
NALMOBench: Towards Benchmarking Natural Language
Interfaces for Moving Objects Databases
Xieyang Wang

Nanjing University of Aeronautics and Astronautics,
China

xieyang@nuaa.edu.cn

Weijia Yi
Nanjing University of Aeronautics and Astronautics,

China
wjyi_x@nuaa.edu.cn

Mengyi Liu∗
Nanjing University of Aeronautics and Astronautics,

China
liumengyi@nuaa.edu.cn

Chenchen Zong
Nanjing University of Aeronautics and Astronautics,

China
chencz@nuaa.edu.cn

ABSTRACT
Existing natural language interfaces for databases (NLIDBs) bench-
marks target relational databases and lack unified quality metrics,
support for complex spatio-temporal multi-dimensional queries,
and real-world validation of translation accuracy and efficiency. To
fill this gap, we propose a benchmark for natural language query
(NLQ) translation in moving objects databases (MODs). The bench-
mark covers five commonly encountered moving objects queries
and two real-world scenario queries. Such NLQs are generated
to construct the corpus with the usage of large language models
(LLMs). Robust NLQs are extracted from the corpus and annotated
with the assistance of automatic processes and domain experts. The
annotation process incorporates formal verification to ensure query
quality. We propose a two-phase query transformation baseline
method, including natural language understanding and structured
language generation for comprehending the intent of NLQs and
generating optimized executable languages, respectively. Experi-
mental results indicate that existing methods struggle to be directly
applied in designing NLIDBs for MODs, failing to effectively handle
complexMOD queries and lack precise control over query efficiency.
This highlights significant research potential in NLIDB for MODs.
The method proposed in this paper achieves average translatability,
translation precision, and translation efficiency score of 68.96%,
60.07%, and 68.37, respectively.

VLDBWorkshop Reference Format:
Xieyang Wang, Weijia Yi, Mengyi Liu, and Chenchen Zong. NALMOBench:
Towards Benchmarking Natural Language Interfaces for Moving Objects
Databases. VLDB 2025 Workshop: LLM+Spatial.

1 INTRODUCTION
In recent years, the development of spatio-temporal databases has
been driven by an ever-increasing demand for sophisticated man-
agement of location-aware data. Natural language, being the most

∗Corresponding author
This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment. ISSN 2150-8097.

familiar means of communication, has become the preferred choice
for non-experts to use databases. Indeed, advances in LLM-based
text-to-SQL techniques have catalyzed the development of natu-
ral language interfaces for domain-specific databases. However,
standard SQL falls short of capturing the rich spatial and temporal
operators required for deep spatio-temporal semantic reasoning,
whereas native spatio-temporal engines expose an extensive set
of executable languages that can express complex queries [12]. To
bridge this gap, researchers have begun exploring direct translation
from natural language into executable languages (text-to-EXE). Yet
this emerging field lacks a unified benchmark and public datasets.
Referring to the maturity of text-to-SQL benchmarks, we need to
discuss the following three questions.

GPT-4o predicted SQL:

SELECT A.Id

FROM Trains AS A, Trains AS B

WHERE B.Id = 100

AND StartPoint(Intersection(A.Trip, B.Trip)) BETWEEN mpoint('2020-11-20

06:00:00') AND mpoint('2020-11-20 19:00:00')

ORDER BY Distance(StartPoint(A.Trip), StartPoint(B.Trip))

LIMIT 5;

Executable language of SECONDO:

let t100 = Trains feed filter[.Id = 100] extract[Trip];

query UTORdered_rtree UTOrdered feed filter [(deftime(.UTrip) intersects [const

periods value (("2020-11-20-06:00" "2020-11-20-19:00" TRUE TRUE))])]

nearest_neighbor[UTrip, t100, 5] consume;

Database: database about simulated train movement trajectories in Berlin consisting

of 51,544 moving object points.

Example NLQ: Find the 5 continuous nearest neighbors to the train 100 between

6:00 and 19:00 o'clock.

Figure 1: An example of GPT-4o predicted SQL and the cor-
responding executable language of SECONDO. White parts
are entities. Bold and underlined parts are operators used for
explaining the structured semantics expression of nearest.

Q1: Why do we need text-to-EXE compared to text-to-SQL
for moving objects databases?While significant advances have
been made, most achievements focus on relational databases, such
as the rule-based method NaLIR [6], neural network-based method
IRNet [3], and LLM-based methods like FinSQL [16]. Relational
databases using SQL for querying may encounter challenges when

https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org

Construct query pair examples

LLM-based

augmented corpus

Automatic

verification

NLQ extraction

Automatic annotation
Semantic and

formal validation

Coarse-grained entity extraction

Entity pruning

Information set Numbers set

Fine-grained entity extraction

Knowledge base Hierarchical index

Entities OperatorsSLM

Query type selection

SLM selection Slot filling

Executable Languages

Corpus and benchmarks Natural language understanding Structured language generation

Index selection

Manual annotation
Domain experts

Traffic enforcement officers

Figure 2: Overview of the benchmark.

handling complex moving objects queries involving multidimen-
sional data. Existing NLIDBs often depend on optimizers for query
optimization, which can result in reduced control over data and per-
formance. In contrast, executable languages offer the possibility of
solving semantic parsing and query translation due to the support
for a wide range of spatio-temporal queries and operators, and can
directly optimize the query with index usage and operator selection.
As illustrated in Figure 1, the SQL generated by GPT-4o necessi-
tates a comprehensive combination of operators and predicates
to accurately represent the semantics of a nearest neighbor query.
Executable languages can convey the same semantics just using
the nearest_neighbor operator. Additionally, the executable data-
base query can optionally utilize the 3D R-tree index, represented
by UTOrdered_rtree. Note that subsequent executable languages
are exemplified using the executable languages of SECONDO [4],
which is a real MOD system.

