 𝑓 (𝐺) if and only if

𝑓𝑈 (𝐺 ′) = 𝑓𝑈 (𝐺),𝑓𝑉 (𝐺 ′) = 𝑓𝑉 (𝐺). Therefore, when 𝑓 (𝐺 ′) = 𝑓 (𝐺),
the weights of the upper layer vertices in G’ are all equal, and the

weights of the lower layer vertices are all equal. At this time, the

maximality constraint is not satisfied. Therefore, we ensure the

maximality constraint through the 𝐶ℎ𝑒𝑐𝑘 function. If the number

of the largest values is greater than 𝛼 , then all the largest values are

added to the queue 𝑄 . Otherwise, only 𝛼 of them are added. This

ensures the maximum constraint.

Theorem 4.3. The time complexity of Algorithm 5 is𝑂 ((𝑛 +𝑚) +
𝑚 log 𝑛).
Proof: In Algorithm 5, assume graph𝐺 has 𝑛 vertices and𝑚 edges.

First, calculating the maximal (𝛼, 𝛽)-core has a time complexity of

𝑂 (𝑚), followed by the need to find connected components, which

requires 𝑂 (𝑛 +𝑚) time. Assuming that sorting is needed for the

neighbors of each vertex, the time complexity reaches 𝑂 (𝑚 log 𝑛).
Therefore, the overall time complexity of Algorithm 5 is 𝑂 ((𝑛 +
𝑚) +𝑚 log 𝑛).

4.2 Pruning Algorithm
Algorithm. Based on Algorithm 5, we propose Pruning Algorithm

6. The difference in Algorithm 6 is in line 16, where we make an

influence value judgment. Suppose the current graph is 𝐺 , the

influence value of the new graph 𝐺 ′ created after adding a new

vertex in 𝐺 is guaranteed to be less than or equal to 𝐺 , that is,

𝑓 (𝐺 ′) ≤ 𝑓 (𝐺). If 𝑓 (𝐺) < 𝑓 (ℎ𝑚𝑖𝑛), then the influence value of any

subsequent graphs explored will definitely be less than 𝑓 (ℎ𝑚𝑖𝑛).
Therefore, we will not search the subsequent vertices anymore,

thereby achieving effective pruning.

Example 4.4. Based on Algorithm 5, we show the process of

Algorithm 6 in Figure 5. After obtaining 𝑆9, we find that the current

graph’s influence value is 4, which is smaller than the influence

value of 𝑆7 which has the largest influence value. Since the weight of

the added vertices is non-increasing, the influence of the subsequent

6

Figure 5: An example of pruning algorithm

graphs will certainly be less than or equal to 4. Therefore, we do

not need to continue searching the subsequent graphs.

Theorem 4.5. The time complexity of Algorithm 6 is𝑂 ((𝑛 +𝑚) +
𝑚 log 𝑛).
Proof: Based on Algorithm 5, Algorithm 6 adds an 𝑂 (1) operation
(lines 16-17), so the time complexity remains unchanged, which is

𝑂 ((𝑛 +𝑚) +𝑚 log 𝑛).

5 EXPERIMENTS
This section presents our experimental results. All algorithms are

implemented in C++. All experiments are performed under a Linux

operating system on a machine with an Intel Xeon Platinum 8373C

2.6GHz CPU and 188G memory. In this set of experiments, we set

the maximum running time for each test as 1 hour. If a test does

not stop within the time limit, we denote its processing time as INF.

Datasets. We use 10 real-world bipartite graphs from KONECT

(http://konect.cc/). Table 1 summarizes the datasets: |𝑈 |, |𝑉 |, and
|𝐸 | denote the numbers of upper-layer vertices, lower-layer vertices,

and edges, respectively. 𝑑𝑚𝑎𝑥
𝑈

and 𝑑𝑚𝑎𝑥
𝑉

indicate the maximum

degrees in𝑈 and 𝑉 . Since original datasets lack vertex weights, we

assign weights via uniform distribution.

