Towards the Next Generation of Agent Systems: From RAG to
Agentic Al

Yingli Zhou
The Chinese University of Hong Kong, Shenzhen
Shenzhen, China
yinglizhou@link.cuhk.edu.cn

ABSTRACT

With the powerful emergence of Al technology, intelligent agent
systems that are capable of precise task planning, efficient collab-
orative operation, and in-depth resolution of complex tasks are
becoming the focal point of intense attention from both the indus-
trial and academic communities. A typical agent system includes: (1)
a planning module for task decomposition, agent role assignment,
and collaboration structure generation; (2) an execution module for
carrying out assigned tasks, managing progress, and coordinating
intermediate outputs; (3) a knowledge module that guides these
components via retrieval-augmented generation and memory; and
(4) a tool module for selecting and invoking external tools to sup-
port execution. Despite recent advances, current systems remain
limited in adaptivity, efficiency, accuracy, and robustness. This vi-
sion paper reviews and analyzes existing works across these four
modules, identifies key limitations, and outlines future research
directions toward the next generation of intelligent systems.

VLDB Workshop Reference Format:
Yingli Zhou and Shu Wang. Towards the Next Generation of Agent
Systems: From RAG to Agentic AL VLDB 2025 Workshop: LLM+Graph.

1 INTRODUCTION

The recent advancements in large language models (LLMs) such
as GPT-4 [1], Gemini [34], and Qwen [41] have laid the foundation
for building intelligent agents capable of interacting with users
in natural language, solving diverse tasks, and integrating with
external environments. As LLMs evolve from passive completion
engines to active decision-makers, the research community has
witnessed a surge of interest in agentic systems.

These emerging agentic systems can be naturally understood
as a form of multi-agent system (MAS), where multiple special-
ized agents—or modular components—collaborate to solve complex
tasks. Representative examples include systems such as Manus [23],
AutoGen [39], CAMEL [19], and MetaGPT [14]. In such settings,
LLMs often serve as the central reasoning or orchestration unit,
while core functionalities: planning, execution, knowledge retrieval,
and tool use. Applications span domains like software develop-
ment [15], scientific discovery [22], autonomous reasoning [42],
and workflow automation [40]. Despite these promising results,

This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.

Proceedings of the VLDB Endowment. ISSN 2150-8097.

Shu Wang
The Chinese University of Hong Kong, Shenzhen
Shenzhen, China
shuwang3@link.cuhk.edu.cn

building robust, reusable, and intelligent agent systems remains an
open challenge.

User query

Planning
Plan request i Topology | i Role & Task
L

Knowledge

Plan optimization

) " Similar plans
Retrieval Retrieval Plan Plan
Reranking Method Verification Rewritin
Support Optimized plan

Retrieval @ Execution
Request | T7===--—====

Instance Task
Retrieved [M Parallelism || (4Pt
[Data M Memory] Knowledge m}&
Processing) Management Reuse Handle

* ++¥ Memory

External data Storage

Knowledge Retriever

Knowledge Manager
Knowledge Indexing

Selected tools

Storage Tool request

Tool
Unified API_) (Tool Selector)
iTooIs:f"@ ges - i

Figure 1: Overview of multi-agent system.

In this vision paper, we argue that realizing scalable and trust-
worthy MAS requires four core capabilities, as shown in Figure 1:
(1) Planning, the process of decomposing goals, assigning subtasks,
and organizing control flow; (2) Execution, the ability to instantiate,
schedule, and monitor plans; (3) Knowledge, where retrieval and
memory mechanisms provide persistent context and reasoning sup-
port; and (4) Tool, enabling seamless invocation and coordination
of external APIs, models, or environments. These four modules
interact through structured interfaces—such as plan requests, re-
trieval queries, and tool invocations—enabling agents to operate in
a modular, interpretable, and verifiable manner. This architecture
reflects the emerging design paradigm of modern MASs, where
specialized components coordinate through well-defined protocols
to achieve system-level intelligence.

In the remainder of this paper, we revisit recent agent architec-
tures through this modular lens, identify representative patterns
and technical bottlenecks, and outline a roadmap for building the
next generation of intelligent agent systems. Just as modern com-
mercial DBMSs have evolved into structured, verifiable, and highly
optimized systems through decades of architectural refinement, we
believe that modern MAS should also move toward this. Motivated
by this parallel, the core insights from data management—such as
declarative specification, cost-based optimization, and interopera-
ble execution pipelines—are particularly well-suited to guide the
design of next-generation MAS.

https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org

2 PRELIMINARIES

In this section, we review some key concepts of large language
models (LLMs), as well as the foundational ideas behind agent and
multi-agent system (MAS) architectures.

2.1 Large Language Models (LLMs)

We introduce some fundamental concepts of LLMs, including LLM
prompting and retrieval-augmented generation (RAG).

LLM Prompting. After instruction tuning on large corpora of
human interaction scenarios, LLMs are capable of following natural
language instructions to perform a wide range of tasks [5, 27].
Specifically, given a task input, a prompt is constructed to encode
the desired behavior. The LLM then processes this prompt and
generates a corresponding output. Due to pre-training on trillions
of tokens, LLMs demonstrate strong generalization abilities, often
solving unseen tasks by simply modifying the prompt [27].

