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ABSTRACT

Knowledge graph completion (a.k.a. link prediction), i.e., the task
of inferring missing edges in knowledge graphs, is a widely used
task in many applications, such as product recommendation and
question answering. State-of-the-art approaches include knowledge
graph embeddings and rule mining which are data-driven and, thus,
solely based on the information contained in the input knowledge
graph. This leads to unsatisfactory prediction results and ignores
domain expertise making such solutions inefficient for domains
such as healthcare and bioinformatics. To enhance the accuracy
of knowledge graph completion we propose PoDEROSO, a modular
neuro-symbolic framework that loosely integrates the data-driven
power of knowledge graph embeddings with rule-based reasoning.
PoDEROSO not only enhances the prediction accuracy with domain
knowledge via rules stemming from experts but also allows users to
plug their own knowledge graph embedding models and reasoning
engines. In our preliminary results we show that PODEROSO en-
hances the MRR accuracy of vanilla knowledge graph embeddings
and outperforms hybrid solutions that combine knowledge graph
embeddings with rule mining. We also discuss how PoDEROSO can
be used in bionformatics, in particular how it can advance research
in bacteriophage therapy.
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1 INTRODUCTION

Knowledge graphs (KGs) are extensively used in many application
domains, ranging from search engines to bioinformatics. Nodes in
the graph denote entities and edges represent the relations between
entities. KGs are typically stored in data systems that allow for
efficient retrieval of parts of the graphs based on a declarative
query [3, 11]. As KGs are usually created from incomplete data
sources, it is often the case that there is missing information in
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the results of such queries. The task of KG completion (a.k.a. link
prediction) aims to infer missing edges in a KG.

Two known methods used for the problem of KG completion is
knowledge graph embeddings (KGE) and rule mining. KGEs are
representations of entities and relations into a low-dimensional
space which can be used to predict whether a missing link in the
graph shall be true or not. Rule-mining methods mine logical rules
from the KG and then apply them to infer new information. Both
methods rely on the existing patterns present in the KG and are thus
unable to generalize in cases where there is inadequate information.
For instance, KGEs work well in particular for predicting links of
popular entities and relations, i.e., dense parts of the graph [9].
Similarly, rule-mining methods work well when there is enough ev-
idence supporting the patterns they mine. However, real-world KGs
consist of both dense and sparse areas and thus, current approaches
fail to provide satisfactory prediction results in the general case.

We argue that an effective direction to improve KG prediction
performance is the inclusion of domain expertise encoded by on-
tologies and rules. For example, imagine Bob, a bioinformatician
working on bacteriophage therapy who has been able to encode
available datasets about phages into a KG. Although Bob can use
KGE:s to predict missing links and thus determine which lab experi-
ments to conduct, there is information known in the field which is
not found in the available datasets, e.g., that a certain type of phages
can burst the bacterial cell. Such information cannot be extracted by
KGEs because there is no much evidence in the available datasets.
This hinders the effectiveness of current link prediction methods.

Related work. There have been few proposals on hybrid solu-
tions, combining KGEs with rule mining and reasoning [2, 4, 13].
KALE [4] embeds first-order logic rules in the same mathematical
framework of TransE, a specific KGE model, by devising a new loss
function. The authors of [2] use mined rules to impose constraints
into the KGE models. The drawback of these approaches is that
the embedding and reasoning processes are tailored to a specific
KGE model and specific rules which makes the system difficult to
adapt to more efficient KGE models and incorporate domain knowl-
edge. pLogicNet [13] is based on Markov Logic Networks (MLN)
trained with the variational EM algorithm and leverages KGEs to
infer missing triples during the inference step (E-step) which are
then used in the learning step (M-step) until convergence. However,
such approach inherits the inefficiency of MLNSs to scale to large
KGs. None of the aforementioned approaches can leverage domain
specific knowledge in the form of ontologies and rules. In fact, [5]
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Figure 1: Overview of PODEROSO.

states that most existing KGEs are not capable of encoding onto-
logical information. In [6], the authors use ontological information
but only for improving the negative samples that KGEs require.

Proposed solution. We are working towards building PopEroso,
a modular neurosymbolic framework which allows for KGEs and
rule-based reasoning to work in tandem. PODEROsO consists of two
main components: a KGE engine and a reasoner. The KGE engine
produces new triples based on the embeddings and the reasoner
produces new triples based on the KG, the ontologies and the rules.
We aim for rules that are defined by domain experts but they can
also be specified by different entailment regimes. The novelty of
our framework over previous hybrid approaches is twofold. First, it
leverages the predictive power of the data-driven KGE approaches
(neural approach) while at the same time it is able to capture domain
expert knowledge via deductive reasoning (symbolic approach).
This allows to infer information even for sparse regions of a KG.
Second, it combines KGEs with reasoning in a loosely-coupled and
modular way and, thus, does not depend on any specific KGE model
or reasoning algorithm: Users can easily plug their own KGE model
or reasoning engine and the system will seamlessly work out of
the box. Thanks to its loosely-coupled and modular integration of
KGEs and reasoning, it can achieve better predictive performance.