Q2: Can LLMs dominate the text-to-EXE landscape? As
mentioned previously, LLM-based methods now dominate the text-
to-SQL landscape, leading us to consider whether LLMs can be
effectively used for text-to-EXE [9]. Yet LLMs face two principal
obstacles when generating executable languages. On one hand,
existing approaches rely on task-specific corpus for executable
languages, which often necessitates prompt engineering or costly
fine-tuning with newly created datasets. Relying on prompts intro-
duces a trade-off in accuracy of entity linking, operator selection,
and index usage. Additionally, the design and creation of special-
ized corpus for fine-tuning are often cost-prohibitive. On the other
hand, even with the usage of prompts or fine-tuning, the accuracy
of entity linking in the text-to-SQL domain remains below 75%, let
alone for complex spatio-temporal queries. To comprehensively
investigate whether existing translation methods and LLMs can
offer valuable insights for text-to-EXE mechanisms in MODs, a
benchmark is demanded.

Q3:How to evaluate text-to-EXE systems?Mainstream bench-
marks primarily focus on text-to-SQL evaluation, failing to address
the complex spatio-temporal query requirements of MODs. Early
datasets like Geoquery [15] only provide NLQs without correspond-
ing SQL. While WikiSQL [18] offers NLQ and SQL pairs but only
for simple queries. Spider [14] and Bird [7] support cross-domain

queries but target fixed datasets, lacking specialized evaluation for
complex MOD queries. MOD queries typically represent real-world
needs. Current benchmarks exhibit two fundamental limitations:
(i) the text-to-SQL focus neglects domain-specific text-to-EXE eval-
uation and (ii) existing assessments lack real-world moving objects
scenario validation, overemphasizing translation accuracy while
underrepresenting executable query efficiency. These gaps necessi-
tate specialized benchmarks that capture domain-specific charac-
teristics and semantics, coupled with a comprehensive evaluation
framework balancing both accuracy and efficiency.

Challenges. To construct an in-depth benchmark for text-to-
EXE functionality within the context of MODs, we should tackle
three primary challenges: (i) The lack of domain knowledge-
based benchmark construction. The complex domain knowledge
of MODs and the wide range of extensible operators pose difficulties
for the construction and annotation of NLQs. (ii) The hardness
of natural language understanding. Both spatial and temporal
information can be ambiguous. The synonymous, abbreviated and
ambiguous entities need to be considered when designing queries.
(iii) The complexity of structured language generation. Due to
the diversity of operators and richness of query types, structured
language generation must simultaneously address the composition
of entities and operators, and query optimization challenges.

To address these limitations, we present NALMOBench, an LLM-
driven benchmark for evaluating text-to-EXE translation in MODs.
The complex real-world benchmark assesses the performance of
text-to-EXE systems and LLMs. Our proposed LLM-based auto-
mated corpus generation method efficiently produces large-scale
annotated text-to-EXE datasets with domain generalization capa-
bilities, while simultaneously addressing natural language under-
standing and structured language generation challenges. We also
provide baseline methods for comparison. To the best of our knowl-
edge, NALMOBench represents the first benchmark collaboratively
developed by spatio-temporal database experts and traffic law en-
forcement officers. The benchmark comprehensively supports stan-
dard moving objects queries, including time interval queries, range
queries, nearest neighbor queries, join queries, and trajectory simi-
larity queries, and real-world traffic enforcement scenarios. Unique
among existing benchmarks, NALMOBench jointly optimizes for

2

both translation accuracy and execution efficiency. Figure 2 illus-
trates the benchmark architecture. The contributions are summa-
rized as follows:

• We propose NALMOBench, a new benchmark platform de-
signed to evaluate text-to-EXE systems and LLMs forMODs,
featuring over 600 paired natural language and executable
database queries that cover both standard operations and
real-world scenarios, categorized into 7 query types and
stratified across 3 difficulty levels.

• We construct a corpus of approximately 6,000moving object
queries through a hybrid approach that combines manually
collected NLQs with LLM-based automated data augmenta-
tion, incorporating semantic and formal verification.

• We further optimize the natural language understanding
algorithm by constructing NLQ candidates and database
candidates, respectively. We propose a divide-and-conquer
paradigm to optimize structured language generation.

• We evaluate different NLIDB systems and LLMs on NAL-
MOBench. Experimental results demonstrate that the base-
line method achieves 68.96%, 60.07%, and 68.37 in translata-
bility, translation accuracy, and translation efficiency score,
respectively, outperforming existing approaches.

2 RELATEDWORK
Benchmarks play a pivotal role in the development and validation
of NLIDB systems. High-quality benchmarks can promote the vigor-
ous development and continuous progress of NLIDB research. Early
research on NLIDB benchmarks often utilize proprietary datasets,
which are tailored to specific domains. For instance, parsing based
systems like NaLIR, PRECISE [10], and ATHENA++ [11] rely on
datasets such as Geoquery, MAS, and YELP, which focus on indi-
vidual domains and lack generalizability, despite performing well
in the respective domains.