Retrieval-Augmented Generation (RAG). To improve factual
grounding and context awareness, RAG enhances LLMs with access
to external corpora or knowledge bases. Instead of relying solely
on parametric memory, the model retrieves relevant documents or
information in response to a query, and incorporates them into the
prompt for answer generation. RAG is widely used in open-domain
QA, tool-augmented reasoning, and knowledge-intensive tasks.

Agent. An agent refers to an autonomous computational entity
that can perceive its environment, make decisions, and execute
actions toward achieving specific goals. In the context of LLMs,
an agent typically includes not only the model itself, but also the
surrounding planning, execution, memory, and tool interfaces that
enable task-oriented behavior. LLM-based agents operate by inter-
preting user instructions, formulating action plans, invoking tools
or APIs, and adapting through feedback.

2.2 Multi-Agent System

A multi-agent system (MAS) consists of a collection of interacting
agents, each responsible for different sub-goals, roles, or capabilities.
MAS architectures are characterized by distributed problem-solving,
role specialization, and inter-agent communication. Agents within a
MAS may cooperate, coordinate, or compete to achieve system-level
objectives, often using negotiation, messaging, or shared memory.
In the LLM era, MAS principles are increasingly adopted in agen-
tic systems such as AutoGen [42], CAMEL [19], and MetaGPT [14],
where different LLM agents (e.g., planner, executor, critic) work
together through structured prompting protocols. This modular,
role-based decomposition enables better scalability, interpretability,
and division of labor, especially for complex, long-horizon tasks.

3 PLANNING

In this section, we introduce recent breakthroughs in planning
strategies for modern MAS, discuss their current limitations, and
highlight promising directions for future research.

Overview of planning. As shown in Figure 2, given a high-level
task 77, the MAS begins by constructing the topological structure
of the plan, which defines the decomposition of subtasks and their
dependency relationships. This is followed by the role and task as-
signment phase, where specific agents are allocated to correspond-
ing subtasks based on their capabilities and the task structure. The

/' \ fu?ﬂl]ﬁ -

Q. /N e
ol —> (- %‘é Rewriter L
v—)= | - =) — ; >! 14
Task Topologic Role & task | | (I Plan
generator assigner
Plan's structure Plan —

Verifier

Figure 2: Overview of the planning in MAS.

initial plan is then subject to plan optimization, including plan
rewriting [38] and verification to ensure logical consistency and
feasibility before execution.

3.1 Manually planning in MAS

Traditional planning in MAS depends heavily on expert-designed
rules, finite state machines, or hierarchical task networks. While
interpretable and precise, such methods demand significant domain
expertise and manual effort, limiting their scalability and adaptabil-
ity. As this manual dependency becomes a bottleneck in complex,
dynamic environments, the community has increasingly turned to
automated, data-driven planning approaches to enhance flexibility
and reduce human intervention.

3.2 Automatically planning in MAS

Recent advances have enabled several categories of automated
planning in MAS:

e LLM-direct planning. LLMs are increasingly employed
to decompose goals and generate task plans in natural lan-
guage. Specifically, systems like HuggingGPT [32] leverage
GPT-4 to generate a task graph—typically modeled as a di-
rected acyclic graph (DAG)—where each node represents a
specific task and each directed edge encodes a dependency
between tasks. This structured decomposition enables ef-
fective task coordination and has demonstrated superior
performance in complex tasks. While powerful, LLM-based
planning still faces challenges such as hallucinations, in-
consistencies, and difficulties in verifiability.

e Search-based planning. Search-based strategies aim to
generate high-quality plans by systematically exploring the
space of task sequences or workflows. A notable approach is
AFlow [47], which frames agent planning as workflow code
optimization. Instead of searching in action space, AFlow
applies MCTS over structured code representations, itera-
tively refining plans using execution feedback and learned
priors. Evaluated on six benchmarks, it achieves a 5.7%
average improvement over strong baselines.

e Learning-based planning. Learning-based planning ap-
proaches enable agents to acquire effective policies through
interaction with their environment, facilitating the emer-
gence of complex behaviors and coordinated strategies. For
example, the G-Designer [46] leverages graph neural net-
works (GNNs) to dynamically construct adaptive commu-
nication topologies among agents, significantly enhancing
efficiency and robustness in multi-agent collaboration. On
the other hand, such approaches underscore the potential

of integrating learning-based methods with structural opti-
mization, paving the way for more scalable and intelligent
planning in complex environments.

3.3 Future direction

In this subsection, we outline three promising opportunities for the
future of planning strategies for the MAS.

» Lessons from historical plans. By analyzing the execution of
past plans—both successful and failed—it is possible to identify
recurring patterns that characterize effective or problematic strate-
gies [43, 50]. These patterns serve as reusable knowledge, enabling
better planning and adaptation when similar queries arise in the
future. The key challenges lie in: (1) effectively abstracting and
structuring the learned lessons to support efficient storage and
retrieval, and (2) dynamically adapting those lessons to fit the re-
quirements of new, context-specific plans.