Exact Algorithms :
• Baseline: Basic top-𝑟 (𝛼, 𝛽)-influential community search (Algo-

rithm 1).

• SlimTree: Slim tree structure to reduce redundancy (Algorithm

2).

• UpperBound: Search pruning using upper bounds (Algorithm 4).

Approximate Algorithms :
• NewFra: Greedy-based approximation method (Algorithm 5).

• Pruning: Approximation via pruning strategy (Algorithm 6).

5.1 Experiments of Exact Algorithms
Exp-I : Varying 𝛼 (𝛽) . Figure 6 shows that as 𝛼 increases, running

time decreases due to reduced search space. UpperBound outper-

forms Baseline and SlimTree significantly, especially for larger

Algorithm 6: Pruning Algorithm

Input: 𝐺 = (𝑈 ,𝑉 , 𝐸), 𝛼 , 𝛽 , 𝑟
Output: Top-𝑟 (𝛼 ,𝛽)-influential communities

1 Function Main():
2 𝑆 ← ∅; Find(𝐺); return 𝑆 ;

3 Procedure Find(𝐺):
4 𝐺 ← maximal (𝛼, 𝛽)-core of 𝐺 ; 𝐻 ← connected

components of 𝐺 ; ℎ𝑚𝑖𝑛 ← 𝑟 -th largest influence

community in 𝑆 ; foreach ℎ ∈ 𝐻 do
5 𝑄 ← ∅, 𝐺 ′ ← ∅; 𝑢 ← max-weight vertex in𝑈 (ℎ);

𝑄.𝑝𝑢𝑠ℎ(𝑢); while 𝑄 ≠ ∅ do
6 𝑣 ← 𝑄.𝑝𝑜𝑝 (); 𝐺 ′ .𝑎𝑑𝑑 (𝑣); if 𝑓 (𝐺 ′) < ℎ𝑚𝑖𝑛 and

𝑉 (𝐺 ′) ≠ ∅ then
7 break;

8 𝑣𝑖𝑠 [𝑣] ← 𝑡𝑟𝑢𝑒; if 𝑣 ∈ 𝑈 (ℎ) then
9 𝑁 ← neighbors of 𝑣 , sorted by descending

weight; 𝛾 ← Check(𝑁); 𝑁 ← top 𝛾

vertices; foreach 𝑢′ ∈ 𝑁 do
10 if !𝑣𝑖𝑠 [𝑢′] then
11 𝑄.𝑝𝑢𝑠ℎ(𝑢′)

12 if 𝑣 ∈ 𝑉 (ℎ) then
13 lines 9-14 with 𝛼 and 𝛽 swapped;

14 if 𝐺 ′ is (𝛼, 𝛽)-core and 𝑓 (𝐺 ′) > 𝑓 (ℎ𝑚𝑖𝑛) then
15 𝑆 ← (𝑆 \ ℎ𝑚𝑖𝑛) ∪𝐺 ′;

10-3

10-2

10-1

 3 4 5 6 7

T
im

e
(s

)

(a) MC

101

102

103

INF

 4 5 6 7 8

T
im

e
(s

)

(b) AC

101

102

103

INF

 5 6 7 8 9

T
im

e
(s

)

(c) CS

102

103

INF

 57 58 59 60 61

T
im

e
(s

)

(d) BX

Figure 6: Running time of Exact algorithms (Vary 𝛼)

graphs (e.g., at 𝛼 = 7, over 100x faster). Results for varying 𝛽 (Fig-

ure 7) show similar trends.