With the development of neural network technology, research
on NLIDB places higher requirements on system generalization.
Although neural network-based technologies are emerging, a test
dataset able to be used in a cross-domain context is missing. Thus,
WiKiSQL is proposed, which is the first large-scale multi-domain
dataset for relational databases. WiKiSQL contains 80,654 NLQs and
77,840 SQL statements. However, the SQL statements in WiKiSQL
are relatively simple, lacking complex operations such as sorting,
grouping, and subqueries. Therefore, Spider further addresses the
limitations of WiKiSQL by constructing a large and complex NLIDB
dataset for cross-domain semantic analyses. Spider contains 10,181
NLQs, 5,693 SQL statements, and involves more than 200 databases
in 138 different domains. There are common simple SQL queries as
well as complex ones such as nested queries. Although WikiSQL
and Spider propose cross-domain datasets, the two benchmarks
still emphasize on database schema and are insufficient to explore
further on database values. KaggleDBQA [5] addresses the above
problem by using databases extracted from real-world data sources,
which are more relevant to real-world scenario applications.

With the arrival of the era of LLMs, the research of NLIDB has
ushered in a new paradigm. Bird is proposed to evaluate LLMs.
Bird contains 12,751 text-to-SQL pairs and 95 databases with a total
size of 33.4 GB, spanning 37 professional domains. Bird proposes

a validation metric to evaluate the efficiency of NLIDB, though
primarily focusing on time cost.

While Spider and Bird claim high generalization capabilities, the
majority of these databases are specifically created by students,
which may not adequately represent real-world database complex-
ities. ScienceBenchmark [17] is the first text-to-SQL benchmark
designed with complex real-world scientific databases. Real-world
applications are likely to require high performance in a single do-
main, which may be more important than the ability to generalize
across domains.

3 BENCHMARK CONSTRUCTION
Existing benchmarks are predominantly oriented towards text-to-
SQL tasks, with no benchmarks specifically constructed for text-to-
EXE scenarios. While claimming cross-domain applicability, these
benchmarks fail to adequately address domain-specific require-
ments, such as moving object queries. Moreover, most benchmarks
lack validation in real-world scenarios. To address these limitations,
we develop NALMOBench, specifically designed for text-to-EXE
validation in MODs. Algorithm 1 shows the workflow of the bench-
mark construction.

Algorithme 1 : Corpus Construction and Annotation
Input : the list of n NLQs, Q;

the schema information of the database, S;
moving objects NLQ corpus, MOC;
the list of n executable database queries, EL;

Output : validated query pairs, P
initialize Q with collected NLQs
for 𝑞𝑖 ∈ 𝑄 do

𝑒𝑙𝑖 ← manual annotation of 𝑞𝑖
Models construction according to 𝑇𝑦𝑝𝑒(𝑞𝑖)
for Model ∈ Models do

q← Model(S)
Q.append(q)

for 𝑞𝑖 ∈ 𝑄 do
if 𝑞𝑖 fails to meet the semantic, syntax, and entity
constraints then

Q.remove(𝑞𝑖)

for 𝑞𝑖 ∈ 𝑄, 𝑒𝑙𝑖 ∈ 𝐸𝐿 do
𝑒𝑙𝑖 ← 𝑁𝐴𝐿𝑀𝑂(𝑞𝑖)
if z3(𝑒𝑙𝑖) ∧ semantic(𝑒𝑙𝑖) = semantic(𝑞𝑖) then

EL.append(𝑒𝑙𝑖)

P.append(Q, EL)
return P

3.1 Corpus Construction Methodology
We develop a template-based methodology leveraging collected
NLQs, augmented by LLMs, to construct a preprocessed corpus of
6,000 NLQs about moving objects, covering time interval query,
range query, nearest neighbor query, join query, trajectory similar-
ity query, cross-region query, and detour query.

3.1.1 Natural Language Query Conllection. We collect and design
100 robust moving objects NLQs. For each type of query, except real-
world queries, we collect andmanually refine 80NLQs from journals

3

Entity matching

Coarse-grained

Fine-grained

Designed/Real-

world NLQ

Key semantic

information

Natural language

preprocessing
Candidate sets

Database and external

knowledge
Knowledge bases

Figure 3: Natural language understanding.

and conferences. We suppose that queries sourced from top-tier
database journals and conferences are of high quality. Real-world
scenario queries are proposed by traffic enforcement officers and
subsequently modified by experts, which reflect actual scenarios
and are further fine-tuned by experts to align with the research
context. Additionally, we manually annotate the 100 NLQs, and the
detailed annotation process will be described later.

3.1.2 Automatic Augmentation. Building upon the collected queries,
we develop advanced NLQ augmentation templates for each query
type. Limited by space, we show one template of the range query:
“Which <object> pass through <location_type> <specific_location>
between <start_time> to <end_time>?”. Such templates serve as the
foundation for constructing corresponding prompts using the one-
shot methodology. We then leverage GPT-4o to expand the corpus,
thereby enriching the expressive diversity of the NLQs. Correspond-
ing prompts are given in Figure 4.

Complete SECONDO executable language query only and with no explanation

SECONDO executable language tables , with their properties :

#

#Schema:{schema information}

#

Formulate a {specific query type} query, filling the masked slots of the given template to generate the

natural language query.

Template: Find the same trajectory between <object1> <object_id1/object_identification1> and

<object2> <object_id2/object_identification2> during the time period [<start_time>, <end_time>].

Generated Queries:

Figure 4: Prompt of natural language generationwith natural
language templates.

3.1.3 Question Review. To further ensure the quality of the NLQs,
we conduct a secondary validation process, using chain-of-thought
(CoT) methodology to design prompts for GPT-4o to verify the
following aspects of each query: (i) Whether the syntax is correct.
(ii) Whether the entity information corresponds to the query type.
(iii) Whether there is any ambiguity. Non-compliant queries are
reviewed by experts. Since further NLQ extraction will be con-
ducted during the benchmark construction process, the primary
focus of the initial validation is to ensure the syntactic correctness
and robustness of the query content, without interacting with the
database information.