2 PROPOSED FRAMEWORK

Our goal is to combine KGEs with rule-based reasoning in a loosely-
coupled and modular way so that we can infer missing informa-
tion, i.e., extract triples that do not exist in a KG. Our framework,
PoDEROsO, consists of two main components: the KGE engine and
the Reasoner. Both components are able to output inferred triples
(missing links) using different ways. The KGE engine uses embed-
dings to output missing triples, while the reasoner uses a forward
chaining reasoning algorithm to output inferred triples. Figure 1
shows the internals of the two components and how they interact
with each other. Each component passes its output as input to the
other component in an iterative manner (constant loop) until no
new information can be inferred.

2.1 KGE engine

The KGE engine is responsible for the embedding-based learning.
At each iteration, it receives as input the initial KG together with
any triples inferred by the reasoner and trains a KGE model. The
model is then able to predict with certain probability whether a
given test triple, not contained in the training input set, is true or

not. The challenge we had to overcome is how to generate the test
triples. Ideally, we would like to pass through the KGE prediction
the complement of the input KG, i.e., all triples that do not exist.
Although theoretically it is possible to create the complement of
the input KG by taking all pairs of nodes that are not directly
connected and all possible edge labels, it is infeasible in practice
as the number of test triples would be O(N? x R) for a KG with N
entities and R relations. For this reason, the KGE engine includes a
triples generator submodule which is responsible to output a subset
of triples contained in the complement of the KG which have a good
chance of being true. Once the triples generator module outputs
candidates triples, it passes them to the KGE prediction module
which outputs whether a triple is true with a certain probability.
The KGE engine outputs the triples that are true with a probability
above a certain threshold.

The triples generator is built in a generic manner to be able to
support various methods for generating candidate triples. The sim-
plest method is using uniform random sampling to draw from the
set of entities and relations. This strategy, however, leads to triples
that are with high probability not true as connecting randomly
entities with random relations creates meaningless triples. An intu-
itive strategy is to explore sparse regions of the graph as entities
that are densely connected are less probable to have missing true
relations. For this we exploit the cluster coefficient of the entities,
i.e,, the fraction of triangles passing through a node w.r.t. its degree.
We then use the cluster coeflicient as a weight to sample entities
for each type of relation in KG. In [1], we have evaluated different
sampling methods for extracting plausible facts from a KG and
concluded that more work is required in this direction.

The goal of the KGE engine is to be independent of any KGE
model and triples generation strategy. In other words, users can
plug their own implementations. To do so, PODEROsO exposes the
following primitives:

model = fit(X)
Y = generateTriples(X)
Y’ = predict(Y, model)

Function fit receives a set X with the triples of the input KG and
returns the fitted KGE model. Function generateTriples takes as
input a set X of triples and outputs another set of candidate triples
Y which are not contained in X. Function predict receives a set of
triples Y and a model and outputs the input triples with an extra
column that specifies the probability of the triple being true.

2.2 Reasoner

The reasoning engine is responsible to infer new triples given an
initial set of triples (initial KG plus triples output by the KGE engine),
a set of rules, and optionally an ontology. Rules can be user-defined
or can be stemming from an entailment regime, such as RDFS or
OWL2. Our framework can use any forward chaining reasoner
that exhaustively applies the given rules to the input and inferred
triples until a fixpoint is reached, i.e., no new triples can be inferred.
PobpEROs0 achieves this by providing the following simple primitive:

Y = infer(X, rules, [ontologyl)

The type of rules supported strongly depends on the underlying
reasoner used by the framework. The only requirement is that they



Table 1: Datasets statistics.

Dataset Entities Relations Triples (total)
DBPedia20k 20,143 12 120,000
LUBM-2 53,860 32 268,136

should be monotonic, i.e., adding new rules or triples never results
in removing triples or contradicting already output results.

A problem that may arise with the input rules is that they are re-
dundant, i.e., they produce redundant triples. Although this does not
change the correctness of the results, it adds a significant overhead
on the runtime of the reasoning process. Even the rules included
in the RDFS entailment regime are redundant and can lead to a
large number of redundant triples [7]. For this reason, PODEROSO
includes a subcomponent that simplifies the input rules.

