
Automatic Prompt Optimization for Knowledge Graph
Construction: Insights from an Empirical Study

Nandana Mihindukulasooriya
IBM Research
New York, USA

nandana@ibm.com

Niharika S. D’Souza
IBM Research
San Jose, USA

Niharika.DSouza@ibm.com

Faisal Chowdhury
IBM Research
New York, USA

mchowdh@us.ibm.com

Horst Samulowitz
IBM Research
New York, USA

samulowitz@us.ibm.com

ABSTRACT
A knowledge graph (KG) represents a network of entities and il-
lustrates relationships between them. KGs are used for various
applications, including semantic search and discovery, reasoning,
decision-making, natural language processing, machine learning,
and recommendation systems. Automatic KG construction from text
is an active research area. Triple (subject-relation-object) extraction
from text is the fundamental building block of KG construction and
has been widely studied, for example, in early benchmarks such
as ACE 20021 to more recent ones, such as WebNLG 20202, REBEL
and SynthIE. In recent years, a number of works have explored the
use of Large Language Models (LLMs) for KG construction. How-
ever, handcrafting reasonable task-specific prompts for LLMs is a
labour-intensive exercise and can be brittle due to subtle changes
in the LLM models employed. Recent work in NLP tasks (e.g. auton-
omy generation) uses automatic prompt optimization/engineering
to address this challenge by generating optimal or near-optimal
task-specific prompts given input-output examples.

This empirical study explores the application of automatic prompt
optimization for the triple extraction task using experimental bench-
marking. We evaluate different settings by changing (a) the prompt-
ing strategy, (b) the LLM being used for prompt optimization and
task execution, (c) the number of canonical relations in the schema
(schema complexity), (d) the length and diversity of input text, (e)
the metric used to drive the prompt optimization, and (f) the dataset
being used for training and testing. We evaluate three different au-
tomatic prompt optimizers, namely, DSPy, APE, and TextGrad and
use two different triple extraction datasets, SynthIE and REBEL.
Through rigorous empirical evaluation, our main contribution high-
lights that automatic prompt optimization techniques can generate
reasonable prompts similar to humans for triple extraction. In turn,
these optimized prompts achieve improved results, particularly
with increasing schema complexity and text size.

VLDBWorkshop Reference Format:
Nandana Mihindukulasooriya, Niharika S. D’Souza, Faisal Chowdhury,
and Horst Samulowitz. Automatic Prompt Optimization for Knowledge
Graph Construction: Insights from an Empirical Study. VLDB 2025
Workshop: LLM+Graph.

1https://www.ldc.upenn.edu/collaborations/past-projects/ace
2https://synalp.gitlabpages.inria.fr/webnlg-challenge/challenge2020/

1 INTRODUCTION
Knowledge graph (KG) construction is a widely studied research
area due to the importance and usage of KGs in a wide range of
applications. The phrase “knowledge graph” has been used in the
literature since at least 1972 [13] and, to date, there exist several
hundred methods for KG constuction [46].

KGs can be constructed either from structured or semi-structured
data using mappings such as RDB2RDF [35] or RML [7] or us-
ing unstructured data using various information extraction tech-
niques such as Named Entity Recognition (NER), Relation Extrac-
tion (RE), and Open Information Extraction (OIE). In the public
domain, crowdsourcing has also been used to build large KGs, such
as Wikidata [40]. Nevertheless, crowdsourcing is not a feasible op-
tion for most industrial KGs where the knowledge is organization-
specific and relevant text corpora are often confidential.

Recent advances in large language models, which have signifi-
cantly improved performance on core NLP tasks, have transformed
the research area of KG construction from text [17, 39]. Most of
the early large language model (LLM)-based methods approach the
problem in two key ways. The first is as an extraction of factual and
common-sense knowledge using pre-trained language models via
prompt-based prediction of masked objects from partial sentences
describing complete triples [29]. The second is by fine-tuning an
LLM on the autoregressive generation of text for triple extraction
[23, 33]. Similarly, in-context learning with decoder-only trans-
former models is applied for relation extraction [18]. Alternatives
such as Re2G [10] and GraphRAG [8] use LLMs to build Retrieval
Augmented Generation (RAG) systems [19].

1.1 Prompt Engineering: Challenges and
Opportunities

LLMs typically have a large number of parameters and are (pre)-
trained on larger corpora, followed by iterative refinement using

This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment. ISSN 2150-8097.

https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org

Reinforcement Learning from Human Feedback (RLHF) [36] or
Reasoning-oriented Reinforcement Learning [11]. These models are
growing in popularity due to their capabilities in comprehending
detailed instructions for diverse and complex downstream tasks [41]
in a broad sense.

More often than not, the downstream performance of LLMs is
heavily coupled with the quality of the prompt used to instruct the
model. Studies have shown that large language models (LLMs) are
quite sensitive to minor variations in prompt phrasing. For exam-
ple, the addition, removal, or reordering of just a few tokens can
lead to significant differences in task performance [21, 48]. Generic
prompts do not typically produce good responses and the most
effective prompts are almost always handcrafted by humans. This
makes prompt curation a labour-intensive iterative process involv-
ing a substantial amount of manual experimentation. This process
of optimizing the prompt language to elicit the best possible per-
formance is referred to as “prompt engineering". Given the human
effort involved in the practice, prompt-engineering techniques are
often brittle, non-transferable, and suffer from scalability issues [1].
Currently, prompt engineering is more of an art than a science, as
a delicate balance is required in the design process to ensure clarity
and specificity in the prompts, avoid ambiguity, and steer appro-
priate behaviour to obtain the desired output. More importantly,
the human labor involved needs to be repeated whenever the un-
derlying LLM is changed, since previously optimized prompts may
no longer yield optimal results. For example, this applies when we
switch to a different model, to a different parameter-size variant of
the same model, or upgrade to new versions of the LLM trained us-
ing different strategies/additional data. This is further complicated
when the prompt has to take into account a domain-specificity or
a different language (direct translations of prompts often produce
poor results [26])

1.2 Automatic Prompt Optimization:
Motivation

Recent advances and superior pre-training strategies have resulted
in LLMs that have shown remarkable, often superhuman, capa-
bilities to generate reasonable responses even with limited or no
examples. This has inspired a few works to explore the capabilities
of an LLM in designing the best possible prompts for specific tasks.
This process is referred to as automatic prompt optimization [32] or
automatic prompt engineering [20]. The core idea is that the LLM is
tasked with generating task-specific instructions where the task is
presented via output demonstrations (with some given examples). It
generates several instruction candidates, either via direct inference
or a recursive process driven by scoring metrics. The LLM executes
these instructions, and the best instruction improving the scoring
metric is retained. Automatic prompt optimization can be applied
to any task that is solved by prompting LLMs.

In this paper, we explore three prompt optimization approaches,
namely, DSPy, TextGrad, and APE (detailed descriptions in Section
3), adapted to triple extraction. We extensively evaluate different
settings guiding this task. Specifically, we explore the effect of
changing (a) the prompting strategy, (b) the LLM being used for
prompt optimization and task-execution, (c) the number of canon-
ical relations allowed in the schema (i.e. the schema complexity),

(d) the length and diversity of the input text, (e) the metric driving
the optimization, and (f) the dataset being used for training and
testing.

We demonstrate that automatic prompt optimization techniques
for triple extraction can generate reasonable prompts akin to human-
generated prompts and thus achieve improved results. Specifically,
the most significant gains were observed as the text size, context
length, and schema complexity increases. To the best of our knowl-
edge, this is the first work that analyses the impact of automatic
prompt optimization for triple extraction for KG construction.

2 TRIPLE EXTRACTION FOR KNOWLEDGE
GRAPH CONSTRUCTION

To build a Knowledge Graph from text corpora, a system needs to
convert the unstructured natural-language text into a set of elemen-
tal triples. Triple extraction involves sub-tasks such as identifying
the core entities mentioned in the text (Named Entity Recognition
or NER), along with identification/extraction of relations that con-
stitute the facts mentioned in the text (Relation Extraction or RE).
These sub-tasks can be pipelined, by performing entity extraction
first, and then extracting relations and triples or in a joint manner,
where entities, relations, and triples are extracted simultaneously
(end-to-end relation extraction). In this paper, we focus on end-to-
end triple extraction, where the input is a natural language text and
the expected output is a set of triples.

Triple extraction may be either in the form of closed relation
extraction (where the set of relations is restricted to a set of known
canonical relations) or of the open information extraction form [9].
Pre-curated canonical relations are useful when the resulting KG
needs to be grounded by a pre-defined ontology. On the other hand,
open information extraction requires relations to be spontaneously
discovered from text and then represented using short descriptive
phrases. This requires converting the phrases extracted from text to
surface forms that are consistent/resolvable throughout the extrac-
tion process. Thus, when a large number of sparse and potentially
diverse relations are involved, extensive post-processing may be
needed. This includes clustering [45], canonicalization [6], and re-
lation linking [34] to ground extracted relations to the canonical
relations in the KG, which adds a layer of complexity to the KG-
extraction process over the LLM-based processing. Since we are
interested in evaluating the potential of LLMs for KG, we focus on
closed triple extraction with a set of pre-known canonical relations.