3.2 Benchmark Construction Methodology
We employ a hybrid approach combining manual and automated
methods to construct NLQ and executable language pairs. Initially,
we manually create 100 robust pairs of moving objects queries.
Subsequently, we extract approximately 500 NLQs from an existing
corpus using automated validation methods. In addition, we utilize
the methods given in NALSpatial [8] for initial annotation, followed
by validation of the annotated queries using both syntactic and

formal verification techniques. Finally, we rely on experts to label
queries that cannot be automatically annotated.

3.2.1 Manual Generation. We engage three graduate students spe-
cializing in spatio-temporal databases and two traffic enforcement
officers in the manual construction of query pairs. The verification
for non-real-world scenarios is conducted by the three graduate
students. Queries related to cross-region and detour operations are
proposed by the enforcement officers. The graduate students then
fine-tune these queries based on the database and construct the cor-
responding pairs, which are validated by the enforcement officers
through executing the executable database queries. In total, 100
query pairs are constructed. Meanwhile, we utilize the constructed
corpus to extract NLQs and use GPT-4o to automate the validation
process through CoT with organized examples to extract the NLQs.

3.2.2 Annotation. We utilize the method provided by NALSpatial
for initial annotation. However, the method can generate only part
types of queries. So, we use manually construct pairs as examples
and leverage the GPT-4o model to assess the semantic equivalence
between generated executable languages and original NLQs. Subse-
quently, we conduct Z3 formal verification, which involves parsing
the executable languages to extract the query types, structure, and
components. Symbolic variables are created for entities, and condi-
tions in different clause categories are converted into Z3 constraints
to check constraint consistency, specifically to identify and resolve
any contradictions within the query constraints. For queries that
either can not be generated or fail the verification processes, we
enlist the expertise of domain specialists to adjust or reconstruct the
executable database queries. In particular, all real-world scenario
queries are manually constructed.

4 NATURAL LANGUAGE UNDERSTANDING
The extensive semantics and diverse syntactic variations of nat-
ural language impede direct machine comprehension, leading to
substantial difficulties in entity recognition and extraction. To ad-
dress these challenges, we develop a sophisticated two-stage pro-
cess, comprising coarse-grained and fine-grained natural language
processing (NLP) modules, as depicted in Figure 3. In the initial
coarse-grained stage, the system generates a candidate set of en-
tities, including time, locations, objects, relations, moving object
identifiers, and nearest neighbor numbers. Subsequently, in the
fine-grained stage, a pre-constructed knowledge base is leveraged
to prune the candidate entity set and extract precise entities.

4.1 Natural Language Candidate Entity
In this phase, our primary objective is the construction of the natural
language candidate set. Efficiency is a key consideration, necessi-
tating the rapid identification of entity information. The inherent

4

complexity of semantic structures necessitates the use of advanced
NLP tools to approximate and locate potential entities.

Considering the imperative for swift processing, we select spaCy
as the primary NLP tool, with NLTK as a potential alternative.
Our framework initial implementation predominantly relies on
the robust tokenization and named entity recognition capabilities
of spaCy. Employing spaCy, we construct two principal sets: (i)
the information set and (ii) the number set. The information set
encompasses candidate locations, objects, and relations. The num-
ber set comprises the number of nearest neighbors, moving object
identifiers, and time information.

Given that the number set encapsulates numerical and temporal
information, we can precisely locate time and some of the numbers.
For instance, when encountering a time expression containing a
colon, such as “8:00 o’clock”, we utilize a regular expression to
achieve accurate matching and extraction. For hour expressions
lacking a colon, such as “8am”, we also employ a regular expression
for matching and extraction. The number of nearest neighbors
can then be determined according to the semantic distance of the
keywords like “nearest”. Due to the potential ambiguity of the query
object, object identification necessitates further validation.

4.2 Database Candidate Entity
Aligning natural language entity information with deterministic
database information presents significant challenges due to inherent
ambiguities and uncertainties in natural language. To address this,
we propose the construction of database candidates for precise
entity extraction. To achieve accurate extraction of location, objects,
relations, and object identifiers, we propose a sophisticated moving
objects knowledge base (MOKB). MOKB is composed of two sub-
knowledge bases: (i) the relation knowledge base (RKB) and (ii) the
location knowledge base (LKB).

We conduct a thorough analysis of the objects within the data-
base to identify relations containing the mpoint attribute, which
is utilized to represent moving objects. This relation encapsulates
the target moving objects. The LKB primarily extracts objects with
attributes such as point, line, and region from the database. Recog-
nizing the complexities posed by synonyms, abbreviations, and am-
biguous terms for locations, we leverage the capabilities of GPT-4o
to augment the existing LKB with potential synonyms, abbrevia-
tions, and ambiguous expressions. The extended terms are mapped
to the original locations solely for entity matching and will not
be manifested as final location entities. The RKB is employed to
determine moving objects relations and objects. Once an object is
identified, the nearest numerical value in semantic distance from
the object, existing within the number set and not previously iden-
tified as another entity, is ascertained as the object identifier. The
location information can then be retrieved from the LKB.

When managing large-scale databases, the knowledge base can
expand significantly, leading to prohibitive time consumption dur-
ing retrieval processes. To mitigate this, we devise a hierarchical
index for MOKB to expedite retrieval operations.

5 STRUCTURED LANGUAGE GENERATION
The inherent complexity of moving object queries renders the devel-
opment of a universal structured language model (SLM) impractical

Designed/Real-world NLQ

Executable database query

Query type determination

Selection of SLMs

Operator Index query _ feed _ consume;

Entities mapping

Index selection

Figure 5: Structured language construction.

and costly, especially in real-world scenarios. Therefore, we pro-
pose a divide-and-conquer strategy to reduce model design costs
and develop a query optimization model that refines generated
structured languages through index selection, with the detailed
construction process illustrated in Figure 5.