» Rule-based Plan Rewriting and Verification. Existing agent

planning approaches heavily rely on LLMs and the reflection para-
digm, where plans are iteratively revised by prompting the LLM to
self-correct [31]. While flexible, this process often lacks structure,
interpretability, and consistency, and may yield brittle or subopti-
mal plans. Inspired by query optimization in databases, we explore
an alternative: rule-based plan rewriting, which improves efficiency
and correctness through structured transformations. For example,
techniques like predicate pushdown—which applies filters early in
execution—can be mirrored by restructuring plans to front-load con-
straints or eliminate redundant steps. In addition to rewriting, plan
verification plays a critical role in ensuring that the transformed
plan still satisfies the original intent. Such techniques as constraint
checking, symbolic execution, or goal-condition validation can be
applied to verify the semantic equivalence and safety of rewritten
plans before execution.

» Declarative plan specification. Similar to query languages like

SQL, declarative plan representations allow users to specify what
the desired outcome is, rather than how to achieve it [20]. This
abstraction enables the system to autonomously explore and op-
timize execution strategies, making planning more flexible and
adaptable. In agent systems, declarative specifications help reduce
ambiguity, avoid unreliable or ad hoc plan generation, and enforce
a unified, structured representation of intent. To achieve this, this
approach also requires system-level support to interpret, compile,
and execute such high-level specifications effectively.

4 EXECUTION

In this section, we introduce the key components of the plan execu-
tion in modern MAS, discuss their current limitations, and highlight
promising directions for future research.

4.1 From Logical plan to physical plan

Given the optimized agentic plan, the execution module is responsi-
ble for instantiating and dispatching specific tasks to the appropri-
ate tools or environments. This process resembles query execution
in database systems: the agentic plan corresponds to a logical plan,
while the execution process maps to a physical plan that determines
how and when each action is carried out.

The system must ensure that the high-level intent of the plan
is faithfully and efficiently realized through concrete execution
strategies. This involves task instantiation, scheduling, error han-
dling, and potential reuse of intermediate results to avoid redundant
computations.

4.2 Execution components

As shown in Figure 1, the execution module consists of four key
components:

o Instance Tasks: This component instantiates the abstract
plan into concrete API/tool calls or function executions,
filling in parameters and inputs as needed.

e Task Parallelism: When possible, independent tasks are
executed in parallel to improve overall efficiency and reduce
latency [16].

e Pre-Results Reuse: To avoid redundant computation, the
system caches and reuses results from previously executed
tasks when encountering similar queries or subtasks.

o Error Handle: Robust execution requires the ability to de-
tect failures, handle tool unavailability, and trigger fallback
or repair strategies to maintain reliability.

Together, these components form a flexible and resilient exe-
cution layer capable of translating abstract plans into real-world
actions while optimizing for performance and robustness.

4.3 Future direction

» Learning-based Execution Optimization. Inspired by query

optimization in databases, future execution modules can learn to
select optimal strategies—such as parallelism levels or fallback or-
dering—based on historical execution traces and contextual fea-
tures. The key tasks are: (1) collecting and generalizing execution
feedback across heterogeneous tasks, and (2) designing effective
learning-based models.

» Adaptive recovery and self-healing. To ensure robust agent
behavior in dynamic or failure-prone environments, execution sys-
tems must support adaptive recovery strategies. These include roll-
back, dynamic plan revision, and tool substitution based on failure
signals.

» Cross-session result reuse. Beyond single-query caching, ex-
ecution modules can leverage persistent result reuse across users
and sessions, enabling long-term memory and improved efficiency.
For example, systems can proactively index and manage cached
results across diverse plan contexts, while also ensuring semantic
validity and version compatibility when reusing prior outputs.

5 KNOWLEDGE

In this section, we introduce the role of knowledge in MAS, focusing
on how agents store, retrieve, and update information from both
external sources and internal memory. Knowledge modules enable
agents to reason over past experiences and external data, supporting
informed and context-aware decision-making.

Overview of knowledge. As shown in Figure 3, the knowledge
module first processes raw context and memory to build a struc-
tured knowledge index (e.g., vector database, knowledge graph, and
graph database), which is continuously updated with new memory

1’ Query request
=

i

Knowledge Index

©)
— & B> | TZ =
I =N\, =Q
Data R ntext Retrieval
processing aw cone q — — -_
AN, =

—®—@ 8 - s

Rerank

M Memory Raw memory
Update

Figure 3: Overview of the knowledge in MAS.

and external data. Given a query, relevant information is retrieved
and then reranked to select the most appropriate knowledge, which
is subsequently used to support downstream planning and execu-
tion.

5.1 Knowledge manager

The Knowledge Manager orchestrates how agents store and update
information from external sources and past experiences. It handles
knowledge indexing and data processing as well as memory man-
agement. Typically, external knowledge encompasses a variety of
formats, including unstructured documents such as web pages and
PDF files, structured data from knowledge graphs and databases.
Internal memory captures the agent’s own experiences, such as suc-
cessful planning examples, execution traces, dialogues, and inferred
facts accumulated over time.

To effectively utilize this diverse information, the Knowledge
Manager employs data processing techniques that transform hetero-
geneous knowledge sources into structured representations suitable
for retrieval and reasoning. For example, it may involve: parsing
and interpreting various document formats and semantic chunking
to divide content into meaningful units;

Complementing data processing, memory management dynami-
cally handles the agent’s internal memory to ensure relevance and
accuracy. This includes: 1) Inserting new experiences and knowl-
edge into memory. 2) Retrieving similar past experiences to inform
current decision-making. 3) Updating or removing outdated or
incorrect information to maintain memory integrity.