3 VALIDATION AND USE CASE

We validate PODEROSO with a preliminary set of experiments and
describe a real use case we are currently working on.

3.1 Experiments

We use both synthetic and real world KGs. The questions we answer
are: (i) how link prediction can be improved by a hybrid modular
approach and (ii) what is the training time overhead that reasoning
incurs to the KGE computation.

Datasets and rules. We use one real-world KG that is accompa-
nied with an ontology, namely DBPedia, and the popular synthetic
KG generator, LUBM. As the original DBPedia KG is too large for
KGE models to handle, we use a subset of it: we extracted a well-
connected subgraph that contains the 12 most popular relations and
information around them. Table 1 summarizes the characteristics
of our datasets. We utilize the simple RDFS entailment rules [10].

Baselines. PODEROsSO’s current implementation supports TransE,
DistMult, ComplEx, HolE, and ConvE KGE models and Pellet [14]
and HermiT! OWL2 DL reasoners. We compare PODEROSO against
each KGE model in addition to KALE [4] and plogicNet [13] which
use a different approach to incorporate reasoning in KGEs. We use
the same hyperparameter settings for the vanilla KGEs and our
approach. For KALE and plogicNet, we use the hyperparameters
recommended in their repository.

Hardware and Software. We ran all our experiments in a machine
with 32x2.3 GHz AMD Opteron(tm) processor 6376, 62GB RAM
memory, a GPU NVIDIA-SMI 440.33.01, the driver version 440.33.01
and the CUDA version 10.0. We used Python 3.7 and Tensorflow
1.15. For the baselines plogicNet and KALE, we used Python 3.7
with PyTorch 1.5 and Java 1.8.0, respectively.

Metrics. We evaluate the accuracy by computing the filtered mean
reciprocal rank (MRR), and the Hits@1, Hits@3, and Hits@10 for
the link prediction task. In addition, we measure training time.

3.1.1 Model performance. We first compare the predictive per-
formance of PoDEROsO compared to vanilla KGE models. Table 2
shows the results for both datasets. We observe that for both LUBM
and DBPedia20k PopErOso almost always improves the quality of
the model (shown by the underlined times). In particular, PoDEROSO
improves the MRR, Hits@1, Hits@3, and Hits@10 of HolE [12] by
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Table 2: Accuracy among different KGE models and ap-
proaches. PODEROsO performs better than vanilla KGEs for
both LUBM and DBPedia20k. It also significantly outper-
forms the hybrid approches of plogicNet [13] and KALE [4].

LUBM
Method MRR Hits@1 Hits@3 Hits@10
TransE 0.28 0.28 0.26 0.31
PopEROsoO (TransE) 0.24 0.22 0.24 0.27
ComplEx 0.24 0.22 0.24 0.27
PopEroso (ComplEx)  0.32 0.27 0.32 0.41
DistMult 0.28 0.26 0.28 0.32
PopEroso (DistMult)  0.35 0.32 0.36 0.40
HolE 0.09 0.08 0.09 0.10
PopEeroso (HolE) 0.27 0.25 0.27 0.29
plogicNet 0.10 0.09 0.11 0.14
KALE 0.01 0 0 0.05
DBPedia20k
Method MRR Hits@1 Hits@3 Hits@10
TransE 0.11 0.09 0.12 0.15
PopEROsoO (TransE) 0.14 0.10 0.15 0.20
ComplEx 0.25 0.18 0.27 0.38
Poperoso (ComplEx)  0.29 0.22 0.33 0.43
DistMult 0.25 0.20 0.29 0.34
PopEeroso (DistMult)  0.28 0.20 0.33 0.41
HolE 0.13 0.11 0.14 0.17
PopERroso (HolE) 0.13 0.11 0.14 0.18
plogicNet 0.20 0.16 0.24 031
KALE 0.18 0 0 0.25
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Figure 2: (a) and (b): Training times for vanilla KGE and
PopEROsO: PODEROSO keeps the reasoning overhead low for
most of the cases. (c): PoDEROso0 is much faster than plogicNet
and KALE for both datasets.

a factor of 3. The best model for LUBM scored an MRR of 0.35 with
DistMult. For DBpedia20k, PopErROsO with ComplEx scored the
best MRR with value of 0.29. As the best KGE model differs for
each dataset, it is fundamental to give the opportunity to users to
use any KGE model. This is achieved through the modular design
of PopEROSO. In addition, we observe that PODEROsO significantly
outperforms the other hybrid baselines, namely plogicNet [13] and
KALE [4]. It achieves up to 3.5% better MRR performance than
plogicNet and 1.5x better MRR than KALE. This is not only be-
cause plogicNet and KALE deeply embed reasoning with KGEs and
thus may lose some information but also because our approach can
effortlessly use any KGE model and improve over it.

