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ABSTRACT
In this extended abstract, we summarize our previously published
work (28th EDBT 2025) on leveraging Large Language Models
(LLMs) to automatically generate consistency rules for property
graphs. Graph data structures are essential for representing complex
relationships in various domains, including life sciences, social me-
dia, healthcare, finance, security, and planning. With the increasing
reliance on graph databases—particularly property graphs—for cap-
turing semantic relationships, ensuring data integrity and quality
has become crucial. Traditional methods for maintaining consis-
tency, such as expert-defined rules and data-mined constraints like
functional and entity dependencies, face challenges in scalability,
adaptability, and comprehensibility. We explore how Large Lan-
guage Models (LLMs) can be utilized to automatically generate
and refine consistency rules for property graphs through guided
prompts. Leveraging the reasoning capabilities of LLMs over ex-
pressive graph models, we conduct an exploratory empirical study
to assess the extent to which LLMs can extract rules that enforce
data consistency. Our evaluation spans different real-world datasets
and various graph encoding methods. Our results demonstrate that
LLMs show promising abilities in extracting consistency rules, pri-
marily identifying schema-based constraints such as primary keys,
attribute uniqueness, and label enforcement. Additionally, LLMs
occasionally capture more complex patterns, including temporal
constraints where certain events cannot occur simultaneously.
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1 INTRODUCTION
Graph data has become widespread in various domains [13] such
as life sciences, social media, healthcare, finance, security, and plan-
ning due to its ability to represent complex relationships between
entities. With the growing reliance on graph data, ensuring data
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integrity and quality has become essential. Graph databases lever-
aging property graphs have been extensively adopted to capture
the semantics of these complex relationships. However, ensuring
consistency within large evolving property graphs is challenging.
One of the approaches to ensure the quality of the graph is through
consistency rules, such as functional dependencies [4] and entity
dependencies [3]. These rules help maintain data integrity by en-
forcing specific constraints and relationships among the entities.

For example, consider a graph representing a social media plat-
form like Twitter, where users, tweets, and hashtags are represented
as nodes and edges represent relationships such as mentions, posts,
follows, or tags. A consistency rule in this context could enforce
temporal constraints—for instance, a retweet can occur only af-
ter the original tweet has been posted. Another rule might ensure
that users cannot follow themselves or that every tweet must be
associated with a valid user who posted it. These rules are crucial
for maintaining the logical consistency of the data and preventing
anomalies that could affect analytics and user experience.

Traditionally, these rules are either provided by domain ex-
perts [11], reflecting business logic related to the data, or mined
directly from the data by considering the co-occurrence of ele-
ments [8, 14]. However, both approaches have limitations. Expert-
defined rules may not cover all edge cases or adapt quickly to
new data patterns, while data-mined rules can generate an over-
whelming number of constraints, some of which may be redundant,
irrelevant, or difficult to understand by the domain expert.

Given the recent advent of Large LanguageModels (LLMs), many
works have started to investigate their capabilities to reason over
structured data, both relational and graphs. In the context of graph
data, LLMs have shown promising results in basic graph compu-
tational tasks on simple labeled graphs [5], graph mining [7], and
reasoning [1]. They also enable non-experts to interact with these
rich data structures through conversational interfaces [12].

For these reasons, in this paper, we explore how Large Language
Models can be used to automatically generate and refine rules for
property graphs by guiding them through designed prompts. By
leveraging the capabilities of LLMs to understand and reason about
graph data structures, we aim to provide an intuitive method to
maintain data integrity in graph databases.

In this paper, we contribute with a exploratory study to in-
vestigate to what extent LLMs can reason over expressive graph
models - such as property graph - to extract rules that can be used
to enforce consistency in the data. To this end, we perform an
empirical study evaluating how different LLMs perform in ex-
tracting consistency rules, on various real-world datasets using
different graph encoding methods. Our preliminary results show
that LLMs have promising capabilities in extracting consistency
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rules, mainly consisting of schema-based constraints (e.g, primary
keys, uniqueness of attributes, or forcing specific node or edge
labels), but sometimes also extracting constraints related to more
complex patterns or considering the temporality of data (e.g., two
events cannot happen simultaneously).