Table 1: Summary of Datasets

Dataset |𝑈 | |𝑉 | |𝐸 | 𝛼𝑚𝑎𝑥 𝛽𝑚𝑎𝑥

MC 0.8K 0.6K 1.5K 25 18

AC 17K 22K 59K 116 18

MA 6.5K 19K 100K 1,625 111

GH 56K 120K 440K 884 3,675

CS 105K 181K 512K 286 385

BX 105K 340K 1.15M 13,601 2,502

DBT 64K 88K 3.23M 6,507 12,400

PA 1.95M 5.62M 12.28M 1,386 1,386

LG 3.21M 7.49M 112.31M 300 1,053,676

WT 27.67M 12.76M 140.61M 1,100,065 11,571,952

7

10-3

10-2

10-1

 3 4 5 6 7

T
im

e
(s

)

(a) MC

101

102

103

INF

 4 5 6 7 8
T

im
e

(s
)

(b) AC

101

102

103

INF

 5 6 7 8 9

T
im

e
(s

)

(c) CS

102

103

INF

 25 26 27 28 29

T
im

e
(s

)

(d) BX

Figure 7: Running time of Exact algorithms (Vary 𝛽)

5

10

15

20

25

30

35

 5 10 15 20 25

T
im

e
(s

)

(a) AC

5

6

7

8

9

10

 5 10 15 20 25

T
im

e
(s

)

(b) MA

67

68

69

70

71

 5 10 15 20 25

T
im

e
(s

)

(c) CS

278

279

280

281

282

283

 5 10 15 20 25

T
im

e
(s

)

(d) BX

Figure 8: Running time of UpperBound (Vary 𝑟)

100

101

102

103

INF

 20 40 60 80 100

T
im

e
(s

)

(a) CS (Exact)

10-1

100

101

102

103

INF

 20 40 60 80 100

T
im

e
(s

)

(b) BX (Approximate)

Figure 9: Scalability of Algorithms

Exp-II : Varying r. Only UpperBound is evaluated due to timeouts

from other algorithms. As 𝑟 increases, runtime increases moderately

(Figure 8) due to more required outputs and iterations.

Exp-III : Scalability of Exact Algorithms. Figure 9a shows that Up-
perBound scales well from 2s to 70s with increasing data, while

Baseline and SlimTree fail on larger samples. This demonstrates

UpperBound’s superior scalability.

5.2 Experiments of Approximate Algorithms
Exp-IV : Varying 𝛼 (𝛽) : Figure 10 shows Pruning consistently out-

performs NewFra (1–3 orders of magnitude). The performance gap

widens with larger datasets due to NewFra’s full-graph traversal vs.

Pruning’s effective pruning. At 𝛼 = 96, NewFra fails while Pruning

completes in 405s. As 𝛼 increases, both algorithms run faster due to

reduced graph size. Similar trends appear for 𝛽 (Figure 11). Notably,

in BX dataset, Pruning takes 0.4s while UpperBound takes 492s,

confirming Pruning’s efficiency.

Exp-V : Varying r. Figures 12 and 13 show runtime increases slightly

with 𝑟 . The effect is minimal, often under 0.01s, indicating 𝑟 has

limited impact when small.

Exp-VI : Scalability of Approximate Algorithms. Figure 9b con-

firms both NewFra and Pruning scale near-linearly. Pruning re-

mains about 2 orders of magnitude faster, supporting previous

findings.

6 CONCLUSION
In this paper, we introduce the (𝛼 ,𝛽)-influential community model.

We define the influence of a community as the sum of the average

weights of the upper-layer vertices and the lower-layer vertices,

thereby comprehensively reflecting the community’s influence. To

10-2

10-1

100

101

 5 6 7 8 9

T
im

e
(s

)

(a) AC

10-2

10-1

100

101

102

 3 4 5 6 7

T
im

e
(s

)

(b) MA

10-1

100

101

102

103

 5 6 7 8 9

T
im

e
(s

)

(c) CS

10-1

100

101

102

103

 57 58 59 60 61

T
im

e
(s

)

(d) BX

10-1

100

101

102

103

INF

 95 96 97 98 99

T
im

e
(s

)

(e) DBT

100

101

102

103

INF

 15 16 17 18 19

T
im

e
(s

)

(f) PA

102

103

INF

 96 97 98 99 100

T
im

e
(s

)

(g) LG

101

102

103

INF

 96 97 98 99 100

T
im

e
(s

)

(h) WT

Figure 10: Running time of Approximate algorithms (Vary 𝛼)