In traditional triple extraction approaches, the set of canonical
relations is used during the training phase to select the labels for
relation classification or ranking. Invoking LLMs passes knowl-
edge about these canonical relations to the model using either fine-
tuning or prompt tuning. Instruction fine-tuning via InstructGPT
[28], Reinforcement Learning from Human Feedback (RLHF) [3, 36]
is known to assist LLMs in following a broad range of written in-
structions exactly while generating responses as Chain-of-Thought
reasoning steps. On the other hand, in-context learning [25, 43] in
conjunction with prompt engineering can teach models to perform
new tasks by providing a few demonstrations of input-output pairs
at inference.

To employ in-context learning or Chain-Of-Thought with a
canonical set of relations during prompting, we follow an approach

2

Input:
Text: Gabriel Maura was a member of the Real Academia de la

Historia and the Royal Spanish Academy. He was also the relative

of Germán Gamazo and the father of Antonio Maura. He was

based in Madrid.

Allowed Relations: ['academic degree', 'relative', 'launch

contractor', 'organizer', 'operating area', 'proxy', 'venous drainage',

'official color or colors', 'has natural reservoir', 'mother house',

‘member of', 'from narrative universe', 'next crossing downstream',

'Roman praenomen', 'student of', 'presynaptic connection', 'type

foundry', ‘father', 'invasive to’, …

N other relations are omitted for brevity]

Entities: ['Gabriel Maura’, 'Real Academia de la Historia', 'Royal

Spanish Academy', 'Germán Gamazo', 'Antonio Maura', 'Madrid’]

Relations: ['member of', 'relative', 'father', 'work location’]

Triples:

(Gabriel Maura, member of, Real Academia de la Historia),

(Gabriel Maura, member of, Royal Spanish Academy),

(Gabriel Maura, relative, Germán Gamazo),

(Gabriel Maura, father, Antonio Maura),

(Gabriel Maura, work location, Madrid)

Output:

Figure 1: An example of the triple extraction task with inputs
and expected outputs (from the SynthIE dataset).

analogous to Text2KGBench [24] and provide the schema infor-
mation as input in the prompt. Overall, we formulate our task
(illustrated in Figure 1) as follows: Given an input text written in
natural language form and a list of allowed canonical relations, the
LLM is asked to extract triples from the text in the form of (subject,
relation, object). In addition to the triples, the LLMmay be explicitly
asked to generate entities and relations as an intermediate output.

3 AUTOMATED PROMPT OPTIMIZATION
Recent progress in Natural Language Processing has been expo-
nential due to the availability of powerful LLMs such as GPT-4,
Llama, and Claude. Users interact with models by supplying care-
fully handcrafted prompts, with the task formulated as a token
completion problem. As alluded to before, prompt design can be
a laborious exercise heavily reliant on domain expertise and ad
hoc heuristic evaluation. Automated Prompt Optimization (APO)
is a body of work that seeks to address this problem by leveraging
systematic data-driven approaches.

The works of [5] provide a comprehensive taxonomy of auto-
matic prompt optimization frameworks which refine prompts with
no or minimal human intervention. Broadly, these methods can be
categorized along multiple dimensions. These include: optimization
space (i.e. discrete text-based vs. soft prompting or gradient-based),
optimization targets (i.e. instructions vs. examples), optimization ob-
jective (i.e. task performance, safety, or generalizability), operators
used to generate new prompts (e.g. purely model-based vs. iterative

refinement of example prompts), and iterative search strategies
(e.g. Evolutionary vs. Monte Carlo search). Below, we provide a
non-exhaustive overview of recent advances in APO to give readers
a taste of this rapidly evolving field.

Ma et al. [22] uses a strategy based on the greedy search. Gradient-
based approaches such as ProTeGI [30], MAPO [4], TextGrad [44],
etc. use gradient descent-like algorithms to optimize prompt em-
beddings according to a predefined performance objective [42].
Starting from a human prompt, these methods learn continuous
valued embeddings or prompt proposals using the gradient direc-
tions. On the other hand, approaches such as InstructZero [2] opti-
mize low-dimensional “soft prompts" using LLMs instead of directly
optimizing discrete instructions. They balance exploitation vs ex-
ploration in this space using Bayesian Optimization techniques. In
terms of discrete optimization, approaches such as EvoPrompt [12]
circumvent access to gradients and internal parameters of LLMs
using Evolutionary Algorithms to generate candidate prompts, thus
making them more general. Another approach to the same problem
leverages in-context learning. For example, Automated Prompt En-
gineer (APE) [47] generates prompts based on a few real-life exam-
ples, tailoring them to the task without needing extensive training
data. APE treats the instruction as a program and optimizes it by
searching through a pool of instruction candidates proposed by an
LLM to maximize a chosen score function. A complementary ap-
proach to APO uses reinforcement learning-based strategies such as
OIRL [37], which model the interaction between the query-prompt
pair via a reward model for proposing and evaluating candidate
prompts suited for arithmetic reasoning tasks. In contrast, meta-
Prompting [38] uses structural and syntactical aspects of tasks to
create general prompts that guide the generation of task-specific
prompts. In lieu of template-based approaches, DSPy [16] frames
prompt engineering as a declarative, compiler-driven optimization
task. DSPy poses prompting as a computational graph pipeline for
text transformation, where LLMs are invoked through parameter-
ized self-improving modules. This provides great flexibility across
diverse tasks given a computational budget.

APO techniques have been demonstrated across a wide variety of
NLP tasks [47] such as text classification, question answering, zero-
shot learning, text generation, summarization, sentiment analysis,
paraphrasing, code generation, and interactive dialogue systems.
Going one step further, knowledge graph construction is an essen-
tial but complex NLP task with great relevance to data lakehouses
because it enhances the usability, accessibility, and interoperabil-
ity of the data stored within them. While KG-construction could
greatly benefit from APO techniques, its application for triple ex-
traction from text has not been studied before to the best of our
knowledge.

4 EXPERIMENT BENCHMARKING SETUP
4.1 Task
Let x = (𝑥1, 𝑥2, . . . , 𝑥𝑛) denote a passage of natural language text
with a list of terms, and let R = {𝑟1, 𝑟2, . . . , 𝑟𝑚} be a predefined set
of canonical relation types. The goal of the triple extraction task
is to identify: (a) A set of entity mentions E = {𝑒1, 𝑒2, . . . , 𝑒𝑘 } from
the text, (b) a subset of relations 𝑟 ∈ R expressed in the text, and
(c) a set of directed triples

{
(𝑒𝑖 , 𝑟 , 𝑒 𝑗) | 𝑒𝑖 , 𝑒 𝑗 ∈ E, 𝑟 ∈ R

}
that are

3

represents the semantic relationships between the entity pairs that
are mentioned in text. An example of the task, along with inputs
and outputs, is illustrated in Figure 1.

4.2 Datasets
We used SynthIE and REBEL datasets in our experiments.

SynthIE [15] is a relation extraction benchmark generated using
subgraphs of Wikidata and a synthetic data generation strategy. We
used the synthie_text (generated using text-davinci-003) for training,
validation and testing automatic prompt optimizers. The dataset
contains 888 relation types.

REBEL [14] is a relation extraction benchmark generated using
Wikipedia abstracts and aligned them toWikidata triples using wik-
ilinks to identify relation candidates that are further validated using
a Natural Language Inference (NLI) model. The dataset contained
1079 relation types.

4.3 Automatic Prompt Optimizers
We used three approaches with distinct flavours of APO for triple
extraction, detailed below:

DSPy [16] (Declarative Self-improving Python) is an open-source
toolkit for modular prompt design as programming with structured
and declarative natural-language modules. DSPy allows specifying
input/output behaviour as a signature and selecting a module (e.g.,
predict, Chain-Of-Thought, ReAct) to assign a strategy for invoking
the LLM. DSPy natives parse the LLM output based on the pre-
defined signature. It allows for the optimization of prompts using
a training set, which is analyzed to create a ‘sub-dataset’ and task
descriptions, propose better prompts with LLM-generated instruc-
tions, and select effective few-shots examples. Specifically, we used
MIPROv2 (Multiprompt Instruction PRoposal Optimizer Version
2) [27] to optimize instructions and few-shot examples simulta-
neously as a joint search problem. In the rest of the paper, when
DPSy is mentioned, it is reffering to DSPy with MIPROv2. It first
bootstraps a set of few-shot example candidates, proposes instruc-
tions grounded in different task dynamics, and finds an optimized
combination of these joint candidates using Bayesian optimization.
Figure 2 shows an example of an automatically optimized prompt
using DSPy.

