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Figure 1: A world model for LLMs.

ABSTRACT

There have been many recent improvements in the ability of Large
Language Models (LLMs) to perform complex tasks and answer
domain-specific questions through techniques like Retrieval Aug-
mented Generation (RAG). However, reasoning abilities of LLMs,
including spatial reasoning abilities, are still lacking. Spatial reason-
ing is a key component required to answer questions in a variety of
domains that are grounded in the physical world, including urban
planning, civil engineering, travel, and many others. To advance
the development of LLMs and facilitate an impact in these domains,
new research techniques must be developed to enable LLMs to
reason over spatial data, which is commonly stored in the form of a
graph. In this paper we outline the challenges associated with spa-
tial reasoning through LLMs and envision a future in which search
engines integrate with LLMs to answer complex spatial questions
through graph-enhanced reasoning.
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1 INTRODUCTION

There have been many recent improvements in the ability of Large
Language Models (LLMs) to perform complex tasks and answer
domain-specific questions through Retrieval Augmented Genera-
tion (RAG) [21] and other techniques. LLMs have been used with
great success in areas that involve human abstractions, like writing
code [22], summarizing and translating text [20, 30], and perform-
ing math calculations [9]. However, LLMs struggle to perform well
when a task requires spatial or temporal reasoning because they
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Relation Domain Task Potential Use Case or Application Examples
Metric Realty Housing Search ~ “Which homes are within 10km of a school and more [6]
than 5km from a highway?”
Travel Itinerary “Find a (library, museum, restaurant) or a (museum, [12]
Planning library, restaurant) where the distance from one place
to the next is less than 400m.”
Topological Civil Road Network “Given a sketch drawing of street intersections and [35]
Engineering Alignment highways, which cities are a match?”
Agriculture Multi-Scale Data  “Which land cover datasets at different scales are a [17]
Fusion spatial match to this one?”
Directional Event Planning  Landmark “Which restaurant has an ocean to the East, a parking [27]
Search lot to the North, and a golf course to the south?”

Table 1: Application domains of spatial-pattern search where graph-enhanced LLMs can provide potential benefit.

lack a coherent, consistent world model, like the ones designed in
reinforcement learning settings [1, 15]. Further, in many domains,
search queries are naturally expressed through an abstract represen-
tation of spatial constraints as opposed to the keyword search terms
that most search engines and LLMs are accustomed to handling. In
urban planning, road network alignment is used to identify existing
places with similar road layouts to a query location or proposed
road plan [35] In the travel domain, a user may recall a specific
Point of Interest (POI) by the spatial configuration of the landmarks
around it, without remembering the exact address or name of the
place [26, 27]. In event planning, a user may not have a specific
place in mind, but instead have some spatial criteria they seek to
satisfy, such as finding the set of restaurants in Washington D.C.
that are located next to a park and within half a kilometer of a
metro stop for easy accessibility. In these examples, as well as other
use cases outlined in Table 1, an abstract spatial pattern is the most
natural expression of the user’s search intention.

To advance the development of LLMs to aid in answering spatial
questions like the ones we describe, new research techniques must
be developed to enable LLMs to reason over spatial data. Such a
development would require LLMs to internalize an accurate spa-
tial model of the world that would allow them to compare places
based on their physical locations and infer spatial relationships
through transitivity (Figure 1). Although recent work has shown
that LLMs possess a rough model of the world intrinsically through
training [2, 29], they lack knowledge of less common places and can-
not generalize or infer spatial relationships, such as the distances
between places [28].

The need for spatially-aware search is not presently filled by
mainstream search and mapping platforms, leaving a gap that LLM-
aided spatial search may be able to address. Current search engines
and mapping platforms like Google Maps ! are designed for key-
word search, not spatial search. That is, they can support top-k

!https://developers.google.com/maps/documentation/places/web-service/search-
text

keyword queries that seek co-located objects relevant to query key-
words, but they cannot support queries involving spatial relation-
ships between keyword entities [8]. Taking the previous example
of searching for restaurants located next to a park and within half
a kilometer of a metro stop, top-k search would return any restau-
rants, parks, and metro stops in the area of interest, ignoring the
desired distance and topological constraints. Even spatial group
keyword search, which is more complex than top-k search, would
find groups of those entities in a minimum enclosing circle, but still
would not satisfy the topological constraint (restaurant adjacent to
park) [4, 23, 24]. Instead, to fulfill search intentions expressed by
abstract spatial patterns, an NP-hard form of search called spatial
pattern matching, or pattern-based spatial search, is needed [12].

Pattern-based spatial search seeks to match query keywords
and spatial constraints to the data entities that satisfy them. Query
constraints can capture metric, topological, and directional relation-
ships between entities, based on how they are positioned in space.
These constraints can describe explicit relationships between pairs
of entities (i.e. X north of Y), in the form of edges in a graph, or
implicit relationships, such as through a pictorial representation
or sketch map query [13, 35]. Spatial pattern matching supports
queries with arbitrary spatial constraints, making it useful for the
spatial search scenarios we describe, but it has several challenges
that inhibit its use in search engines and LLMs.