Knowledge indexing involves constructing and maintaining effi-
cient data structures that facilitate rapid and contextually relevant
information retrieval. In practice, a hybrid storage model is com-
mon: an agent may store data in both a graph database and a vector
database. This allows semantic embeddings to be indexed in a vec-
tor store for similarity search, while structured relationships are
captured in a knowledge graph. Currently, knowledge index can be
broadly categorized into the following categories:

e Graph-based indexing: LLMs can construct knowledge
graphs from corpora (entities, relations, communities) to
index information. For example, GraphRAG [7] uses an
LLM to extract entities and relations from text, building a
knowledge graph and community hierarchy for indexing.

e Graph databases: Knowledge graphs may be stored in
systems like Neo4;j [25] or NetworkX [13], enabling complex
relational queries and incremental updates.

e Vector stores: Embedding-based indexes (Faiss [6], Mil-
vus [36], etc.) hold dense vectors of text chunks. These

databases support fast k-NN search on semantic embed-
dings.

5.2 Knowledge retriever

The Knowledge Retriever module fetches relevant information to
support agent reasoning. In practice, systems often use a two-stage
pipeline: a fast first-stage retriever produces candidates, and a
second-stage reranker refines them. Recent research has introduced
advanced graph-augmented retrieval techniques alongside rerank-
ing to boost accuracy and context-awareness, which can be broadly
categorized into two main approaches:

e Classic and dense retrieval: Classic and dense retrieval:
Keyword-based methods like BM25 remain strong base-
lines for first-stage retrieval. Dense retrievers (e.g., DPR or
embedding lookup) index vectors for semantic search [3].
These can be deployed in vector databases (Faiss [6] / Mil-
vus [36]) that are optimized for large-scale similarity search.

e Graph-based retrieval: Graph-based RAG systems lever-
age graph structure during retrieval [45, 49]. For example,
HippoRAG [12] borrows from hippocampal memory to in-
tegrate new experiences via knowledge graphs and PageR-
ank. LightRAG [10] combines graph structures with vector
indexes in a dual-level retrieval process. ArchRAG [37] con-
structs an attributed, community-based hierarchical graph
index: it augments the query with detected communities
and employs LLM-based clustering to guide retrieval.

Following the initial retrieval stage, the Knowledge Retriever
module employs reranking techniques to refine the list of candidate
documents, enhancing the relevance and contextual appropriate-
ness of the information presented to the agent. Reranking methods
can be broadly categorized into two primary approaches: neural
reranking and fine-tuned LLMs. The former ones typically use mod-
els such as BERT [4] and T5 [30] to jointly encode query-document
pairs, allowing for deep interaction between the query and each
candidate document. For instance, frameworks like HLATR [48]
have been developed to integrate features from both retrieval and
reranking stages, resulting in efficient and effective multi-stage re-
trieval systems. On the other hand, reranking with fine-tuned LLMs
has gained attention for its ability to leverage the extensive pre-
training of these models to capture complex language patterns and
contextual information. Models such as RankLLaMA [21], which is
fine-tuned from the LLaMA architecture, have demonstrated strong
performance in reranking applications.

The integration of these reranking strategies within the Knowl-
edge Retriever module enhances the agent’s ability to access and
utilize pertinent information, thereby improving reasoning capabil-
ities and overall system performance.

5.3 Future direction

We identify several promising directions to evolve knowledge sys-
tems for MAS:
» Dynamic, incremental knowledge updates. Agentic systems

demand a memory architecture capable of evolving alongside newly
acquired data. Static indices are insufficient in dynamic environ-
ments where information changes rapidly; instead, agents require

a continuously updated memory layer that integrates ongoing in-
teractions and incoming documents in real time. Key challenges lie
in updating graph and vector indices incrementally without resort-
ing to full recomputation, ensuring consistency across successive
updates, and efficiently revising community-level summaries or
embeddings.

» Lighter, faster, adaptive retrieval. Current deep retrieval can

be computationally heavy. Future systems should leverage model
compression, quantized embeddings, and smarter indexing to re-
duce latency. Research challenges include balancing model size and
retrieval quality, developing on-the-fly adaptation (e.g., warming
caches with expected queries), and creating evaluation benchmarks
for latency in agentic settings.

» Integration of other components. To enhance agent robust-

ness and adaptability, the knowledge module should be tightly
integrated with planning and execution components. When plans
fail verification or task execution encounters errors, these signals
can be fed back to trigger targeted re-retrieval, content validation,
or memory updates. Such a feedback loop enables context-aware
refinement of knowledge usage, improving system reliability over
time. Future systems will benefit from unified memory interfaces
and cross-module coordination protocols to support continual cor-
rection and adaptation.

6 TOOLS

In this section, we delve into the critical role of tools within agentic
Al systems, focusing on their integration, selection, and future direc-
tions. Tools empower agents to interact with external environments,
execute complex tasks, and enhance their reasoning capabilities.

6.1 Tools library

Early Al agents typically relied on a fixed, hand-crafted set of utili-
ties or APIs, each manually integrated into the system. Such static
toolsets were often rigid: for example, an agent might include a
hard-coded function for database lookup or a fixed knowledge base.
These legacy designs meant that adding new capabilities required
bespoke coding, and tools could not be discovered or composed
dynamically at run time. This limitation is well illustrated by tool-
augmented models like Toolformer — despite using external APIs,
Toolformer is “constrained by a fixed set of available tools” and
cannot chain or extend tools flexibly.