APE [47] APE does not require any initial prompt. Given some
examples of input and expected output, it generates several task
instruction candidates, executes them using the target model, and
selects the most appropriate instruction based on evaluation scores.
By default, APE uses GPT-3 (text-davinci-002 to be more specific).
We replace it with Granite-3.2-8B-Instruct, given its open-source
availability. We used the forward generation template settings and
randomly picked 10 examples from the SynthIE validation data to
provide as few shots, and selected the generated prompt with the
highest score based on the validation set of SynthIE.

TextGrad [44] Unlike statistical optimization in machine learn-
ing, which numerically estimates gradients for backpropagation,
TextGrad leverages natural language feedback to iteratively im-
prove LLM-generated prompts, effectively operating on the compu-
tational graph connecting the instruction to the output. We adopt

Simple baseline starting prompt:

(input text, allowed relations) → (entities, relations, triples)

Given an input text and a set of allowed relations, extract

entities, identify relevant relations between these entities that

match the allowed relations, and generate triples

representing these relationships in a structured format. The

task involves processing the input text to recognize entities
and relations, filtering relations based on the predefined set

of allowed relations, and outputting the identified entities,

relevant relations, and corresponding triples. The goal is to

accurately represent relationships within the input text,

focusing on the allowed relations provided.

selected few-shot examples from training data

Automatically generated prompt with DSPy:

Figure 2: An example of an automatically optimized prompt
using DSPy with the Llama 3.3-70B model and the SynthIE
dataset as training/validation data.

the TextualGradientDescent optimizer from the official Pytorch
implementation in [44] with pre-set hyperparameters for triple
extraction. The initial prompt is a basic instruction describing the
task, required output format, allowed canonical relations, and an
optional one-shot example input and output. The evaluation and
training engines are chosen to be the LLama3-70b model. Training
is performed for a maximum of 5 epochs, batch size of 16, allow-
ing for early stopping using the validation set. The loss function
driving the optimization is 1-F1, thus optimizing for both recall
and precision simultaneously. Of the three approaches tried, text
grad is the most computationally expensive and slow to train, as
it requires at least two API calls for each element of the training
set per epoch (one for the forward pass and a second for textual
gradient estimation)

4.4 Language Models
The automatic prompt optimizers use language models to generate
the prompts. In this work, we have used the following open-source
large language models for prompt optimization and performing the
triple extraction task: (1) Deepseek V3 (2) Qwen2.5-72B (3) Meta
Llama3.3-70B Instruct (4) Mistral-8x22B (5)Microsoft Phi-4 14B (6)
IBM Granite3.2-8B Instruct

4.5 Evaluation Metrics

Entity, Relation, Triple extraction (P, R, F1) To evaluate entity,
relation, and triple extraction, the extracted values are compared
against the ground truth values to estimate the precision, recall,
and F1 metrics. These metrics are calculated for each test-case, and
the final reported values are the macro-averaged.

Relation-Type Mean Accuracy To analyze the results at the level
of relation types, we compute the mean accuracy per relation type.
It captures the average proportion of correctly identified relation
instances for each specific relation type, computed against all in-
stances of the given type.

4

https://huggingface.co/deepseek-ai/DeepSeek-V3
https://huggingface.co/Qwen/Qwen2.5-72B
https://huggingface.co/meta-llama/Llama-3.3-70B-Instruct
https://huggingface.co/meta-llama/Llama-3.3-70B-Instruct
https://huggingface.co/mistralai/Mixtral-8x22B-v0.1
https://huggingface.co/microsoft/phi-4
https://huggingface.co/ibm-granite/granite-3.2-8b-instruct

5 EMPIRICAL ANALYSIS AND INSIGHTS
In this section, we analyze the performance improvements obtained
by automatic prompt optimization for triple extraction from text,
and how certain aspects related to the task, such as the length of
the text or the complexity of the schema and the system, i.e. LLM
being used drive the performance.

In scenarios under investigation in the following sections, default
settings are maintained, as follows.

Default settings: Prompting strategy: Predict (E-R-T), LLM: Llama3.3-
70B, Number of relations per test case: 100, Test dataset: SynthIE,
Optimizer: DSPy, Optimization metric: Triple F1 score.

5.1 Prompting strategy
RQ1: How do different prompting strategies influence the perfor-
mance improvements in triple extraction?
Varied setting: Prompting strategy.

We curated six propmting-strategy variants that uses distinct
styles to obtain the expected output. This includes (a) Predict with
In-Context Learning, (b) Chain-Of-Thought, and (c) piplelining
subtask prompts for Extract, Critique, and Refine. The expected
output may be one of (i) Triple (T) or (ii) Entity, Relations, and
Triples (E-R-T). The six resulting variants are in Table 1. Each
setting has a baseline prompt (see Table 1) and is run through the
prompt optimization process which proposes a refined prompt.

Table 2 outlines the performance improvements in terms of
macro Precision, Recall, and F1 obtained by prompt optimization.
We observe that all prompting strategies result in a performance
gain, as seen in Table 2. Of these, Chain-Of-Thought asked to solely
extract triples obtains the best triple extraction F1 of 0.73. The
highest overall performance improvement is seen in the case of the
Extract, Critique, and Refine pipeline run on entities, relations, and
triples i.e., ECR (E-R-T) output, with a +16% improvement in triple
extraction F1.

Figure 3 shows the performance improvement at the relation-
type level between the baseline prompt and the optimized prompt. It
separates the number of relations that saw an increase in the mean
accuracy (+ positive diff), a decrease in mean accuracy (- negative
diff), and no change in mean accuracy before and after the prompt
optimization process. The relation types that didn’t have a change
are further separated into the incorrect ones (i.e., mean accuracy
0) and the correct ones. It shows that in all prompting strategies,
there are more relation types having a performance improvement
(green) than a performance degradation (red) in Figure 3. It also
suggests that the optimized prompts retain the majority of correct
relations (grey) from the baseline prompts.

Similarly, in Figure 4, we analyze if all approaches find the
same types of relations easier to extract (extract them correctly
always) and harder to extract (extract them incorrectly always).
Each heatmap shows the overlap of fully correct relation types
(Upper Right, Green) and fully incorrect relation types (Lower Left,
Red) among the different prompting strategies for the baseline
prompts and optimized prompts. The fully correct Relation-Types
refer to the Relation-Types with a mean accuracy of 1.0, and fully
incorrect Relation-Types refer to relations with a mean accuracy
of 0. The diagonal shows the total number of fully correct and in-
correct Relation-Types for each approach. We observe high overlap

between different approaches; for example, between Predict (T) and
Cot (T), there is a 95% (423/444) overlap in fully correct relations
and a 88% (128/145) overlap in fully incorrect relation types.

Table 1: Different prompting strategies for applying APO.

APO Description Baseline Prompt

Predict
(T)

Extracts triples
from input text
using a given list of
allowed relations

(input text, allowed
relations) → (triples)

CoT
(T) Asks the model to

think step-by-step
and provide a rea-
soning in addition
to the triples.

(input text, allowed
relations) →
(reasoning, triples)

ECR
(T) A 3-step pipeline:

(E)xtract, (C)ritique,
and (R)efine triples
with three distinct
prompts. Each step
passes its output to
the next stage.

P1: (input text,
allowed relations) →
(triples)
P2: (input text,
allowed relations,
extracted triples) →
(triple critique)
P3: (input text,
allowed relations,
extracted triples,
triple critique) →
(refined triples)

Predict
(E-R-T)

Similar to Predict
(T) but also explic-
itly extracts lists of
entities and rela-
tions.

(input text, allowed
relations) → (entities,
relations, triples)

CoT
(E-R-T) Similar to CoT (T)

but also explicitly
extracts lists of en-
tities and relations.

(input text, allowed
relations) →
(reasoning, entities,
relations, triples)

ECR
(E-R-T) A 3-step pipeline

(E)xtract, (C)ritique,
and (R)efine simi-
lar to ECR (T) but
also explicitly ex-
tracts lists of enti-
ties and relations
in addition to the
triples. All outputs
of the previous step
is passed as input to
the next step.

P1: (input text,
allowed relations) →
(entities, relations,
triples)
P2: ... → (entity
critique, relation
critique, triple
critique)
P3: ... → (refined
entities, refined
relations, refined
triples)

5.2 Prompt Generation LLM and Triple
Extraction LLM

RQ2: How do different LLMs influence the performance improve-
ments of automatic prompt optimisation techniques?
Varied setting: LLM used for prompt generation and testing.

5

Table 2: Precision (P), Recall (R) , F1 metrics for Entity, Rela-
tion, Triple extractions using different prompting strategies.
These experiments use Llama-3.3 70B as the LLM with 100
allowed relations per test case, evaluated on SynthIE small
test set. White rows represent the baseline, and grey rows
represent the optimized prompts.