2 EXPERIMENTS
Our method encodes graphs into text prompts, guides LLMs to
generate interpretable rules, and translates them into executable
Cypher queries. We evaluated the ability of LLMs to generate con-
sistency rules using two graph encoding methods (Sliding Attention
Window and RAG) and two prompting types (zero-shot and few-
shot). We use open-source models Mixtral [2] and LLaMA-3 [10],
which can be deployed locally. Full details are provided in our full
paper [9]

We conducted our experiments on three real-world property
graphs: WWC20219 (2,468 nodes, 14,799 edges), Cybersecurity (953
nodes, 4,838 edges), and Twitter (43,325 nodes, 56,493 edges). To
evaluate the effectiveness of the consistency rules generated for
property graphs we use some ranking measures used in the state-
of-the-art of rules mining [6], support, coverage and confidence,
and adapted it for property graph.

2.1 Rule Generation
In this section, we present the results in terms of the metrics ob-
tained by the rules generated by the LLMs. Tables 1 report the
score after correcting the Cypher queries. The details on how the
correction was done are described in Section 2.2

Table 1 shows the results for the Twitter dataset. LLaMA-3 out-
performs Zero-shot in terms of support, coverage, and confidence
compared to Mixtral. Meanwhile, both models demonstrate sig-
nificant improvement in Few-shot. Specifically, Mixtral shows a
great improvement with RAG, achieving an average of 100% of
coverage and confidence. LLaMA-3 still dominates the other cases
with coverage and confidence values ranging from 70% to 85%.

Regarding the other two datasets, WWC2019 and Cybersecurity,
we observe similar trends. The evaluation on the WWC2019 dataset
reveals that LLaMA-3 generally outperforms Mixtral in terms of
support, coverage, and confidence, particularly in the Zero-Shot.
While Mixtral shows lower quantitative performance, it tends
to generate more complex and nuanced rules. In Few-Shot, both
models improve, but LLaMA-3 maintains stronger overall scores.
For the Cybersecurity dataset, LLaMA-3 again performs better
with Sliding Window Attention, whereas Mixtral achieves higher

Sliding Window Attention RAG

#rules Supp% Cov% Conf% #rules Supp% Cov% Conf%

Zero-shot

Llama-3 8 12177 72.27 86.14 8 981 70.62 78.75
Mixtral 10 10789 81.20 81.20 7 7698 67.3 76

Few-shot

Llama-3 7 25201 85.72 85.72 9 8994 71.34 77.78
Mixtral 7 15262 78.79 83.25 8 11593 100 100

Table 1: Support, coverage and confidence score for the
Twitter dataset with Zero-Shot and Few-Shot Prompts

support under the RAG method, though with lower coverage and
confidence. Few-Shot prompting improves results for both models,
with LLaMA-3 remaining more consistent across encoding methods.

2.2 Cypher Generation

Model Sliding Window Attention RAG

Zero-shot Few-shot Zero-shot Few-shot

WWC-2019

Llama-3 11/12 7/8 7/7 5/6
Mixtral 8/9 7/8 5/6 4/5

Cybersecurity

Llama-3 8/10 7/9 6/7 7/7
Mixtral 7/10 4/5 4/6 4/5

Twitter

Llama-3 7/8 5/7 7/8 8/9
Mixtral 9/10 6/7 6/7 8/8

Table 2: Number of correctly generated Cypher queries

In this section, we discuss the performances of the model in
generating the Cypher queries related to the rules. We consider a
query not correct if it has syntax errors or if its formulation does
not match the data model. As shown in Table 2, While both LLMs
achieve over 70% query correctness, three main error types were
observed: (1) incorrect relationship direction, (2) hallucinated or
non-existent properties, and (3) syntax errors. In addition to these
error categories, another factor contributing to the decrease in LLM
performance is the generation of inaccurate rules (i.e., the rule
itself is not correct). To ensure a fair evaluation of the LLM’s ability
to generate consistency rules, we corrected the queries in case of
syntax errors or wrong edge directions, but we left them as they
were the queries with additional non-existing properties, because
those errors corresponded to hallucination at rule generation level,
rather than the translation to Cypher.

3 CONCLUSIONS
In our study, we initially aimed to extract specific GFD and GED
rules. However, we observed that the LLMs struggled to distinguish
between these concepts effectively. In general, for all the datasets,
the extracted rules seem to relate to the schema of the graph (e.g., en-
forcing that nodes are connected with edges having specific labels,
or specifying some values for the properties). LLaMA-3 generates
simple rules, while Mixtral produces more complex but harder-to-
apply rules. The sliding windowmethod is more effective than RAG
because RAG has issues with context retrieval. Few-Shot prompting
only improves results on the Twitter dataset. Manual correction
is still needed, but automation may be possible in the future, and
the pipeline could be made interactive to allow domain experts to
easily refine the rules.
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