In contrast, modern agentic Al envisions dynamic, extensible
tool libraries whereby agents can select, invoke, and even discover
new tools as needed. Common categories of tools in LLM-based
agent systems include:

e Search tools: Searching allows the agent to query exter-
nal information sources (e.g., the web search API, such as
Google/Bing) to retrieve the real-time relevant data, par-
ticularly for knowledge-intensive tasks. For example, Qin
et al. [33] describe using a search engine tool to extend an
LLM’s information beyond its training data.

o Computational tools: Computational tools encompass
any functions that perform reliable mathematical or logical
computation. Examples include using a Python REPL, sci-
entific computing libraries, or services like Wolfram Alpha.

e Code execution tools: Code execution provides general
programming capabilities by running code in a live envi-
ronment, used for tasks like data analysis, simulations, or
even invoking other software components. A common use
case is LangChain’s PythonREPL tools, where the agent can
generate code snippets, execute them, and retrieve outputs
such as numerical results or visualizations.

e API invocation tools: API tools serve as connectors that
enable agents to interact with external web services or
plugins. These tools allow agents to access a wide range
of HTTP-based endpoints, including RESTful, SOAP, or
GraphQL interfaces, ranging from weather and stock data
providers to translation or text-to-speech engines. An il-
lustrative example is WebAgent [11], an LLM-driven agent
designed for real-world web automation tasks.

Several contemporary frameworks provide scalable tool libraries
for agent development. For example, LangChain [35] treats tools as
first-class objects, allowing LLMs to autonomously decide when to
invoke them. The Model Context Protocol (MCP) [2], introduced by
Anthropic, standardizes tools as "plug-and-play" services, enabling
Al assistants to connect directly to various data sources without
custom code. AutoGen [39], an open-source multi-agent framework
by Microsoft, facilitates collaboration among multiple LLM agents,
each potentially invoking tools in natural dialogue.

Unified API To streamline tool integration and enhance agent
interoperability, the concept of a Unified API has emerged as a piv-
otal solution. This approach standardizes the interface for tool invo-
cation, allowing agents to seamlessly interact with both predefined
and user-defined tools through a consistent schema. Frameworks
like ModelScope-Agent [18] exemplify this by enabling open-source
LLMs to connect with over 1,000 Al models and services via a unified
interface, facilitating efficient tool registration and usage. Addition-
ally, ToolFactory [26] automates the generation of Al-compatible
tools from unstructured REST API documentation, addressing chal-
lenges of inconsistent schemas and incomplete information. By
adopting a Unified API framework, agents can dynamically select
and invoke appropriate tools, thereby enhancing their adaptability
and effectiveness in complex, real-world tasks.

6.2 Tools selection

Once a task is planned or decomposed, an agent must choose which
tool(s) to invoke. In practice, this often involves two stages: first,
narrowing the candidate tools by matching task content to tool
descriptions, and then selecting from among the shortlist [29]. A
common strategy is to retrieve the top-k tools whose descriptions
are most relevant to the task or subtask. Some studies [9, 17, 28]
train a SentenceBert model as the tool retriever, enabling the high-
efficiency retrieval of relevant tools.

Beyond simple retrieval, an LLM-based selector can be employed
by providing the model with the names, descriptions, and parame-
ters of the candidate tools, prompting it to identify the most suitable
choice. It can be further divided into two broad categories, depend-
ing on whether they require fine-tuning:

e Tuning-Free Methods. These approaches operate directly
by providing a set of candidate tools and a task description
to the LLM, prompting it to choose the most appropriate

tool using zero-shot or few-shot examples. Such methods
are straightforward to deploy and easily adaptable to dif-
ferent tool libraries. For instance, ToolLLM [28] introduces
tool-use abilities via instruction tuning. ReAct [44] is a
framework that integrates reasoning with action, enabling
LLMs to not only justify actions but also to refine their rea-
soning processes based on feedback from the environment.
o Tuning-Based Methods. The goal of tuning-based meth-
ods is to endow the model with stronger tool-selection abil-
ities by learning from supervised or reinforcement learn-
ing signals. ToolVerifier [24] introduces a self-verification
method that distinguishes between close candidates by self-
asking Such methods generally offer higher accuracy and
robustness but require labeled data and training costs.

Together, these strategies highlight the evolving sophistication of
tool selection in agentic systems—from simple matching to context-
aware reasoning and learned decision policies.

6.3 Future direction

In this subsection, we provide three opportunities for the future of
the tool in MAS.

» Learning tool selection policies. Rather than relying on fixed
heuristics or prompting, agents could learn to pick tools via feed-
back. Training a policy (e.g., via reinforcement learning) to choose
tools could yield more robust and adaptive behavior, especially
as new tools appear. For example, AGILE [8] demonstrates that
fine-tuning an agent end-to-end with PPO improves its ability to
invoke tools effectively in conversational QA.

» Automatic tool discovery and composition. Agents that can
autonomously find or create new tools would greatly expand their
capability. For example, composing chains of simple tools into
higher-level macros is a promising avenue: an agent might au-
tomatically sequence or “chain” tools to perform complex tasks.
Investigating how LLMs can discover, synthesize, or recombine
tools on the fly is a key open challenge.