Prompting
Strategy Entity Relation Triple

P R F1 P R F1 P R F1

Predict (T) - - - - - - 0.69 0.60 0.63
- - - - - - 0.73 0.73 0.72

CoT (T) - - - - - - 0.71 0.60 0.64
- - - - - - 0.76 0.72 0.73

ECR (T) - - - - - - 0.60 0.59 0.59
- - - - - - 0.74 0.71 0.72

Predict
(E-R-T)

0.98 0.90 0.93 0.80 0.66 0.71 0.68 0.58 0.62
0.98 0.94 0.96 0.80 0.77 0.77 0.74 0.71 0.72

CoT
(E-R-T)

0.98 0.91 0.94 0.81 0.68 0.72 0.69 0.59 0.63
0.98 0.94 0.95 0.81 0.78 0.78 0.74 0.70 0.71

ECR
(E-R-T)

0.95 0.94 0.94 0.62 0.65 0.62 0.52 0.56 0.53
0.98 0.94 0.96 0.80 0.76 0.77 0.72 0.68 0.69

Figure 3: Number of relations types with +ve / -ve / 0 differ-
ences in accuracy after prompt optimization.

We performed a number of experiments using DSPy to probe the
research question above and report results in Table 3. The length
of the best prompts generated using Deepseek V3, Qwen2.5-72B,
Llama3.3-70B, Mistral-8x22B, Phi-4 14B and Granite3.2-8B are 68,
81, 77, 58, 268 and 125 words long, respectively.

Note that the results achieved by all models are similar in perfor-
mance for entity extraction, regardless of the exact model used to
generate prompts. However, larger models (Deepseek V3, Qwen2.5-
72B, and Llama3.3-70B) result in significantly better results for
relation (and triple) extraction. Secondly, the best prompt gener-
ated using Llama3.3-70B is robust enough to obtain comparable
results to those of the best prompt generated using other models,
when testing with those. For example, with prompt generated using
Llama3.3-70B and Phi-4 14B and tested using Phi-4 14B, we obtained

(4.a) Optimized Prompts

(4.b) Baseline Prompts

Figure 4: Overlap of fully correct relation types, i.e., mean
accuracy 1.0 (Upper, Green) and fully incorrect relation types,
mean accuracy 0.0 (Lower, Red) of different baseline and
optimized prompts. Diagonal shows the total count of fully
correct (✓) and fully incorrect (✗) relation types for each
optimized prompt.

0.62 an 0.61 F1-scores respectively for triple extraction. Similarly,
prompts generated with Granite3.2-8B and Llama3.3-70B obtain
the same F1-scores of 0.54. It might imply that smaller models are
capable of generating equally effective prompts compared to larger
models. Furthermore, we observe that the choice of LLM during
inference has a significant impact on the performance, as we obtain
better results using larger models. This may imply that the choice
of LLM at inference is more important than the choice of LLM that
generates prompts.

6

Table 3: Results for using different LLMs for automatic
prompt generation and triple extraction tasks. Each model
contains results with a baseline (no prompt optimization),
a prompt generated using the same model, and a prompt
generated from a different model. Models are ordered by pa-
rameter size.

Validation
/Test LLM

Prompt
Gen. LLM

Entity Relation Triple
P R F1 P R F1 P R F1

Deepseek V3
671B

Baseline 0.96 0.96 0.95 0.82 0.72 0.75 0.68 0.60 0.63
Deepseek V3 0.98 0.92 0.94 0.83 0.78 0.80 0.76 0.71 0.73
Llama3.3-70B 0.98 0.95 0.96 0.84 0.81 0.82 0.78 0.75 0.76

Qwen2.5-72B
Baseline 0.97 0.95 0.96 0.80 0.72 0.75 0.71 0.64 0.66
Qwen2.5-72B 0.98 0.94 0.96 0.79 0.77 0.77 0.73 0.70 0.71
Llama3.3-70B 0.98 0.95 0.96 0.81 0.80 0.80 0.72 0.72 0.71

Llama3.3-70B
Baseline 0.98 0.90 0.93 0.77 0.68 0.71 0.68 0.59 0.62
Llama3.3-70B 0.98 0.94 0.96 0.80 0.77 0.77 0.74 0.71 0.72
Phi-4 14B 0.98 0.92 0.94 0.83 0.72 0.76 0.74 0.65 0.68

Mistral-8x22B
Baseline 0.96 0.96 0.95 0.64 0.61 0.61 0.55 0.52 0.53
Mistral-8x22B 0.98 0.93 0.95 0.67 0.64 0.64 0.61 0.58 0.58
Llama3.3-70B 0.98 0.94 0.95 0.69 0.68 0.67 0.59 0.58 0.58

Phi-4 14B
Baseline 0.95 0.97 0.95 0.66 0.55 0.59 0.54 0.48 0.50
Phi-4 14B 0.98 0.92 0.95 0.73 0.67 0.69 0.65 0.59 0.61
Llama3.3-70B 0.98 0.92 0.94 0.74 0.67 0.69 0.67 0.60 0.62

Granite3.2-8B
Baseline 0.99 0.83 0.89 0.55 0.44 0.47 0.47 0.37 0.40
Granite3.2-8B 0.98 0.90 0.93 0.66 0.60 0.62 0.58 0.52 0.54
Llama3.3-70B 0.98 0.90 0.93 0.67 0.59 0.61 0.59 0.52 0.54

5.3 Schema Complexity
RQ3: What is the impact of schema complexity (i.e., number of al-
lowed relations) on relation extraction performance? Are optimised
prompts more robust to changes in schema complexity?
Varied setting: Number of relations per test case.

To analyze this research question, we change the number of
allowed relations that we include in the prompt. When a larger
number of relations are included in the input text, we expect that
the increased search space makes the task slightly harder for the
systems with the increase in relation types. We examine eight
settings with the number of allowed relation types ranging from
100 − 800.

Table 4 illustrates the impact on Precision, Recall, and F1 metrics
for Entity, Relation, and Triple extraction. As seen, the performance
of relation and triple extraction drops significantly with an in-
creased number of allowed relations, suggesting an increase in task
complexity. Figure 5 displays the performance difference between
the baseline and optimized prompt at the level of test-case while
varying allowed relations 100 to 800. Interestingly, the F1 score for
entity extraction reduces with the optimized prompt. For instance,
in the setting where there are 600 relations, it drops from 93% to
91%. Hence, entity extraction scores do not show the same trend as
in relation and triple extraction.

Table 4: Precision (P), Recall(R), F1metrics for entity, relation,
triple extractions across varying numbers of relation types
per each test case. These experiments use LLAMA 3.3 70B
as the LLM with Predict (E-R-T) as the prompting strategy,
evaluated on the SynthIE small test set.White rows represent
the baseline, and grey rows represent the optimised prompts.

Relation
Count
Per

Test Case

Entity Relation Triple

P R F1 P R F1 P R F1

rel 100 0.98 0.90 0.93 0.77 0.68 0.71 0.68 0.58 0.62
0.98 0.94 0.96 0.80 0.77 0.77 0.74 0.71 0.72

rel 200 0.98 0.90 0.93 0.75 0.65 0.68 0.66 0.57 0.60
0.98 0.94 0.96 0.77 0.73 0.74 0.71 0.67 0.68

rel 300 0.98 0.90 0.93 0.74 0.63 0.67 0.65 0.55 0.59
0.98 0.94 0.95 0.77 0.72 0.74 0.71 0.66 0.68

rel 400 0.98 0.90 0.93 0.62 0.48 0.53 0.54 0.42 0.46
0.97 0.93 0.95 0.69 0.64 0.66 0.63 0.59 0.60

rel 500 0.98 0.90 0.93 0.62 0.47 0.52 0.54 0.41 0.45
0.97 0.93 0.94 0.69 0.64 0.65 0.63 0.58 0.60

rel 600 0.98 0.90 0.93 0.66 0.51 0.56 0.58 0.44 0.49
0.92 0.92 0.91 0.69 0.66 0.66 0.62 0.58 0.60

rel 700 0.98 0.90 0.93 0.62 0.47 0.52 0.54 0.41 0.45
0.96 0.92 0.94 0.67 0.62 0.63 0.61 0.56 0.58

rel 800 0.98 0.89 0.93 0.57 0.42 0.47 0.50 0.37 0.41
0.95 0.92 0.93 0.67 0.62 0.63 0.61 0.57 0.58

5.4 Examing the effect of increased context
length

RQ4: How does APO perform at entity/relation/triple extraction
as the size of the input text is increased?
Varied setting: Text length (1x, 5x, 10x test cases at a time).

In this experiment, we analyze the effect of increasing the context
size of the input text on the performance of Automatic Prompt
Optimization at entity/relation/triple extraction. Keeping the LLM

Figure 5: Difference inMacro F1 Scores (Optimized - Baseline)
at different number of allowed relations. F1 is taken as the
macro average of all test cases.