10-2

10-1

100

101

 5 6 7 8 9

T
im

e
(s

)

(a) AC

10-2

10-1

100

101

102

 16 17 18 19 20

T
im

e
(s

)

(b) MA

10-1

100

101

102

103

 5 6 7 8 9

T
im

e
(s

)

(c) CS

10-1

100

101

102

103

 25 26 27 28 29

T
im

e
(s

)

(d) BX

10-1

100

101

102

103

INF

 95 96 97 98 99

T
im

e
(s

)

(e) DBT

100

101

102

103

INF

 5 6 7 8 9

T
im

e
(s

)

(f) PA

102

103

INF

 96 97 98 99 100

T
im

e
(s

)

(g) LG

101

102

103

INF

 96 97 98 99 100

T
im

e
(s

)

(h) WT

Figure 11: Running time of Approximate algorithms (Vary 𝛽)

 0.5

1.0

 1.5

2.0

 2.5

3.0

 3.5

 5 10 15 20 25

T
im

e
(s

)

(a) MC

 1.1

 1.2

 1.3

 1.4

 5 10 15 20 25

T
im

e
(s

)

(b) AC

 5.5

 5.7

 5.9

 6.1

 6.3

 6.5

 6.7

 6.9

 5 10 15 20 25

T
im

e
(s

)

(c) MA

 57.5

 57.6

 57.7

 57.8

 57.9

58.0

 58.1

 58.2

 5 10 15 20 25

T
im

e
(s

)

(d) CS

Figure 12: Running time of Newfra (Vary 𝑟)

 0.23

 0.24

 0.25

 0.26

 0.27

 0.28

 5 10 15 20 25

T
im

e
(s

)

(a) GH

 0.8

 0.9

1.0

 1.1

 1.2

 1.3

 5 10 15 20 25

T
im

e
(s

)

(b) DBT

 275

 280

 285

 290

 295

 5 10 15 20 25

T
im

e
(s

)

(c) LG

46.0

 46.5

47.0

 47.5

48.0

 48.5

49.0

 49.5

50.0

 5 10 15 20 25

T
im

e
(s

)

(d) WT

Figure 13: Running time of Pruning (Vary 𝑟)

find (𝛼 ,𝛽)-influential communities, we propose an exact algorithm

and optimized it. Due to the time-consuming nature of exact al-

gorithms, we propose approximate algorithms which only take

𝑂 ((𝑛 + 𝑚) + 𝑚 log 𝑛) time. The efficiency and the effectiveness

of our proposed techniques are verified through extensive experi-

ments.

REFERENCES
[1] Alex Beutel, Wanhong Xu, Venkatesan Guruswami, Christopher Palow, and

Christos Faloutsos. 2013. CopyCatch: stopping group attacks by spotting lockstep

behavior in social networks. In InternationalWorldWideWeb Conference. 119–130.
https://doi.org/10.1145/2488388.2488400

8

https://doi.org/10.1145/2488388.2488400

[2] Fei Bi, Lijun Chang, Xuemin Lin, and Wenjie Zhang. 2018. An Optimal and

Progressive Approach to Online Search of Top-K Influential Communities. Proc.
VLDB Endow. 11, 9 (2018), 1056–1068. https://doi.org/10.14778/3213880.3213881

[3] Niv Buchbinder, Moran Feldman, Joseph Naor, and Roy Schwartz. 2015. A Tight

Linear Time (1/2)-Approximation for Unconstrained Submodular Maximization.

SIAM J. Comput. 44, 5 (2015), 1384–1402. https://doi.org/10.1137/130929205

[4] Monika Cerinsek and Vladimir Batagelj. 2015. Generalized two-mode cores. Soc.
Networks 42 (2015), 80–87. https://doi.org/10.1016/J.SOCNET.2015.04.001

[5] Zi Chen, Yiwei Zhao, Long Yuan, Xuemin Lin, and Kai Wang. 2023. Index-based

biclique percolation communities search on bipartite graphs. In Proceedings of
ICDE. IEEE, 2699–2712.