» Standardization of tool schema. Consistent API interfaces for
tools would make it easier for agents to reason about and use them.
Defining a common schema or ontology for tool inputs and outputs
(for example, JSON-based function specifications) allows agents
to automatically parse and generate calls without parsing. Going
forward, developing standardized metadata (arguments, effects,
data types) for tools could improve interoperability and reduce the
burden of integrating new tools into agent systems.

7 CONCLUSION

In this vision paper, we examined intelligent multi-agent systems
through four core modules: planning, execution, knowledge, and
tools. By analyzing recent architectures, we identified key limita-
tions in adaptability, robustness, and modularity. We further out-
lined future directions toward building agentic systems that are
more structured, verifiable, and reusable. We hope this perspective
inspires new research toward more capable and trustworthy Al
agent systems.

REFERENCES

[1] Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Floren-
cia Leoni Aleman, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal

[3]

[4]

[7

8

[

(10]

[11

[12]

[15

[16]

(17

=
&

[19]

[20]

[21

[22]

[23

Anadkat, et al. 2023. Gpt-4 technical report. arXiv preprint arXiv:2303.08774
(2023).

Anthropic. 2024. Introducing the Model Context Protocol. https://www.
anthropic.com/news/model-context-protocol Accessed: 2025-05-26.

Riyaz Ahmad Bhat, Jaydeep Sen, Rudra Murthy, et al. 2025. UR2N: Unified
Retriever and ReraNKker. In Proceedings of the 31st International Conference on
Computational Linguistics: Industry Track. 595-602.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2019. Bert:
Pre-training of deep bidirectional transformers for language understanding. In
Proceedings of the 2019 conference of the North American chapter of the association
for computational linguistics: human language technologies, volume 1 (long and
short papers). 4171-4186.

Qingxiu Dong, Lei Li, Damai Dai, Ce Zheng, Jingyuan Ma, Rui Li, Heming Xia,
Jingjing Xu, Zhiyong Wu, Tianyu Liu, et al. 2022. A survey on in-context learning.
arXiv preprint arXiv:2301.00234 (2022).

Matthijs Douze, Alexandr Guzhva, Chengqi Deng, Jeff Johnson, Gergely Szilvasy,
Pierre-Emmanuel Mazaré, Maria Lomeli, Lucas Hosseini, and Hervé Jégou. 2024.
The faiss library. arXiv preprint arXiv:2401.08281 (2024).

Darren Edge, Ha Trinh, Newman Cheng, Joshua Bradley, Alex Chao, Apurva
Mody, Steven Truitt, Dasha Metropolitansky, Robert Osazuwa Ness, and Jonathan
Larson. 2024. From Local to Global: A Graph RAG Approach to Query-Focused
Summarization. arXiv preprint arXiv:2404.16130 (2024).

Peiyuan Feng, Yichen He, Guanhua Huang, Yuan Lin, Hanchong Zhang, Yuchen
Zhang, and Hang Li. 2024. AGILE: A Novel Reinforcement Learning Framework
of LLM Agents. arXiv preprint arXiv:2405.14751 (2024).

Shen Gao, Zhengliang Shi, Minghang Zhu, Bowen Fang, Xin Xin, Pengjie Ren,
Zhumin Chen, Jun Ma, and Zhaochun Ren. 2024. Confucius: Iterative tool learn-
ing from introspection feedback by easy-to-difficult curriculum. In Proceedings
of the AAAI Conference on Artificial Intelligence, Vol. 38. 18030-18038.

Zirui Guo, Lianghao Xia, Yanhua Yu, Tu Ao, and Chao Huang. 2024. Lightrag:
Simple and fast retrieval-augmented generation. (2024).

Izzeddin Gur, Hiroki Furuta, Austin Huang, Mustafa Safdari, Yutaka Matsuo, Dou-
glas Eck, and Aleksandra Faust. 2023. A real-world webagent with planning, long
context understanding, and program synthesis. arXiv preprint arXiv:2307.12856
(2023).

Bernal Jiménez Gutiérrez, Yiheng Shu, Yu Gu, Michihiro Yasunaga, and Yu Su.
2024. Hipporag: Neurobiologically inspired long-term memory for large language
models. In The Thirty-eighth Annual Conference on Neural Information Processing
Systems.

Aric Hagberg and Drew Conway. 2020. Networkx: Network analysis with python.
URL: https://networkx. github. io (2020), 1-48.

Sirui Hong, Xiawu Zheng, Jonathan Chen, Yuheng Cheng, Jinlin Wang, Ceyao
Zhang, Zili Wang, Steven Ka Shing Yau, Zijuan Lin, Liyang Zhou, et al. 2023.
Metagpt: Meta programming for multi-agent collaborative framework. arXiv
preprint arXiv:2308.00352 3, 4 (2023), 6.

Carlos E Jimenez, John Yang, Alexander Wettig, Shunyu Yao, Kexin Pei, Ofir
Press, and Karthik Narasimhan. 2023. Swe-bench: Can language models resolve
real-world github issues? arXiv preprint arXiv:2310.06770 (2023).

Sehoon Kim, Suhong Moon, Ryan Tabrizi, Nicholas Lee, Michael W Mahoney,
Kurt Keutzer, and Amir Gholami. 2024. An llm compiler for parallel function
calling. In Forty-first International Conference on Machine Learning.