7

Figure 6: Number of relation types with +ve / -ve / 0 differ-
ences in mean accuracy after prompt optimization at each
relation count (100 to 800) setting.

fixed as Llama 3.3-70b, we systematically increase the length of
the text in each example (in our small test set of 1500 examples)
by augmenting it with text from the larger test corpus (10000 -
1500 examples). In the first setting, text examples that are most
similar to those in our small test set are selected and appended,
referred to as Related Augmentation. The second setting, named
Adversarial Augmentation, repeats the same, but augments the data
with themost dissimilar candidates. In the third setting, passages are
randomly selected for augmentation which we refer to as Random
Augmentation. We examine increasing the size of the input text 5
and 10 fold and compare it with the results from Section 5.1. Text
similarity is determined using a sentence transformer model. The
extraction results are summarized in Table 5. We also indicate the
distinct relation types in each experiment, a quantitative proxy for
the difficulty of the extraction task. The adversarial Augmentation
and Random Augmentation have noticeably higher numbers of
distinct relation types as compared to the related text case.

As expected, the performance of the baseline and trained DSPy
modules degrades as the context length increases. The degradation
is most severe in the cases where the text is augmented adversarially,
with relation and triple recall suffering the most. Entity extraction
performance remains fairly consistent. Across the board, we ob-
serve that training for APO improves performance. We postulate
that exposure to larger-sized text and especially their selection as
few-shot examples, steers the optimization in a direction that helps
better anticipate longer context. Improvements in performance are
the largest in the case of Related Augmentation and the smallest
in the Adversarial selection case. Finally, we notice that the perfor-
mance in the Adversarial Augmentation case is noticeably worse
than in the case of Random Augmentation, although the number of
distinct relations is comparable. This suggests that the coherence
of the text passage is an important factor influencing the difficulty
of the extraction task.

5.5 Train, Validation and Test Datasets
RQ5: What is the impact of using train/validation splits from a
different dataset for selecting few-shots and validating the gener-
ated prompts compared to using the train/validation splits from the

Table 5: Quantifying the effect of increased context length
on APO approaches for entity, relation and triple extraction.
Three different settings are examined, where we merge (a)
related text, (b) adversarially selected text, and (c) randomly
selected text to each test example. White rows represent the
baselines, and grey rows represent the optimized prompts.
Numbers in the brackets indicate number of distinct relation
types

Text size
(Rel. Types)

Entities Relations Triples

P R F1 P R F1 P R F1

(a) Merging Related Text

1x (3.10) 0.98 0.90 0.93 0.77 0.68 0.71 0.68 0.59 0.62
0.98 0.94 0.96 0.80 0.77 0.77 0.74 0.71 0.72

5x (10.25) 0.98 0.87 0.92 0.80 0.56 0.65 0.70 0.50 0.58
0.99 0.92 0.95 0.77 0.67 0.71 0.71 0.63 0.66

10x (17.11) 0.99 0.86 0.91 0.82 0.47 0.59 0.70 0.43 0.53
0.99 0.92 0.95 0.79 0.58 0.67 0.71 0.55 0.62

(b) Merging Adversarially Selected Text (most unrelated)

1x (3.10) 0.98 0.90 0.93 0.77 0.68 0.71 0.68 0.59 0.62
0.98 0.94 0.96 0.80 0.77 0.77 0.74 0.71 0.72

5x (13.57) 0.96 0.86 0.89 0.80 0.56 0.65 0.69 0.49 0.57
0.99 0.85 0.91 0.83 0.58 0.67 0.72 0.51 0.59

10x (23.89) 0.96 0.85 0.89 0.83 0.48 0.60 0.72 0.43 0.54
0.98 0.93 0.95 0.83 0.66 0.73 0.75 0.61 0.67

(c) Merging Randomly Selected Text

1x (3.10) 0.98 0.90 0.93 0.77 0.68 0.71 0.68 0.59 0.62
0.98 0.94 0.96 0.80 0.77 0.77 0.74 0.71 0.72

5x (14.35) 0.99 0.85 0.91 0.83 0.58 0.67 0.72 0.51 0.59
0.98 0.92 0.95 0.82 0.68 0.74 0.74 0.62 0.67

10x (26.20) 0.98 0.84 0.90 0.85 0.51 0.63 0.73 0.45 0.55
0.99 0.91 0.95 0.84 0.63 0.72 0.75 0.57 0.64

dataset as the test split?
Varied setting: Train/validation dataset, prompt strategy.

DSPy uses a training set to select the few-shot candidates and
create a task/dataset summary that can be used as input to the LLM
to derive prompt instruction candidates. In this experiment, we
explore the use of different combinations of training/validation and
testing datasets from distinct datasets and examine how the results
change compared to using the same dataset for training and testing.
We examine this behaviour using Predict (T) and Predict (E-R-T)
prompting strategies.

In DSPy, few-shot candidates are selected from a training set
and task/dataset summary is created. This is subsequently used as
input for deriving prompt instruction candidates from an LLM. In
this experiment, we explore the impact of using training/validation
splits for different datasets compared to the test split. Specifically,
we investigate how the results differ when the same dataset is used
for both training and testing versus when different datasets are
employed. We evaluate this behaviour using the Predict (T) and
Predict (E-R-T) prompting strategies.

As shown in Table 6, the results demonstrate that using the
same dataset for both few-shot selection and prompt validation

8

significantly outperforms the case when distinct datasets are used
for training/validation and testing. For instance, when SynthIE is
used as the test set, the Predict (E-R-T) prompt improves triple F1
by +0.01 when trained on the REBEL dataset, compared to a +0.08
improvement when the same dataset is used for both training and
testing. Similarly, with Predict (T) and SynthIE as the test set, using
REBEL for training/validation negatively impacts the optimized
prompt, reducing triple F1 by −0.04 points. When REBEL is used
as the test set, a similar trend is observed, with a larger margin
of improvement when the same dataset is used for both training
and testing compared to when different datasets are employed. Our
hypothesis is that using few-shot examples and dataset summaries
generated from a dataset that differs from the final test introduces
some bias, leading to a prompt that is suboptimal for the test set.

Table 6: Results for training and testing across two different
triple extraction datasets.

Test
Set

Prompt
Strategy

Train/Val
Set

Entity
F1

Rel.
F1

Triple

P R F1

SynthIE

N/A - - 0.69 0.60 0.63
Predict
(T) SynthIE - - 0.73 0.73 0.72

REBEL - - 0.73 0.52 0.59

N/A 0.93 0.71 0.68 0.58 0.62
Predict
(E-R-T) SynthIE 0.95 0.77 0.72 0.70 0.70

REBEL 0.91 0.71 0.71 0.58 0.63

REBEL

N/A - - 0.24 0.29 0.23
Predict
(T) REBEL - - 0.37 0.35 0.33

SynthIE - - 0.22 0.37 0.25

N/A 0.73 0.36 0.26 0.28 0.24
Predict
(E-R-T) REBEL 0.77 0.48 0.34 0.42 0.35

SynthIE 0.74 0.39 0.24 0.35 0.26

5.6 Prompt Optimization Approach
RQ6: What prompt optimization approach works best for triple
extraction?
Varied setting: Prompt optimization approach.

We experiment with three prompt optimization systems for triple
extraction, namely, DSPy, TextGrad, and APE. As mentioned in Sec-
tion 4.3, these methods differ in how they approach the problem.We
include the best possible prompt (as generated by the corresponding
system) for each case and then input it to the Llama3.3-70B model
at test time. As seen in Table 7, the APE system is very competitive
with the other methods despite being more simplistic in formula-
tion and not requiring an initial human prompt as input. However,
since APE needs to venture a guess about the task without any
initial prompt and only a couple of input-output pairs, the optimal
instruction is found to be generic (in a linguistic and descriptive
sense) and not as task-specific compared with the two other ap-
proaches. For example, the APE system generated the following
-

Baseline Prompt: I have a friend an instruction. Based
on the instruction, he produced the following input, out-
put pairs. <Few Shot Examples>. Complete the following
text. The instruction is
Output: Create a knowledge graph representation for the
provided information, where each input is transformed
into a list of dictionaries. Each dictionary should contain
“subject", “object", and “predicate" as keys, with their re-
spective values being the surface form of the subject/object
and predicate phrase.

While the DSPy generated -
Baseline Prompt: (input text, allowed relations) → (en-
tities,relations,triple)
Output: Given a text and a predefined set of allowed
relations, extract the entities mentioned in the text and
determine the relationships between them based on the
allowed relations. Identify the subject, object, and rela-
tion for each extracted relationship and represent them as
triples. Ensure that the extracted entities and relations are
accurately matched to the allowed relations, and provide
a comprehensive list of entities, relations, and triples that
reflect the semantic relationships present in the input text.

And textgrad resulted in -
Baseline Prompt: Extract triples from the following text
using ONLY the allowed relations. The output format
should be (subject, object, relation). <EXAMPLES>. Do
not include additional explanations or text.
Output: Extract concise and directly related knowledge
graph triples from the text, focusing on explicit entity
relationships, and only utilize the specified allowed rela-
tions to maximize precision and recall, ensuring that the
subject and object are directly mentioned in the text and
the relation is clearly implied.