[6] Afzal Azeem Chowdhary, Chengfei Liu, Lu Chen, Rui Zhou, and Yun Yang. 2020.

Finding Attribute Diversified Communities in Complex Networks. In Proceedings
of DASFAA (Lecture Notes in Computer Science), Vol. 12114. Springer, 19–35.
https://doi.org/10.1007/978-3-030-59419-0_2

[7] Danhao Ding, Hui Li, Zhipeng Huang, and Nikos Mamoulis. 2017. Efficient

Fault-Tolerant Group Recommendation Using alpha-beta-core. In Proceedings of
CIKM. 2047–2050. https://doi.org/10.1145/3132847.3133130

[8] Yixiang Fang, Reynold Cheng, Siqiang Luo, and Jiafeng Hu. 2016. Effective

Community Search for Large Attributed Graphs. Proc. VLDB Endow. 9, 12 (2016),
1233–1244. https://doi.org/10.14778/2994509.2994538

[9] Prakhar Ganesh, Saket Dingliwal, and Rahul Agarwal. 2019. Literature Survey on

Finding Influential Communities in Large Scale Networks. CoRR abs/1902.01629

(2019). arXiv:1902.01629 http://arxiv.org/abs/1902.01629

[10] Xin Huang and Laks V. S. Lakshmanan. 2017. Attribute-Driven Community

Search. Proc. VLDB Endow. 10, 9 (2017), 949–960. https://doi.org/10.14778/

3099622.3099626

[11] Mehdi Kaytoue, Sergei O. Kuznetsov, Amedeo Napoli, and Sébastien Duplessis.

2011. Mining gene expression data with pattern structures in formal concept

analysis. Inf. Sci. 181, 10 (2011), 1989–2001. https://doi.org/10.1016/J.INS.2010.

07.007

[12] Klearchos Kosmanos, Panos Kalnis, and Apostolos Papadopoulos. 2022. Incre-

mental Influential Community Detection in Large Networks. In Proceedings of
SSDBM. ACM, 7:1–7:12. https://doi.org/10.1145/3538712.3538724

[13] Ravi Kumar, Prabhakar Raghavan, Sridhar Rajagopalan, and Andrew Tomkins.

1999. Trawling the Web for Emerging Cyber-Communities. Comput. Networks
31, 11-16 (1999), 1481–1493. https://doi.org/10.1016/S1389-1286(99)00040-7

[14] Michael Ley. 2002. The DBLP Computer Science Bibliography: Evolution,

Research Issues, Perspectives. In String Processing and Information Retrieval,
9th International Symposium, SPIRE 2002, Lisbon, Portugal, September 11-13,
2002, Proceedings (Lecture Notes in Computer Science), Vol. 2476. Springer, 1–
10. https://doi.org/10.1007/3-540-45735-6_1

[15] Jianxin Li, Chengfei Liu, Jeffrey Xu Yu, Yi Chen, Timos Sellis, and J. Shane

Culpepper. 2017. Personalized Influential Topic Search via Social Network

Summarization. In Proceedings of ICDE. IEEE Computer Society, 17–18. https:

//doi.org/10.1109/ICDE.2017.15

[16] Jianxin Li, Xinjue Wang, Ke Deng, Xiaochun Yang, Timos Sellis, and Jeffrey Xu

Yu. 2017. Most Influential Community Search over Large Social Networks. In

Proceedings of ICDE. IEEE Computer Society, 871–882. https://doi.org/10.1109/

ICDE.2017.136

[17] Rong-Hua Li, Lu Qin, Jeffrey Xu Yu, and Rui Mao. 2017. Finding influential

communities in massive networks. VLDB J. 26, 6 (2017), 751–776. https://doi.

org/10.1007/S00778-017-0467-4

[18] Boge Liu, Long Yuan, Xuemin Lin, Lu Qin, Wenjie Zhang, and Jingren Zhou.