Yilun Kong, Jingqing Ruan, Yihong Chen, Bin Zhang, Tianpeng Bao, Shiwei Shi,
Guoqing Du, Xiaoru Hu, Hangyu Mao, Ziyue Li, et al. 2023. Tptu-v2: Boosting
task planning and tool usage of large language model-based agents in real-world
systems. arXiv preprint arXiv:2311.11315 (2023).

Chenliang Li, Hehong Chen, Ming Yan, Weizhou Shen, Haiyang Xu, Zhikai
Wu, Zhicheng Zhang, Wenmeng Zhou, Yingda Chen, Chen Cheng, et al. 2023.
Modelscope-agent: Building your customizable agent system with open-source
large language models. arXiv preprint arXiv:2309.00986 (2023).

Guohao Li, Hasan Abed Al Kader Hammoud, Hani Itani, Dmitrii Khizbullin,
and Bernard Ghanem. 2023. CAMEL: Communicative Agents for "Mind" Explo-
ration of Large Language Model Society. In Thirty-seventh Conference on Neural
Information Processing Systems.

Chunwei Liu, Matthew Russo, Michael Cafarella, Lei Cao, Peter Baile Chen, Zui
Chen, Michael Franklin, Tim Kraska, Samuel Madden, Rana Shahout, et al. 2025.
Palimpzest: Optimizing ai-powered analytics with declarative query processing.
In Proceedings of the Conference on Innovative Database Research (CIDR).
Xueguang Ma, Liang Wang, Nan Yang, Furu Wei, and Jimmy Lin. 2024. Fine-
tuning llama for multi-stage text retrieval. In Proceedings of the 47th International
ACM SIGIR Conference on Research and Development in Information Retrieval.
2421-2425.

Yubo Ma, Zhibin Gou, Junheng Hao, Ruochen Xu, Shuohang Wang, Liang-
ming Pan, Yujiu Yang, Yixin Cao, Aixin Sun, Hany Awadalla, et al. 2024. Scia-
gent: Tool-augmented language models for scientific reasoning. arXiv preprint
arXiv:2402.11451 (2024).

manus. 2025. manus. https://manus.im/.

https://www.anthropic.com/news/model-context-protocol
https://www.anthropic.com/news/model-context-protocol
https://manus.im/

[24

[25

[26]

[28

[29]

[30

[31

[32]

[33]

[34]

[35]

[36]

Dheeraj Mekala, Jason Weston, Jack Lanchantin, Roberta Raileanu, Maria Lomeli,
Jingbo Shang, and Jane Dwivedi-Yu. 2024. Toolverifier: Generalization to new
tools via self-verification. arXiv preprint arXiv:2402.14158 (2024).

Justin J Miller. 2013. Graph database applications and concepts with Neo4;j. In
Proceedings of the southern association for information systems conference, Atlanta,
GA, USA, Vol. 2324. 141-147

Xinyi Ni, Qiuyang Wang, Yukun Zhang, and Pengyu Hong. 2025. ToolFac-
tory: Automating Tool Generation by Leveraging LLM to Understand REST API
Documentations. arXiv preprint arXiv:2501.16945 (2025).

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela
Mishkin, Chong Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, et al. 2022.
Training language models to follow instructions with human feedback. Advances
in neural information processing systems 35 (2022), 27730-27744.

Yujia Qin, Shihao Liang, Yining Ye, Kunlun Zhu, Lan Yan, Yaxi Lu, Yankai Lin, Xin
Cong, Xiangru Tang, Bill Qian, et al. 2023. Toolllm: Facilitating large language
models to master 16000+ real-world apis. arXiv preprint arXiv:2307.16789 (2023).
Changle Qu, Sunhao Dai, Xiaochi Wei, Hengyi Cai, Shuaigiang Wang, Dawei
Yin, Jun Xu, and Ji-Rong Wen. 2025. Tool learning with large language models:
A survey. Frontiers of Computer Science 19, 8 (2025), 198343.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang,
Michael Matena, Yanqi Zhou, Wei Li, and Peter J Liu. 2020. Exploring the
limits of transfer learning with a unified text-to-text transformer. Journal of
machine learning research 21, 140 (2020), 1-67.

Matthew Renze and Erhan Guven. 2024. Self-reflection in llm agents: Effects on
problem-solving performance. arXiv preprint arXiv:2405.06682 (2024).
Yongliang Shen, Kaitao Song, Xu Tan, Dongsheng Li, Weiming Lu, and Yueting
Zhuang. 2023. Hugginggpt: Solving ai tasks with chatgpt and its friends in
hugging face. Advances in Neural Information Processing Systems 36 (2023),
38154-38180.

Zhengliang Shi, Shen Gao, Xiuyi Chen, Yue Feng, Lingyong Yan, Haibo Shi,
Dawei Yin, Pengjie Ren, Suzan Verberne, and Zhaochun Ren. 2024. Learning to
use tools via cooperative and interactive agents. arXiv preprint arXiv:2403.03031
(2024).

Gemini Team, Rohan Anil, Sebastian Borgeaud, Jean-Baptiste Alayrac, Jiahui
Yu, Radu Soricut, Johan Schalkwyk, Andrew M Dai, Anja Hauth, Katie Millican,
et al. 2023. Gemini: a family of highly capable multimodal models. arXiv preprint
arXiv:2312.11805 (2023).