According to the results, DSPy does have a small edge over the
other two in performance.

Table 7: Results for generating prompts with different auto-
matic prompt optimizers.

Automatic
Prompt Optimizer

Entity Relation Triple

P R F1 P R F1 P R F1

Baseline 0.98 0.90 0.93 0.77 0.68 0.71 0.68 0.59 0.62
DSPy 0.98 0.94 0.96 0.80 0.77 0.77 0.74 0.71 0.72
APE 0.98 0.94 0.95 0.79 0.77 0.76 0.72 0.67 0.69
TextGrad 0.98 0.93 0.95 0.79 0.75 0.76 0.71 0.65 0.67

5.7 Optimization metric
RQ7: What is the impact of the optimization metric on the perfor-
mance of the optimized prompt?
Varied setting: Prompt optimization metric.

Recall that DSPy selects the few-shot candidates from the train-
ing data and generates a set of instructions using an LLM. The can-
didate search space, including both the instructions and few-shot
examples, is then evaluated using Bayesian optimization. The vali-
dation set is used to assess the candidates and guide the search strat-
egy. During the process, a predefined optimization metric drives

9

the optimization process, i.e. to guide the candidate selection and
evaluate against the validation set.

To explore the impact of the optimization metric, we vary the
metric used during training to select the optimal prompts. We aim
to determine whether this variation influences the prompt’s per-
formance at test time as evaluated against the test set. Specifically,
we seek to verify whether a prompt optimized for F1, Precision, or
Recall performs better on the corresponding metric during testing.

Table 8 indicates the results for different settings with the three
distinct optimization metrics. From the results, we observe that
when triple precision is used as a metric, the triple precision on
the test set improves slightly (0.75 compared to 0.71 and 0.72), as
anticipated. Similarly, Recall also drives improvement in test Re-
call (0.71 compared to 0.66 and 0.70). Overall, this performance
profile suggests that the optimization metric indeed influences the
prompt’s behavior, but rather moderately in the specific setting
evaluated. In addition, we manually inspect the three generated
prompts to identify any linguistic signals correlating with the met-
rics. However, no notable instructional differences were found that
that drive the LLM in a particular direction.

Table 8: Results for optimizing the prompt using different
optimization metrics.

Optimization
Metric

Entity Relation Triple

P R F1 P R F1 P R F1

Baseline 0.98 0.90 0.93 0.80 0.66 0.71 0.68 0.58 0.62
Triple F1 0.98 0.94 0.95 0.79 0.77 0.77 0.72 0.70 0.70
Triple Precision 0.98 0.92 0.95 0.83 0.72 0.76 0.75 0.66 0.69
Triple Recall 0.98 0.95 0.96 0.78 0.79 0.77 0.71 0.71 0.70

5.8 Training Computation Cost
RQ8: What is the impact of increasing the number of LLM calls
during optimization on the final performance?
Varied setting: APO Hyperparameters such as number of candi-
dates, trials, mini-batch validation size, validation set size.

In this study, we define the computational cost of training as
the number of LLM calls made during the process. In DSPy, the
number of LLM calls is determined by several hyperparameters,
including: the number of candidate prompts generated, the num-
ber of optimization trials conducted, the size of the mini-batch
evaluated in each trial, the full_eval_steps (i.e., the number of
mini-batch trials after which a full evaluation of the validation set is
performed), and the size of the validation set. To assess the impact
of these factors on the final performance of the generated prompt,
we conducted experiments where we varied these hyperparameters.

As shown in Figure 7, both relation extraction and triple ex-
traction F1 scores stabilise after a relatively small number of LLM
calls. The stability of these results can be numerically quantified
via the Coefficient of Variation (CV) in the triple test metrics (i.e.
the relative ratio of standard deviation to mean), with lower val-
ues implying that the variation is less pronounced (lower sensi-
tivity to hyperparameter choices). Increasing the search space,
by increasing the number of candidates and trials (𝐶𝑉 TripleR =

0.02,𝐶𝑉 TripleP = 0.026,𝐶𝑉 TripleF1 = 0.019), or the validation set

Figure 7: Training computation cost (in LLM calls) vs the
relation and triple extraction F1.

size (𝐶𝑉 TripleR = 0.014,𝐶𝑉 TripleP = 0.014,𝐶𝑉 TripleF1 = 0.036), does
not result in a drastic change in performance. These findings sug-
gest that beyond a certain point, expanding the search space and
increasing computational effort do not yield proportional gains in
performance.

6 QUALITATIVE ANALYSIS OF GENERATED
PROMPTS

Three of the co-authors manually evaluated the top 22 prompts
generated by Llama3.3-70B model using DSPy in different settings
as described in Section 4. For each of these prompts, we asked
ourselves “Would a human prompt engineer write this prompt and
consider it an optimal or near-optimal for the triple extraction task,
i.e., do you expect a good result when this prompt is provided to an
LLM?". We used for 4 categories to mark the prompts – Good, Short,
Ok and Verbose. For these 22 prompt annotations, all three human
annotators found that 3 prompts are Verbose and 8 prompts are
Good. For the remaining 11, at least one (but not all 3) annotators
marked 8 prompts as good.

The longest generated prompt marked "good" by all the annota-
tors consists of 100 words -

Given a piece of text and a set of allowed relations, identify
the entities present in the text, determine the relationships
between these entities based on the allowed relations, and
construct triples in the form of subject-relation-object
representing the extracted information. The goal is to
accurately extract entities, relations, and triples from the
input text, utilising the provided allowed relations to guide
the relationship identification process. Ensure the output
includes a list of identified entities, a list of relations found
between these entities, and a list of triples that effectively
capture the relationships between the entities in the text.

Whereas the shortest prompt marked "good" by all the annotators
consists of 77 words -

Given a text and a predefined set of allowed relations,
extract the entities mentioned in the text and determine
the relationships between them based on the allowed re-
lations. Identify the subject, object, and relation for each
extracted relationship and represent them as triples. En-
sure that the extracted entities and relations are accurately

10

matched to the allowed relations, and provide a compre-
hensive list of entities, relations, and triples that reflect
the semantic relationships present in the input text.

Interesting, both the prompts yieleded similar results (when fed
into the Llama3.3-70B) on the validation data - F1-Entities: 0.95/F1-
Relations: 0.77/F1-Triples: 0.70.

7 CONCLUSIONS
In this empirical study, we explored the application of automatic
prompt optimization for triple extraction via extensive experimen-
tal benchmarking. We evaluated different settings by changing (a)
the prompting strategy, (b) the LLM being used for prompt opti-
mization and task execution, (c) number of canonical relations in
the schema (schema complexity), (d) the length and diversity of
input text, (e) the metric used to drive the prompt optimization,
and (f) the dataset being used for training and testing. Based on
the empirical results, automatic prompt optimization is a viable
strategy for generating reasonable prompts for the triple extraction
task, providing robust improvements against baseline prompts. The
three prompt optimization strategies examine, namely, DSPy, APE,
and TextGrad, consistently outperformed the baseline prompts in
precision, recall, and F1 metrics for entity, relation, and triple ex-
traction. Additionally, qualitative analysis of the generated prompts
showed that a majority of the generated prompts were reasonably
interpretable and in alignment with human intuition. Specifically,
they provide explicit details of the task, desired output format, and
some guidance on how to perform the task.

The experiments with different prompting styles showed that
both simple inference prompts (predict) as well as advanced prompt-
ing with a Chain-of-Thought (Cot) rationale or a pipelined Extract-
Critique-Refine (ECR) prompts provided improvements during prompt
optimizations. These observations suggest that the automatic opti-
mizers can adapt and propose effective refinements across the board
in scenarios related to triple extraction. Analysis at the relation-type
level showed that optimized prompts tend to retain or improve per-
formance on the majority of relation-types present in the dataset,
without losing performance on those relation-types that were al-
ready handled correctly by the baseline. This indicates that APO
not only boosts overall macro-level metrics but also does so broadly
across different relation types, suggesting that the improvements
are generalizable, i.e. do not narrowly focus on a few types.

Experiments in increased schema-complexity (i.e., the number of
allowed relation types) and input context length (1x, 5x, and 10x of
the original input text) showed that automatic prompt optimization
was considerably more beneficial the more challenging the scenario.
When the schema became more complex with a larger number of
relations (from 100 up to 800 relations), extraction difficulty in-
creased, and both baseline and optimized prompt performance
drops in terms of relation and triple F1. Nevertheless, the decline
was relatively more significant for baseline prompts, implying that
the optimized prompts were more resilient to increased schema-
complexity. Increasingly long texts (by concatenating multiple test
phrases together), both baseline and optimized prompt performance
deteriorated, especially on relation and triple extraction (with rela-
tion extraction recall dropping due to challenges in identifying all
relevant relations in a large blob of text). Optimized prompts can

mitigate these context-length performance losses by still outper-
forming the baseline performance metrics for the single test case
1x all the way up to 10x. Descriptive optimized prompts with the
right set of few-shot demonstrations seem to scale to larger input
lengths quite gracefully.