5.1 Structured Language Model Sketch and
Query Type Classification

Figure 5 delineates the sketch SLM, where ⟨𝑘⟩, ⟨𝑡⟩, ⟨𝑜𝑖 ⟩, ⟨place⟩, and
⟨relation⟩ denote the undetermined number of nearest neighbors,
time, object and identifier, location, and moving objects relation,
respectively. In scenarios where a location is encapsulated within
a moving objects relation, the ⟨place⟩ placeholder in the model is
substituted with the following expression. Here, ⟨tmp relation⟩ and
⟨𝑛𝑎𝑚𝑒⟩ represent the moving objects relation and the name of the
object: “⟨tmp relation⟩ feed filter [.Name = ⟨name⟩] extract [Trip]”.
Table 1 enumerates part of the key operators, encompassing names,
signatures, and functionalities.

Table 1: Operators in SECONDO.

Operator Signature Meaning
filter stream × filter condition →

stream
Filter the elements of the stream
by a predicate.

trajectory mpoint→ line Map continuous moving points
into trajectories.

deftime mpoint→ periods Project motion onto the time di-
mension.

at mpoint × {point, region} →
mpoint

Return moving points to a certain
point or region.

knearest stream×mpoint × int k→ stream Compute the k nearest neighbors.
dist_euclidean pointseq × pointseq→ real Compute the trajectory similarity.

For the type classification model training, the corpus is parti-
tioned into a training set and a test set with a ratio of 8:2. LSTM
is employed for training and the trained model can be utilized to
determine the query type of the input NLQ.

5.2 Structured Language Model Selection and
Slot Filling

For different query types, we map the corresponding entities to
respective slots using predefined mapping rules and combine them

5

with the required operators to generate the structured languages.
SLMs for time interval queries, range queries, and nearest neighbor
queries can be constructed based on methodologies described in
NALMO [13]. In this paper, we focus on the similarity threshold,
usage of indexes, and construction of structured languages in real-
world scenarios. Limited by space, we just take the cross-region
query as an example. Detailed description of SLMs are given in
NALSpatial and NALMO.

To determine whether a taxi trajectory intersects with the op-
erational boundary and within the operational area, we use the
intersects operator. If there is an intersection or the trajectory is out-
side the operational area, we deduce the existence of a cross-region
operation. However, if the taxi exits the operational boundary and
then re-enters within a short period, this behavior will not be con-
sidered as a cross-region operation.

6 EXPERIMENTAL RESULTS AND DISCUSSION
We report extensive experimental results in this section. The imple-
mentation is developed in a computer (Intel(R) Core(TM) i9-10850K
CPU, 3.60 GHz, 32 GB memory, 512 GB disk) running Ubuntu 20.04
(64 bits, kernel version 5.14.0-1051-oem). We aim to investigate the
performance of existing text-to-SQL methods and LLMs in address-
ing the text-to-EXE problem, with a focus on their applicability and
robustness in the domain of MODs. To ensure a comprehensive
evaluation, we not only assess the translation accuracy but also the
quality of the generated executable languages, including translation
efficiency and execution efficiency. We provide a thorough under-
standing of the strengths and weaknesses of different approaches,
offering valuable insights for real-world applications.

6.1 Experimental Setup
Setting. As described in Section 3, a combined approach of manual
and LLM-based annotation is employed. Although leveraging LLMs
for generation can reduce workload, a certain degree of manual
review remains necessary. Consequently, 600 pairs of NLQs and
structured query pairs are ultimately annotated. Example pairs 1

are available. Existing queries primarily fall into two categories:
(i) those specifically designed for databases and (ii) those tailored
to real-world requirements, which both are considered. The spe-
cialized queries include time interval queries (TI), range queries
(RA), nearest neighbor queries (NN), join queries (J), and trajectory
similarity queries (TS), while real-world scenario queries encom-
pass cross-region queries (CR) and detour queries (DT). According
to the query length, SQL query difficulty is categorized into four
levels, including simple, medium, hard, and extra hard in Spider.
Building upon this, we further classify moving object queries into
three complexity levels, including simple, medium, and hard, by
incorporating their intricate query types, shown in Table 3.

Datasets. The experiment utilize datasets comprising both real-
world taxis, cars, and buses movement trajectories and system-
simulated train movement trajectories, as shown in Table 2, en-
suring the comprehensiveness and accuracy of our experimental
results. The real-world trajectory dataset nanjingtest spans the pe-
riod from 00:00 to 24:00 on June 15, 2024, capturing movement
fragments from 302 moving objects, containing a total of 917,006
1https://pan.nuaa.edu.cn/share/c9bd35cbe21c175137d5de4db9.

Table 2: Details of the datasets used in the benchmark.

Dataset #Points #Lines #Regions #Moving objects

nanjingtest 9000 887 13 302
berlintest 3040 4078 330 562

moving object points. Meanwhile, the system-simulated train tra-
jectory dataset berlintest covers the period from 06:00 to 09:00 on
November 20, 2020, involving trajectory fragments from 562 trains
and consisting of 51,544 moving object points.

6.2 Evaluation Metrics
In the domain of text-to-SQL, the evaluation of system performance
mainly hinges upon three critical metrics: (i) Exact Match (EM), (ii)
Execution Accuracy (EX), and (iii) Valid Efficiency Score (VES) [7].
Our evaluation metrics are inspired by the three metrics above.