Oguzhan Topsakal and Tahir Cetin Akinci. 2023. Creating large language model
applications utilizing langchain: A primer on developing llm apps fast. In Interna-
tional Conference on Applied Engineering and Natural Sciences, Vol. 1. 1050-1056.
Jianguo Wang, Xiaomeng Yi, Rentong Guo, Hai Jin, Peng Xu, Shengjun Li, Xi-
angyu Wang, Xiangzhou Guo, Chengming Li, Xiaohai Xu, et al. 2021. Milvus:
A purpose-built vector data management system. In Proceedings of the 2021
International Conference on Management of Data. 2614-2627.

[37

(38]

[39

[41

[42

[43]

[44

[46

[47

[48

[49

(50]

Shu Wang, Yixiang Fang, Yingli Zhou, Xilin Liu, and Yuchi Ma. 2025. ArchRAG:
Attributed Community-based Hierarchical Retrieval-Augmented Generation.
arXiv:2502.09891 [cs.IR] https://arxiv.org/abs/2502.09891
Yifan Wang, Haodi Ma, and Daisy Zhe Wang. 2024. No more optimization
rules: LLM-enabled policy-based multi-modal query optimizer. arXiv preprint
arXiv:2403.13597 (2024).
Qingyun Wu, Gagan Bansal, Jieyu Zhang, Yiran Wu, Beibin Li, Erkang Zhu,
Li Jiang, Xiaoyun Zhang, Shaokun Zhang, Jiale Liu, et al. 2023. Autogen: En-
abling next-gen llm applications via multi-agent conversation. arXiv preprint
arXiv:2308.08155 (2023).
Tianbao Xie, Fan Zhou, Zhoujun Cheng, Peng Shi, Luoxuan Weng, Yitao Liu,
Toh Jing Hua, Junning Zhao, Qian Liu, Che Liu, et al. 2023. Openagents: An open
platform for language agents in the wild. arXiv preprint arXiv:2310.10634 (2023).
An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu,
Chengyuan Li, Dayiheng Liu, Fei Huang, Haoran Wei, et al. 2024. Qwen2. 5
technical report. arXiv preprint arXiv:2412.15115 (2024).
Hui Yang, Sifu Yue, and Yunzhong He. 2023. Auto-gpt for online decision making:
Benchmarks and additional opinions. arXiv preprint arXiv:2306.02224 (2023).
Ling Yang, Zhaochen Yu, Tianjun Zhang, Shiyi Cao, Minkai Xu, Wentao Zhang,
Joseph E Gonzalez, and Bin Cui. 2024. Buffer of thoughts: Thought-augmented
reasoning with large language models. Advances in Neural Information Processing
Systems 37 (2024), 113519-113544.
Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak Shafran, Karthik Narasimhan,
and Yuan Cao. 2023. React: Synergizing reasoning and acting in language models.
In International Conference on Learning Representations (ICLR).
Fangyuan Zhang, Zhengjun Huang, Yingli Zhou, Qintian Guo, Zhixun Li, Wen-
sheng Luo, Di Jiang, Yixiang Fang, and Xiaofang Zhou. 2025. EraRAG: Efficient
and Incremental Retrieval Augmented Generation for Growing Corpora. arXiv
preprint arXiv:2506.20963 (2025).
Guibin Zhang, Yanwei Yue, Xiangguo Sun, Guancheng Wan, Miao Yu, Junfeng
Fang, Kun Wang, Tianlong Chen, and Dawei Cheng. 2024. G-designer: Archi-
tecting multi-agent communication topologies via graph neural networks. arXiv
reprint arXiv:2410.11782 (2024).
fiayi Zhang, Jinyu Xiang, Zhaoyang Yu, Fengwei Teng, Xionghui Chen, Jiaqi
Chen, Mingchen Zhuge, Xin Cheng, Sirui Hong, Jinlin Wang, et al. 2024. Aflow:
Automating agentic workflow generation. arXiv preprint arXiv:2410.10762 (2024).
Yanzhao Zhang, Dingkun Long, Guangwei Xu, and Pengjun Xie. 2022. HLATR:
enhance multi-stage text retrieval with hybrid list aware transformer reranking.
arXiv preprint arXiv:2205.10569 (2022).
Yingli Zhou, Yaodong Su, Youran Sun, Shu Wang, Taotao Wang, Runyuan He,
Yongwei Zhang, et al. 2025. In-depth Analysis of Graph-based RAG in a Unified
Framework. arXiv preprint arXiv:2503.04338 (2025).
Nan Zhuang, Boyu Cao, Yi Yang, Jing Xu, Mingda Xu, Yuxiao Wang, and Qi Liu.
2025. LLM Agents Can Be Choice-Supportive Biased Evaluators: An Empirical
Study. In Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 39.
26436-26444.

https://arxiv.org/abs/2502.09891
https://arxiv.org/abs/2502.09891

	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Large Language Models (LLMs)
	2.2 Multi-Agent System

	3 Planning
	3.1 Manually planning in MAS
	3.2 Automatically planning in MAS
	3.3 Future direction

	4 Execution
	4.1 From Logical plan to physical plan
	4.2 Execution components
	4.3 Future direction

	5 Knowledge
	5.1 Knowledge manager
	5.2 Knowledge retriever
	5.3 Future direction

	6 Tools
	6.1 Tools library
	6.2 Tools selection
	6.3 Future direction

	7 Conclusion
	References