Limitations and Challenges. When tested with different LLMs,
it was observed that the triple extraction performance was mostly
dominated by the capabilities of the task execution LLM rather
than the LLM used to generate the prompts. The results imply that
the choice of LLM at inference time seems more critical than the
choice of LLM for prompt generation. In our experiments, prompts
generated using a larger model (Llama 3.3-70B) were reasonably ro-
bust when applied to a different model (e.g. a 14B parameter model)
on triple extraction. For example, the best prompt from Llama-70B
tested on a smaller model achieved nearly the same triple F1 as the
smaller model’s own optimized prompt. This suggests that there
is some degree of “model-agnostic prompt quality" maintained in
the optimised prompts (typically a good prompt containing precise
instructions that are generally useful).

When tested with multiple datasets, our results also highlight
some limitations in cross-dataset prompt transferability. For ex-
ample, when we used a different dataset’s training examples to
optimize prompts (this simulates a shift in domain/data distribu-
tion), the improvements reduced significantly compared to using
the examples from the same dataset. In particular, an optimized
prompt trained on a secondary dataset yielded only marginal gains
(on ∼ 1% F1 increase) when tested on the target dataset’s text, com-
pared to the much larger improvements (∼ 8% or more) obtained
when the training and testing data were from the same dataset. This
highlights a set challenges for future work in prompt optimization.

Future Work. We plan on exploring (a) cross-lingual prompt [31]
optimization, where we will apply automatic prompt optimization
techniques to multilingual settings, and (b) interactive human-in-
the-loop prompt optimization, i.e. combining automatic prompt
optimization with human feedback loops. An interactive APO ap-
proach could allow a human analyst to guide the process by in-
jecting domain knowledge or preferences (for example, selecting
among automatically generated prompt candidates or refining them
after a few iterations). Such approaches might fit well with agen-
tic workflows that integrate tool-calling capabilities and decision
making on when to get a human expert involved.

REFERENCES
[1] Simran Arora, Avanika Narayan, Mayee F Chen, Laurel Orr, Neel Guha, Kush

Bhatia, Ines Chami, and Christopher Re. 2023. Ask Me Anything: A simple
strategy for prompting language models. In The Eleventh International Conference
on Learning Representations.

[2] Simran Arora, Avanika Narayan, Mayee F. Chen, Laurel Orr, Neel Guha, Kush
Bhatia, Ines Chami, Frederic Sala, and Christopher Ré. 2024. InstructZero: Ef-
ficient Instruction Optimization for Black-Box Large Language Models. ICML
2024.

[3] Paul F Christiano, Jan Leike, Tom Brown, Miljan Martic, Shane Legg, and Dario
Amodei. 2017. Deep reinforcement learning from human preferences. Advances
in neural information processing systems 30 (2017).

[4] Anthony Cui, Pranav Nandyalam, and Kevin Zhu. 2025. Introducing MAPO:
Momentum-Aided Gradient Descent Prompt Optimization. NAACL SRW 2025.

[5] Wendi Cui, Jiaxin Zhang, Zhuohang Li, Hao Sun, Damien Lopez, Kamalika Das,
Bradley Malin, and Sricharan Kumar. 2025. Automatic Prompt Optimization via
Heuristic Search: A Survey. arXiv preprint arXiv:2502.18746 (2025).

11

[6] Sarthak Dash, Gaetano Rossiello, Nandana Mihindukulasooriya, Sugato Bagchi,
and Alfio Gliozzo. 2021. Open Knowledge Graphs Canonicalization using Varia-
tional Autoencoders. In Proceedings of the 2021 Conference on Empirical Methods
in Natural Language Processing (EMNLP 2021). 10379–10394.

[7] Anastasia Dimou, Miel Vander Sande, Pieter Colpaert, Ruben Verborgh, Erik
Mannens, and Rik Van de Walle. 2014. RML: A generic language for integrated
RDF mappings of heterogeneous data. LDOW 2014 1184 (2014).

[8] Darren Edge, Ha Trinh, Newman Cheng, Joshua Bradley, Alex Chao, Apurva
Mody, Steven Truitt, DashaMetropolitansky, Robert OsazuwaNess, and Jonathan
Larson. 2024. From Local to Global: A Graph RAG Approach to Query-Focused
Summarization. arXiv preprint arXiv:2404.16130 (2024).

[9] Oren Etzioni, Michele Banko, Stephen Soderland, and Daniel S Weld. 2008. Open
information extraction from the web. Commun. ACM 51, 12 (2008), 68–74.

[10] Michael Glass, Gaetano Rossiello, Md Faisal Mahbub Chowdhury, Ankita Naik,
Pengshan Cai, and Alfio Gliozzo. 2022. Re2G: Retrieve, Rerank, Generate. In
Proceedings of the 2022 Conference of the North American Chapter of the Association
for Computational Linguistics: Human Language Technologies. 2701–2715.

[11] Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin
Xu, Qihao Zhu, Shirong Ma, Peiyi Wang, Xiao Bi, et al. 2025. DeepSeek-R1:
Incentivizing Reasoning Capability in LLMs via Reinforcement Learning. arXiv
preprint arXiv:2501.12948 (2025).

[12] Qingyan Guo, Rui Wang, Junliang Guo, Bei Li, Kaitao Song, Xu Tan, Guoqing
Liu, Jiang Bian, and Yujiu Yang. 2023. EvoPrompt: Connecting LLMs with
Evolutionary Algorithms Yields Powerful Prompt Optimizers. (2023).

[13] Aidan Hogan, Eva Blomqvist, Michael Cochez, Claudia d’Amato, Gerard de Melo,
Claudio Gutierrez, Sabrina Kirrane, José Emilio Labra Gayo, Roberto Navigli,
Sebastian Neumaier, et al. 2021. Knowledge Graphs. ACM Computing Surveys
(CSUR) 54, 4 (2021), 1–37.

[14] Pere-Lluís Huguet Cabot and Roberto Navigli. 2021. REBEL: Relation Extraction
By End-to-end Language generation. In Findings of the Association for Computa-
tional Linguistics: EMNLP 2021. 2370–2381.

[15] Martin Josifoski, Marija Sakota, Maxime Peyrard, and Robert West. 2023. Exploit-
ing Asymmetry for Synthetic Training Data Generation: SynthIE and the Case
of Information Extraction. In Proceedings of the 2023 Conference on Empirical
Methods in Natural Language Processing. 1555–1574.

[16] Omar Khattab, Arnav Singhvi, Paridhi Maheshwari, Zhiyuan Zhang, Keshav San-
thanam, Sri Vardhamanan, Saiful Haq, Ashutosh Sharma, Thomas T. Joshi, Hanna
Moazam, Heather Miller, Matei Zaharia, and Christopher Potts. 2023. DSPy: Com-
piling Declarative Language Model Calls into Self-Improving Pipelines. arXiv
preprint arXiv:2310.03714 (2023).

[17] Hanieh Khorashadizadeh, Fatima Zahra Amara, Morteza Kamaladdini Ezzabady,
Frédéric Ieng, Sanju Tiwari, Nandana Mihindukulasooriya, Jinghua Groppe,
Soror Sahri, Farah Benamara, and Sven Groppe. 2024. Research Trends for the
Interplay between Large LanguageModels and Knowledge Graphs. In Proceedings
of Workshops at the 50th International Conference on Very Large Data Bases, VLDB
2024, Guangzhou, China, August 26-30, 2024. VLDB.org.

[18] Hanieh Khorashadizadeh, Nandana Mihindukulasooriya, Sanju Tiwari, Jinghua
Groppe, and Sven Groppe. 2023. Exploring In-Context Learning Capabilities of
Foundation Models for Generating Knowledge Graphs from Text. In Text2KG at
ESWC 2025, Vol. 3447. 132–153.

[19] Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio Petroni, Vladimir
Karpukhin, Naman Goyal, Heinrich Küttler, Mike Lewis, Wen-tau Yih, Tim
Rocktäschel, Sebastian Riedel, and Douwe Kiela. 2020. Retrieval-Augmented
Generation for Knowledge-Intensive NLP Tasks. In Advances in Neural Informa-
tion Processing Systems, Vol. 33. Curran Associates, Inc., 9459–9474.

[20] Wenwu Li, Xiangfeng Wang, Wenhao Li, and Bo Jin. 2025. A Survey of Au-
tomatic Prompt Engineering: An Optimization Perspective. arXiv preprint
arXiv:2502.11560 (2025).