3.1.2  Training time. We now evaluate what is the overhead of
adding the reasoning process when training KGEs. Figure 2 shows
the training time of Poperoso for (i) different KGE models and (ii) the
baselines compared to PopEROSO with the KGE model that yields
the best prediction accuracy. In Figure 2(a), we observe that the
overhead posed by the reasoning engine is very small for the LUBM
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Figure 3: Subset of Phage Knowledge Graph.

dataset (up to 34% for DistMult), while for TransE the inferred triples
resulting from the inference lead to faster convergence of the al-
gorithm. Similar results we observe for the DBpedia20k dataset in
Figure 2(b). Finally, Figure 2(c) shows the difference in training time
between PobEROSO and the hybrid baselines KALE and plogicNet.
For both datasets, PODEROSO is faster to converge.

3.2 PobERroso for phage therapy

A common application of KG completion is in the area of bioin-
formatics. In particular, we are working on using PODEROsO in the
field of bacteriophage (phage for short) therapy. Phages comprise
one of the most abundant organisms in earth and offer a promising
solution to antimicrobial resistance. Their complexity in genome
diversity and unknown functions of the genes they encode have
made them an under-explored organism so far. However, advances
in computational biology and sequencing methods makes it more
possible to understand them and harness their therapeutic potential.
Still, their diversity, complexity, and unknown functionality make
it hard for scientists to determine the experiments to conduct in
the lab (i.e., find the hypothesis). KG completion comes as a natu-
ral solution to this problem: Given a KG that encodes all known
information about phages and bacteria hosts, KG completion can
provide the hypotheses to be validated with lab experiments.

We are currently constructing a phage knowledge graph and a
rule base which we then plan to utilize for KG completion using
PODEROSO. A subset of the KG is shown in Figure 3, while a small
set of rules are shown below:

R1: host(Y) :- infects(X,Y).
R2: broad_host_range(X) :- infects(X, Y1), infects(X, Y2),
genus(Y1), genus(Y2), notEqual(Y1, Y2).
R3: lysogeny(X, Y) :- phage(X), infects(X, Y),
encodes(X, integrase), encodes(X, repressor).
R4: anti_biofilm(X) :- encodes(X, depolymerase).
R5: therapy_candidate_for(X, Y) :- lysogeny(X, Y),
broad_host_range(X), anti_biofilm(X).
These rules formulate the conditions under which a phage can be
used as therapy for certain bacterium hosts. We expect that the
links being inferred from PopEroso will help us design targeted
laboratory experiments to validate these predictions. This may
further lead to novel and insightful findings for phage therapy.

4 OPEN CHALLENGES & CONCLUSION

To fully realize the power of PoDEROSO we need to tackle a set of
data systems challenges: (i) A main scalability bottleneck is the
training time of KGEs and the reasoning time which depends on

the rules complexity and input KG. A distributed version for both
training [8] and reasoning [7] would lead to a larger scale neuro-
symbolic approach. (ii) As triples output from the KGE engine con-
tain some uncertainty it is natural to include this uncertainty into
the reasoner by utilizing probabilistic reasoners. However, in some
preliminary results we conducted we found probabilistic reasoners
to hinder scalability even further. (iii) A naive way of communica-
tion between the two main components (e.g., sequential execution)
could also contribute to huge training times. (iv) As ML models can
only provide predictions to specific questions (i.e., test/inference
data), it is not straightforward on how to extract “plausible" data
from ML models out of the box (i.e., without any test data). We
have done an initial evaluation of different sampling algorithms [1]
but there is a lot of room for improvement. (v) Finding the right
combinations between different ML models, fact extraction strate-
gies, and RR methods for each task would require an optimization
layer, potentially similar to query optimizers.

We proposed PODEROSO, a modular neurosymbolic framework
that loosely couples KGEs with symbolic logical reasoning. In con-
trast to state-of-the-art approaches that rely solely on the informa-
tion available in the input knowledge graph, we can incorporate
domain expertise in the KG completion task which leads to in-
creased accuracy. The modular design also allows users to plug any
KGE or reasoning algorithm allowing for further optimizations. Our
results showed that PODEROSO can improve accuracy while keeping
training time low. The application of PODEROSO in the field of phage
therapy will demonstrate its practical utility in discovering mean-
ingful relationships among phages and bacteria hosts, potentially
guiding experimental design and accelerating discovery.
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