To evaluate the natural language understanding capabilities of
the text-to-EXE systems, we propose the metric of Translatability
(TA). Given the set of executable database queries generated by the
system and the set of input NLQs, denoted by EQ andN, respectively,
TA is defined as:

𝑇𝐴 =
|𝐸𝑄 |
|𝑁 | (1)

This metric is used to assess the semantic completeness of exe-
cutable languages, which are both logically correct and entity-
complete. TA broadens the scope by acknowledging all structurally
viable database queries, provided executable queries incorporate
the requisite entities and maintain logical integrity.

Furthermore, to evaluate the proficiency in formulating struc-
tured languages, we propose the Translation Precision (TP) metric.
Defined over the set of executable database queries that align with
expected results and the input NLQs N, TP assesses whether exe-
cutable languages deliver the expected outputs post-execution. We
compare the results between the generated executable database
query and the golden one, assuming the same execution results
indicate equivalence. Let 𝑆𝑛 be the executable database query set
for the 𝑛-th example, 𝐺𝑛 be the golden database query set for the
𝑛-th example, 𝑅(𝑆𝑛) be the result set after executing 𝑆𝑛 , 𝑅(𝐺𝑛) be
the result set after executing 𝐺𝑛 , TP can be defined as:

𝑇𝑃 =
1
𝑁

𝑁∑︁
𝑛=1
(1(𝑆𝑛,𝐺𝑛) · 1(𝑅(𝑆𝑛), 𝑅(𝐺𝑛))) (2)

where 1(𝐴, 𝐵) is an indicator function defined as:

1(𝐴, 𝐵) =

{
1, if 𝐴 = 𝐵

0, otherwise
(3)

To comprehensively assess the quality of the generated exe-
cutable languages, our analysis extends to encompass efficiency
metrics, called Translation Efficiency Score (TES), including execu-
tion time and a composite measure incorporating CPU time during
execution. TES goes beyond VES by considering execution time
and CPU time, thus providing a more comprehensive assessment
dimension. We only consider statements that are capable of pro-
ducing the same results as the given executable languages. Let E(·)
represent the measurement of execution time and C(·) represent the

6

https://pan.nuaa.edu.cn/share/c9bd35cbe21c175137d5de4db9

Table 3: Results of TA and TP.

Method
TA/% TP/%

Easy Medium Hard All Easy Medium Hard All

TI RA NN J TS CR DT TI RA NN J TS CR DT

NaLIR 5.84 3.06 1.79 1.05 2.00 0.00 0.00 2.52 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
ATHENA++ 37.27 31.61 21.43 27.37 28.00 10.17 23.53 29.87 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
ValueNet 35.04 20.41 19.64 18.00 16.95 11.86 15.69 24.33 16.79 14.29 10.71 5.26 2.00 3.39 5.88 9.23
LLaMA3-70B (few-shot) 51.10 33.16 30.17 22.11 16.50 10.17 31.37 30.20 23.36 19.47 20.54 10.00 5.50 5.93 6.86 14.18
GPT-4o (few-shot) 68.98 44.75 45.54 30.53 35.50 11.87 37.26 42.87 47.45 34.19 35.72 20.53 9.50 7.63 18.65 27.01
NALMO+ 89.05 79.78 78.57 73.68 77.00 45.76 58.82 68.96 72.99 61.22 57.14 61.05 65.00 37.29 41.18 60.07

TI, Time Interval Query; RA, Range Query; NN, Nearest Neighbor Query; J, Join Query; TS, Trajectory Similarity Query; CR, Cross-Region; DT, Detour.

measurement of CPU time. The two functions are used to measure
the absolute time in a given environment. We can design a formula
that combines these two functions:

TES =

∑𝑁
𝑛=1

(
1(𝑅(𝑆𝑛), 𝑅(𝐺𝑛)) · Cost(𝑌𝑛, 𝑌𝑛)

)
𝑁

(4)

Cost(𝑌𝑛, 𝑌𝑛) =
√︁
E(𝑌𝑛)√︃
E(𝑌𝑛)

·
√︁
C(𝑌𝑛)√︃
C(𝑌𝑛)

(5)

where Cost(·) denotes the relative efficiency of the generated exe-
cutable languages compared to the standard executable languages.
We comprehensively consider the execution time and CPU time
ratio of the standard executable languages versus the generated
executable languages to ensure a thorough evaluation.

6.3 Baseline Methods
We conduct a comparative analysis of six systems. Given the rapid
advancements in text-to-SQL, we select representative methods
from three popular categories: (i) Rule-based methods. We employ
NaLIR and ATHENA++. NaLIR is a classical rule-based approach
that utilizes parse trees for entity extraction and alignment, and con-
structs SQL with user feedback. ATHENA++ utilizes OQL queries
as an intermediate representation through a two-phase generation
method. (ii) Neural network-based methods. We choose ValueNet [1],
which builds upon IRNet by extending the SemQL grammar to
include values in the generated queries. (iii) LLM-based methods.
We leverage GPT-4o and the open-source model LLaMA3 as com-
parative methods. In the BIRD leaderboard, over half of the top ten
methods are based on GPT-4o. LLaMA3 is considered, which is one
of the most widely used open-source models. We design experi-
ments using the methodology of DAIL-SQL [2], which integrates
schema information into prompt design and example organiza-
tion, utilizing few-shot methods. Additionally, we introduce the
optimized method called NALMO+ for comparison. NALMO+ is
a hybrid architecture integrated into the SECONDO system as an
algebra module, and the corresponding operator is also developed.

6.4 Experimental Results
We consider the query translation capabilities. Table 3 presents TA
and TP of all methods, providing detailed data for different levels
of difficulty and query types. Since the executable languages in the
MOD differ in both syntax structure and semantic representation

from standard SQL, rule-based methods focus solely on the natural
language understanding process.