[21] Pengfei Liu, Weizhe Yuan, Jinlan Fu, Zhengbao Jiang, Hiroaki Hayashi, and
Graham Neubig. 2023. Pre-train, Prompt, and Predict: A Systematic Survey of
Prompting Methods in Natural Language Processing. 55, 9, Article 195 (Jan.
2023), 35 pages.

[22] Huan Ma, Changqing Zhang, Yatao Bian, Lemao Liu, Zhirui Zhang, Peilin Zhao,
Shu Zhang, Huazhu Fu, Qinghua Hu, and Bingzhe Wu. 2023. Fairness-guided
few-shot prompting for large language models. In NeurIPS 2023. 43136–43155.

[23] Igor Melnyk, Pierre Dognin, and Payel Das. 2022. Knowledge Graph Generation
From Text. In Findings of the Association for Computational Linguistics: EMNLP
2022. Abu Dhabi, United Arab Emirates, 1610–1622.

[24] Nandana Mihindukulasooriya, Sanju Tiwari, Carlos F. Enguix, and Kusum Lata.
2023. Text2KGBench: A Benchmark for Ontology-Driven Knowledge Graph
Generation from Text. In 22nd International Semantic Web Conference ISWC 2023,
Vol. 14266. 247–265.

[25] Sewon Min, Xinxi Lyu, Ari Holtzman, Mikel Artetxe, Mike Lewis, Hannaneh
Hajishirzi, and Luke Zettlemoyer. 2022. Rethinking the Role of Demonstrations:
What Makes In-Context Learning Work? EMNLP 2022 (2022).

[26] Itai Mondshine, Tzuf Paz-Argaman, and Reut Tsarfaty. 2025. Beyond english: The
impact of prompt translation strategies across languages and tasks inmultilingual
llms. LoResMT 2025 at NAACL 2025 (2025).

[27] Krista Opsahl-Ong, Michael J Ryan, Josh Purtell, David Broman, Christopher
Potts, Matei Zaharia, and Omar Khattab. 2024. Optimizing Instructions and
Demonstrations for Multi-Stage Language Model Programs. EMNLP 2024 (2024),
9340–9366.

[28] Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela
Mishkin, Chong Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, et al. 2022.
Training language models to follow instructions with human feedback. Advances
in neural information processing systems 35 (2022), 27730–27744.

[29] Fabio Petroni, Tim Rocktäschel, Sebastian Riedel, Patrick Lewis, Anton Bakhtin,
Yuxiang Wu, and Alexander Miller. 2019. Language Models as Knowledge Bases?.
In Proceedings of the 2019 Conference on Empirical Methods in Natural Language
Processing. Hong Kong, China, 2463–2473.

[30] Reid Pryzant, Dan Iter, Jerry Li, Yin Tat Lee, Chenguang Zhu, and Michael Zeng.
2023. Automatic Prompt Optimization with “Gradient Descent” and Beam Search.
EMNLP 2023 (2023), 7957–7968.

[31] Libo Qin, Qiguang Chen, Fuxuan Wei, Shijue Huang, and Wanxiang Che. 2023.
Cross-lingual Prompting: Improving Zero-shot Chain-of-Thought Reasoning
across Languages. In EMNLP 2023. 2695–2709.

[32] Kiran Ramnath, Kang Zhou, Sheng Guan, Soumya Smruti Mishra, Xuan Qi,
Zhengyuan Shen, Shuai Wang, Sangmin Woo, Sullam Jeoung, Yawei Wang, et al.
2025. A systematic survey of automatic prompt optimization techniques. arXiv
preprint arXiv:2502.16923 (2025).

[33] Gaetano Rossiello, Md. Faisal Mahbub Chowdhury, Nandana Mihindukula-
sooriya, Owen Cornec, and Alfio Massimiliano Gliozzo. 2023. KnowGL: Knowl-
edge Generation and Linking from Text. In AAAI. AAAI Press, 16476–16478.

[34] Gaetano Rossiello, Nandana Mihindukulasooriya, Ibrahim Abdelaziz, Mihaela
Bornea, Alfio Gliozzo, Tahira Naseem, and Pavan Kapanipathi. 2021. Generative
relation linking for question answering over knowledge bases. In Proceedings of
the 20th International Semantic Web Conference (ISWC 2021). 321–337.

[35] Satya S Sahoo, Wolfgang Halb, Sebastian Hellmann, Kingsley Idehen, Ted Thi-
bodeau Jr, Sören Auer, Juan Sequeda, and Ahmed Ezzat. 2009. A survey of current
approaches for mapping of relational databases to RDF. W3C RDB2RDF Incubator
Group Report 1 (2009), 113–130.

[36] Nisan Stiennon, Long Ouyang, Jeffrey Wu, Daniel Ziegler, Ryan Lowe, Chelsea
Voss, Alec Radford, Dario Amodei, and Paul F Christiano. 2020. Learning to
summarize with human feedback. Advances in Neural Information Processing
Systems 33 (2020), 3008–3021.

[37] Hao Sun, Alihan Hüyük, and Mihaela van der Schaar. 2024. Query-Dependent
Prompt Evaluation and Optimization with Offline Inverse RL. In The Twelfth
International Conference on Learning Representations.

[38] Mirac Suzgun and Adam Tauman Kalai. 2024. Meta-Prompting: Enhancing
Language Models with Task-Agnostic Scaffolding. arXiv:2401.12954 (2024).

[39] Edlira Vakaj, Nandana Mihindukulasooriya, Sanju Tiwari, and Sergio J.
Rodriguez-Méndez. 2025. 4th International Workshop on Natural Language
Processing for Knowledge Graph Construction (WWW ’25). Association for
Computing Machinery, 2545–2548.

[40] Denny Vrandečić and Markus Krötzsch. 2014. Wikidata: A Free Collaborative
Knowledge Base. Commun. ACM 57, 10 (2014), 78–85.

[41] Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi,
Quoc V Le, and Denny Zhou. 2022. Chain-of-Thought Prompting Elicits Rea-
soning in Large Language Models. Advances in neural information processing
systems 35 (2022), 24824–24837.

[42] Yuxin Wen, Neel Jain, John Kirchenbauer, Micah Goldblum, Jonas Geiping, and
Tom Goldstein. 2023. Hard Prompts Made Easy: Gradient-Based Discrete Op-
timization for Prompt Tuning and Discovery. Advances in Neural Information
Processing Systems 36 (2023), 51008–51025.

[43] Sang Michael Xie, Aditi Raghunathan, Percy Liang, and Tengyu Ma. 2022. An
Explanation of In-context Learning as Implicit Bayesian Inference. ICLR 2022
(2022).

[44] Mert Yuksekgonul, Federico Bianchi, Joseph Boen, Sheng Liu, Pan Lu, Zhi Huang,
Carlos Guestrin, and James Zou. 2025. Optimizing generative AI by backpropa-
gating language model feedback. Nature 639 (2025), 609–616.

[45] Zhao Zhang, Fuzhen Zhuang, Meng Qu, Fen Lin, and Qing He. 2018. Knowledge
Graph Embedding with Hierarchical Relation Structure. In Proceedings of the 2018
Conference on Empirical Methods in Natural Language Processing. 3198–3207.

[46] Lingfeng Zhong, Jia Wu, Qian Li, Hao Peng, and Xindong Wu. 2023. A Compre-
hensive Survey on Automatic Knowledge Graph Construction. Comput. Surveys
56, 4 (2023), 1–62.

[47] Yongchao Zhou, Andrei Ioan Muresanu, Ziwen Han, Keiran Paster, Silviu Pitis,
Harris Chan, and Jimmy Ba. 2023. Large Language Models are Human-Level
Prompt Engineers. In ICLR 2023.

[48] Kaijie Zhu, JindongWang, Jiaheng Zhou, ZichenWang, Hao Chen, YidongWang,
Linyi Yang, Wei Ye, Yue Zhang, Neil Gong, and Xing Xie. 2023. PromptRobust:
Towards Evaluating the Robustness of Large Language Models on Adversarial
Prompts. In Proceedings of the 1st ACM workshop on large AI systems and models
with privacy and safety analysis. 57–68.

12

	Abstract
	1 Introduction
	1.1 Prompt Engineering: Challenges and Opportunities
	1.2 Automatic Prompt Optimization: Motivation

	2 Triple Extraction for Knowledge Graph Construction
	3 Automated Prompt Optimization
	4 Experiment Benchmarking Setup
	4.1 Task
	4.2 Datasets
	4.3 Automatic Prompt Optimizers
	4.4 Language Models
	4.5 Evaluation Metrics

	5 Empirical Analysis and Insights
	5.1 Prompting strategy
	5.2 Prompt Generation LLM and Triple Extraction LLM
	5.3 Schema Complexity
	5.4 Examing the effect of increased context length
	5.5 Train, Validation and Test Datasets
	5.6 Prompt Optimization Approach
	5.7 Optimization metric
	5.8 Training Computation Cost

	6 Qualitative Analysis of Generated Prompts
	7 Conclusions
	References