2020. Efficient (𝛼 , 𝛽)-core computation in bipartite graphs. VLDB J. 29, 5 (2020),

1075–1099. https://doi.org/10.1007/S00778-020-00606-9

[19] Boge Liu, Long Yuan, Xuemin Lin, Lu Qin, Wenjie Zhang, and Jingren Zhou.

2020. Efficient (𝛼 , 𝛽)-core computation in bipartite graphs. VLDB J. 29, 5 (2020),
1075–1099. https://doi.org/10.1007/S00778-020-00606-9

[20] Wensheng Luo, Xu Zhou, Kenli Li, Yunjun Gao, and Keqin Li. 2023. Efficient

Influential Community Search in Large Uncertain Graphs. IEEE Trans. Knowl.
Data Eng. 35, 4 (2023), 3779–3793. https://doi.org/10.1109/TKDE.2021.3131611

[21] Bingqing Lyu, Lu Qin, Xuemin Lin, Ying Zhang, Zhengping Qian, and Jingren

Zhou. 2020. Maximum Biclique Search at Billion Scale. Proc. VLDB Endow. 13, 9
(2020), 1359–1372. https://doi.org/10.14778/3397230.3397234

[22] Bingqing Lyu, Lu Qin, Xuemin Lin, Ying Zhang, Zhengping Qian, and Jingren

Zhou. 2020. Maximum Biclique Search at Billion Scale. Proc. VLDB Endow. 13, 9
(2020), 1359–1372. https://doi.org/10.14778/3397230.3397234

[23] Sara C. Madeira and Arlindo L. Oliveira. 2004. Biclustering Algorithms for

Biological Data Analysis: A Survey. IEEE ACM Trans. Comput. Biol. Bioinform. 1,
1 (2004), 24–45. https://doi.org/10.1109/TCBB.2004.2

[24] Lingkai Meng, Yu Shao, Long Yuan, Longbin Lai, Peng Cheng, Xue Li, Wenyuan

Yu, Wenjie Zhang, Xuemin Lin, and Jingren Zhou. 2024. A survey of distributed

graph algorithms on massive graphs. Comput. Surveys 57, 2 (2024), 1–39.
[25] Dian Ouyang, Long Yuan, Fan Zhang, Lu Qin, and Xuemin Lin. 2018. Towards ef-

ficient path skyline computation in bicriteria networks. In Proceedings of DASFAA.
Springer, 239–254.

[26] You Peng, Song Bian, Rui Li, Sibo Wang, and Jeffrey Xu Yu. 2022. Finding Top-r

Influential Communities under Aggregation Functions. In Proceedings of ICDE.
1941–1954. https://doi.org/10.1109/ICDE53745.2022.00191

[27] Ahmet Erdem Sariyüce and Ali Pinar. 2018. Peeling Bipartite Networks for

Dense Subgraph Discovery. In Proceedings of WSDM. ACM, 504–512. https:

//doi.org/10.1145/3159652.3159678

[28] Jun Wang, Arjen P. de Vries, and Marcel J. T. Reinders. 2006. Unifying user-

based and item-based collaborative filtering approaches by similarity fusion. In

Proceedings of SIGIR, Efthimis N. Efthimiadis, Susan T. Dumais, David Hawking,

and Kalervo Järvelin (Eds.). ACM, 501–508. https://doi.org/10.1145/1148170.

1148257

[29] Kai Wang, Xuemin Lin, Lu Qin, Wenjie Zhang, and Ying Zhang. 2020. Efficient

Bitruss Decomposition for Large-scale Bipartite Graphs. In Proceedings of ICDE.
661–672. https://doi.org/10.1109/ICDE48307.2020.00063

[30] Kai Wang, Xuemin Lin, Lu Qin, Wenjie Zhang, and Ying Zhang. 2022. Towards

efficient solutions of bitruss decomposition for large-scale bipartite graphs. VLDB
J. 31, 2 (2022), 203–226. https://doi.org/10.1007/S00778-021-00658-5

[31] Xudong Wu, Long Yuan, Xuemin Lin, Shiyu Yang, and Wenjie Zhang. 2019.