NaLIR constructs a semantic parse tree and then maps the nodes
onto SQL fragments. This database preset approach yields high
error rates in entity recognition and operator selection. Conse-
quently, NaLIR acquires low TA, and TP cannot be directly mea-
sured. ATHENA++ combines a domain ontology with Stanford
CoreNLP for advanced NLP in simple queries. simple queries involv-
ing few entities. However, ATHENA++ fails to extract or map fuzzy
entities, such as synonyms, abbreviations, or ambiguous terms.
In real-world scenario queries, where natural language often pro-
vides minimal entity information and multi-step decomposition is
required, ATHENA++ breaks down entirely.

ValueNet emits an intermediate representation (IR), making the
post-processing step that converts IR into structured SQL critical.
By ingesting actual database contents, ValueNet matches the TA
of CoreNLP-based methods. Yet, because ValueNet depends on
large-scale supervised training, the ability to generate executable
languages remains limited. TP stays below 20% across all categories,
and declines further as query complexity increases.

To analyze the performance of LLMs, we design few-shot prompt-
ing experiments. Due to the syntactic and semantic gap between
moving objects executable languages and standard SQL, LLMs
without example prompts fail all query tasks. GPT-4o outperforms
LLaMA3 in both TA and TP, showing over 50% and 100% relative im-
provements, respectively. However, the rich semantic patterns and
lack of fixed operator entity templates make single-shot prompts
insufficient for unseen queries, while the generated logic may be
correct, the omission of an initial temporal filter step leads to slower
execution than the golden executable database query. Increasing to
five examples yields over 20% gains in both TA and TP for LLaMA3,
and over 40% gains for GPT-4o. However, further increasing sample
size may risk hallucinations, including operator misuse and the
invention of non-existent operators.

For TES, both the small model of ValueNet and LLMs exhibit sub-
optimal performance. ValueNet, LLaMa3, and GPT-4o achieve 12.43,
26.37, and 60.71, respectively. Due to the inherent white-box nature
of executable languages, query efficiency can be directly controlled.
Small models are tightly bound to the training datasets, and LLMs
have not been exposed to enough training data directly related to
database indexing, especially in terms of optimizing queries with
indexes. This requires substantial re-training or fine-tuning with

7

large datasets. In contrast, the hybrid approach NALMO+ demon-
strates a notable advantage, maintaining relatively efficient queries,
achieving 68.37 of TES even in the absence of an extensive dataset.

In conclusion, these findings underscore the challenges posed by
the NALMOBench benchmark, further reinforcing that text-to-EXE
research is still in its early stages, with considerable potential for
further exploration and advancement in the field.

6.5 Discussion of the Experiments
Query complexity is fundamentally governed by the intrinsic diffi-
culty of the query. For simple TI queries, which only incorporate
temporal constraints, target objects, and relation information. The
structured languages are relatively rigid and utilize exclusively
temporal operators. Consequently, both the natural language un-
derstanding phase and the structured language generation phase
remain straightforward, enabling all evaluated methods to achieve
highest scores in TA and TP. By contrast, moderate complexity
queries, including RA, NN, J, and TS queries. entail a far richer
set of entity attributes (e.g., time, locations, relations, object identi-
fiers, and nearest neighbor numbers). This enriched semantic scope
significantly heightens the difficulty of natural language parsing.
Concurrently, the structured language grammar must cover an ex-
panded operator vocabulary, causing a combinatorial explosion in
operator and entity pairings. LLMs exhibit three principal short-
comings in this situation: (i) Entity mapping errors. LLMs struggle
to perform precise date transformations and to resolve fuzzy spa-
tial references, resulting in misidentified temporal or locational
entities. (ii) Operator selection failures. When confronted with un-
seen operators, LLMs either omit necessary operators or fabricate
non-existent ones, thereby rendering the generated queries syntac-
tically invalid. (iii) Module omissions. LLMs often neglect critical
sub-modules required for complete structured language generation,
culminating in queries that cannot be executed.

Consider the TS query as a concrete example. The similarity
threshold must be empirically calibrated on each dataset, demand-
ing an operation that depends on dataset-specific experiments and
manual adjustment. However, LLMs cannot infer optimal threshold
values and frequently generate spurious operators or default to
seldom used but valid ones, which degrades query performance.
At the hard level, CR and DT queries typically involve multiple
sequential processing steps or nested query constructs. Because
real-world execution requires iterative query handling, existing
approaches falter, with both TA and TP metrics remain below 50%.

7 CONCLUSION
In this paper, we introduce NALMOBench, a novel benchmark de-
signed to evaluate both the capability and quality of translating
NLQs into executable languages for MODs. NALMOBench cov-
ers not only synthetic moving objects datasets but also real-world
trajectory data. We further present an LLM-based approach for
generating a domain-specific database corpus. This method encom-
passes both routine moving objects queries and those arising from
intricate real-world scenarios. To tackle the text-to-EXE problem,
we decompose the problem into two sub-problems: (i) natural lan-
guage understanding and (ii) structured language generation, and
provide baseline algorithms for each stage.

Our experiments demonstrate that NALMOBench poses signif-
icant challenges to existing text-to-EXE methods and LLMs. We
contend that NALMOBench establishes a rigorous new standard for
evaluating text-to-EXE systems in the MOD field. NALMOBench
lays the groundwork for addressing the inherent complexities of the
usage of real-world trajectory data and for advancing research into
optimizing the efficiency of post-translated executable languages.

8 ACKNOWLEDGMENT
This work was supported by Postgraduate Research & Practice
Innovation Program of Jiangsu Province (KYCX24_0608) and In-
terdisciplinary Innovation Fund for Doctoral Students of Nanjing
University of Aeronautics and Astronautics (KXKCXJJ202505).

REFERENCES
[1] Ursin Brunner and Kurt Stockinger. 2021. ValueNet: A Natural Language-to-SQL

System that Learns from Database Information. In ICDE. 2177–2182.
[2] Dawei Gao, Haibin Wang, Yaliang Li, Xiuyu Sun, Yichen Qian, Bolin Ding, and

Jingren Zhou. 2024. Text-to-SQL Empowered by Large Language Models: A
Benchmark Evaluation. Proc. VLDB Endow. 17, 5 (2024), 1132–1145.

[3] Jiaqi Guo, Zecheng Zhan, Yan Gao, and et al. 2019. Towards Complex Text-
to-SQL in Cross-Domain Database with Intermediate Representation. In ACL.
4524–4535.

[4] Ralf Hartmut Güting, Thomas Behr, and Christian Düntgen. 2010. SECONDO: A
Platform for Moving Objects Database Research and for Publishing and Integrat-
ing Research Implementations. IEEE Data Eng. Bull. 33, 2 (2010), 56–63.

[5] Chia-Hsuan Lee, Oleksandr Polozov, and Matthew Richardson. 2021. KaggleD-
BQA: Realistic Evaluation of Text-to-SQL Parsers. In ACL/IJCNLP. 2261–2273.

[6] Fei Li and H. V. Jagadish. 2014. Constructing an Interactive Natural Language
Interface for Relational Databases. Proc. VLDB Endow. 8, 1 (2014), 73–84.

[7] Jinyang Li, Binyuan Hui, Ge Qu, Jiaxi Yang, Binhua Li, Bowen Li, Bailin Wang,
Bowen Qin, Ruiying Geng, Nan Huo, Xuanhe Zhou, Chenhao Ma, Guoliang Li,
Kevin Chen-Chuan Chang, Fei Huang, Reynold Cheng, and Yongbin Li. 2023.
Can LLM Already Serve as A Database Interface? A BIg Bench for Large-Scale
Database Grounded Text-to-SQLs. In NeurIPS.

[8] Mengyi Liu, Xieyang Wang, Jianqiu Xu, Hua Lu, and Yongxin Tong. 2025.
NALSpatial: A Natural Language Interface for Spatial Databases. IEEE Trans.
Knowl. Data Eng. 37, 4 (2025), 2056–2070.

[9] Yi Liu, Xiangyu Liu, Xiangrong Zhu, andWei Hu. 2024. Multi-Aspect Controllable
Text Generation with Disentangled Counterfactual Augmentation. In ACL. 9231–
9253.

[10] Ana-Maria Popescu, Oren Etzioni, and Henry A. Kautz. 2003. Towards a theory
of natural language interfaces to databases. In IUI. 149–157.

[11] Jaydeep Sen, Chuan Lei, Abdul Quamar, and et al. 2020. ATHENA++: Natural
Language Querying for Complex Nested SQL Queries. Proc. VLDB Endow. 13, 11
(2020), 2747–2759.

[12] Yongxin Tong, Jieying She, Bolin Ding, Libin Wang, and Lei Chen. 2016. Online
mobile Micro-Task Allocation in spatial crowdsourcing. In ICDE. 49–60.

[13] Xieyang Wang, Mengyi Liu, Jianqiu Xu, and Hua Lu. 2023. NALMO: Transform-
ing Queries in Natural Language for Moving Objects Databases. GeoInformatica
27, 3 (2023), 427–460.

[14] Tao Yu, Rui Zhang, Kai Yang, Michihiro Yasunaga, Dongxu Wang, Zifan Li,
James Ma, Irene Li, Qingning Yao, Shanelle Roman, Zilin Zhang, and Dragomir R.
Radev. 2018. Spider: A Large-Scale Human-Labeled Dataset for Complex and
Cross-Domain Semantic Parsing and Text-to-SQL Task. In EMNLP. 3911–3921.

[15] John M. Zelle and Raymond J. Mooney. 1996. Learning to Parse Database Queries
Using Inductive Logic Programming. In AAAI. 1050–1055.

[16] Chao Zhang, Yuren Mao, Yijiang Fan, Yu Mi, Yunjun Gao, Lu Chen, Dongfang
Lou, and Jinshu Lin. 2024. FinSQL: Model-Agnostic LLMs-based Text-to-SQL
Framework for Financial Analysis. In SIGMOD/PODS. 93–105.

[17] Yi Zhang, Jan Deriu, George Katsogiannis-Meimarakis, Catherine Kosten, Geor-
gia Koutrika, and Kurt Stockinger. 2023. ScienceBenchmark: A Complex Real-
World Benchmark for Evaluating Natural Language to SQL Systems. Proc. VLDB
Endow. 17, 4 (2023), 685–698.

[18] Victor Zhong, Caiming Xiong, and Richard Socher. 2017. Seq2SQL: Generating
Structured Queries from Natural Language using Reinforcement Learning. CoRR
abs/1709.00103 (2017).

8

	Abstract
	1 INTRODUCTION
	2 Related work
	3 Benchmark Construction
	3.1 Corpus Construction Methodology
	3.2 Benchmark Construction Methodology

	4 Natural language understanding
	4.1 Natural Language Candidate Entity
	4.2 Database Candidate Entity

	5 Structured language generation
	5.1 Structured Language Model Sketch and Query Type Classification
	5.2 Structured Language Model Selection and Slot Filling

	6 Experimental results and discussion
	6.1 Experimental Setup
	6.2 Evaluation Metrics
	6.3 Baseline Methods
	6.4 Experimental Results
	6.5 Discussion of the Experiments

	7 Conclusion
	8 Acknowledgment
	References