Towards efficient k-tripeak decomposition on large graphs. In Proceedings of
DASFAA. Springer, 604–621.

[32] Zongyu Xu, Yihao Zhang, Long Yuan, Yuwen Qian, Zi Chen, Mingliang Zhou,

QinMao, andWeibin Pan. 2023. Effective Community Search on Large Attributed

Bipartite Graphs. Int. J. Pattern Recognit. Artif. Intell. 37, 2 (2023), 2359002:1–
2359002:25. https://doi.org/10.1142/S0218001423590024

[33] Yun Zhang, Charles A. Phillips, Gary L. Rogers, Erich J. Baker, Elissa J. Chesler,

and Michael A. Langston. 2014. On finding bicliques in bipartite graphs: a novel

algorithm and its application to the integration of diverse biological data types.

BMC Bioinform. 15 (2014), 110. https://doi.org/10.1186/1471-2105-15-110

[34] Yuting Zhang, Kai Wang, Wenjie Zhang, Xuemin Lin, and Ying Zhang. 2021.

Pareto-optimal Community Search on Large Bipartite Graphs. In Proceedings of
CIKM. 2647–2656. https://doi.org/10.1145/3459637.3482282

[35] Yingli Zhou, Yixiang Fang, Wensheng Luo, and Yunming Ye. 2023. Influential

Community Search over Large Heterogeneous Information Networks. Proc.
VLDB Endow. 16, 8 (2023), 2047–2060. https://doi.org/10.14778/3594512.3594532

9

https://doi.org/10.14778/3213880.3213881
https://doi.org/10.1137/130929205
https://doi.org/10.1016/J.SOCNET.2015.04.001
https://doi.org/10.1007/978-3-030-59419-0_2
https://doi.org/10.1145/3132847.3133130
https://doi.org/10.14778/2994509.2994538
http://arxiv.org/abs/1902.01629
https://doi.org/10.14778/3099622.3099626
https://doi.org/10.14778/3099622.3099626
https://doi.org/10.1016/J.INS.2010.07.007
https://doi.org/10.1016/J.INS.2010.07.007
https://doi.org/10.1145/3538712.3538724
https://doi.org/10.1016/S1389-1286(99)00040-7
https://doi.org/10.1007/3-540-45735-6_1
https://doi.org/10.1109/ICDE.2017.15
https://doi.org/10.1109/ICDE.2017.15
https://doi.org/10.1109/ICDE.2017.136
https://doi.org/10.1109/ICDE.2017.136
https://doi.org/10.1007/S00778-017-0467-4
https://doi.org/10.1007/S00778-017-0467-4
https://doi.org/10.1007/S00778-020-00606-9
https://doi.org/10.1007/S00778-020-00606-9
https://doi.org/10.1109/TKDE.2021.3131611
https://doi.org/10.14778/3397230.3397234
https://doi.org/10.14778/3397230.3397234
https://doi.org/10.1109/TCBB.2004.2
https://doi.org/10.1109/ICDE53745.2022.00191
https://doi.org/10.1145/3159652.3159678
https://doi.org/10.1145/3159652.3159678
https://doi.org/10.1145/1148170.1148257
https://doi.org/10.1145/1148170.1148257
https://doi.org/10.1109/ICDE48307.2020.00063
https://doi.org/10.1007/S00778-021-00658-5
https://doi.org/10.1142/S0218001423590024
https://doi.org/10.1186/1471-2105-15-110
https://doi.org/10.1145/3459637.3482282
https://doi.org/10.14778/3594512.3594532

	Abstract
	1 Introduction
	2 Problem Definition
	3 Exact algorithms
	3.1 The Basic Algorithm
	3.2 A Slim Tree Structure
	3.3 Upper Bound Algorithm

	4 Approximate algorithms
	4.1 New Framework
	4.2 Pruning Algorithm

	5 EXPERIMENTS
	5.1 Experiments of Exact Algorithms
	5.2 Experiments of Approximate Algorithms

	6 Conclusion
	References