In this paper, we first outline the challenges of reasoning about
spatial relationships, then describe research directions that can be
undertaken to address these challenges and enable pattern-based
spatial search using LLMs. Specifically, we highlight:

(1) The computational challenges associated with resolving
spatial queries,

(2) The heterogeneous nature of spatial entities and relations,
which makes reasoning over them difficult, and

(3) The graph or pictorial query formats, which are not natu-
rally compatible with text-centric search engines and LLMs.

After describing these challenges, we present a vision for how
graph-enhanced LLMs can play a role in enabling spatial search,
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thus equipping users with a form of search not currently available
with mainstream search engines.

1.1 Vision

We envision a future where search engines integrate with LLMs to
answer complex spatial questions using graph-enhanced reason-
ing. Realizing this vision will make pattern-based spatial search
accessible for widespread use in the applications we describe. To
accomplish accessible pattern-based spatial search, each of the chal-
lenges outlined above must be addressed; computational complexity,
heterogeneity of entity/relation types, and custom query formats.
In this vision paper, we describe several research directions that
can be undertaken to address these challenges by leveraging graph-
enhanced LLMs. We propose that LLMs can be used to interpret
spatial questions and formulate queries that are answerable by tai-
lored spatial reasoning models, which can use spatial databases and
graphs to find and rank results that answer the question. By tailor-
ing specific learning objectives or data stores to different categories
of spatial information, the key spatial properties, like directional
transitivity, can be learned and then leveraged in an ensemble ap-
proach to spatial reasoning. We further envision the use of Natural
Language Processing (NLP) techniques to interpret spatial patterns
described in natural language and convert them into graph or pic-
torial queries, which can be reasoned about, enabling seamless
integration with the pre-existing text interfaces used by LLMs and
by most search interfaces.

1.2 Contribution

Our primary contributions are an analysis of the present challenges
preventing the broad use of spatial pattern search and a road map
of a future where LLMs provide a means to solve those challenges.
We identify real-time search scenarios that would benefit from the
adoption of pattern-based spatial search and describe several re-
search directions that may lead graph-enhanced LLMs to enable
fast, robust approximate pattern-based spatial search. We further
highlight the need for a benchmark to measure the accuracy and
scalability of pattern-based spatial search approaches that rely on
LLMs compared to traditional spatial pattern matching methods
that have correctness guarantees. We see this work as a natural ex-
tension to the current research efforts to achieve reasoning through
LLMs using techniques like RAG. We hope that by identifying in-
teresting and worthwhile open problems in graph-enhanced LLM
spatial reasoning, this work will spark further efforts to equip LLMs
with new abilities that make them better suited to serve everyday
users in a variety of applications.

2 CHALLENGES OF SPATIAL SEARCH

Spatial search has a variety of challenges that make it difficult to
support by current search engines and mapping platforms.

2.1 Computational Cost

Geospatial data is naturally stored as a graph, with edge attributes
explicitly capturing the relationships between places (nodes). Spa-
tial pattern matching over geospatial graphs is generally regarded
as intractable for large search spaces [31, 32]. The computational
complexity stems from the quadratic number of relations that can

be defined on a set of entities, which makes the process of matching
query and data patterns NP-hard [12]. Unlike less expressive forms
of spatial search, such as spatial group keyword search, which is
also NP-hard, there are no approximate methods that reduce the
complexity of spatial pattern matching broadly. Since search en-
gines and mapping applications typically support real-time search,
current spatial pattern matching methods are too computationally
burdensome to incorporate into their pipelines.

2.2 Heterogeneous Spatial Relationships

Spatial patterns can be defined by metric, topological, and distance
relationships between entities. These relations can be quantitative
or qualitative, and they can be defined over point, line, and/or
region data. With many possible combinations to account for, it
is difficult to reason about all of them with one generic approach.
Instead there are many different methods that work on different
subsets of data and relation types. For example, tailored spatial
pattern matching systems like Spacekey [12] and SketchMapia [35]
have been developed to handle use cases like housing search (e.g.
“Find all the houses in an area that are within 10km of a school and
greater than 5km from any highway””) or road network alignment
(e.g. “Given a sketch drawing of street intersections and highways,
which cities are a match?”). While these systems can handle some
pattern-based spatial search queries, they are scoped to single use
cases that involve only a subset of possible entity and relation types.
Hence the methods they use are not generalizable.

2.3 Graph Query Input

Finally, spatial pattern matching typically requires a query pattern,
given in the form of a sketch map or pictorial query that is drawn or
constructed on a digital canvas, by dragging and dropping entities
and arranging them in the spatial layout of interest [11, 26]. This
query format offers exceptional expressivity to capture the user’s
search intention, and it aligns with the intuitive visual nature of
spatial pattern queries, mimicking the process of hand-drawing a
sketch map on paper or imagining oneself at a location, captur-
ing spatial relationships between objects in view [35]. However,
accepting queries in a pictorial or sketch map format necessitates
having a custom interface with a mechanism to construct the graph
or pictorial representation, including by selecting, dragging, and
dropping entities, and possibly labeling edges with relationship
constraints, such as “less than 3 km.” Such an interface requires
capabilities beyond the standard text input used by most LLMs and
search engines, making it structurally difficult to accomplish spatial
search through existing platforms.

3 VISION FOR SPATIALLY-AWARE LLMS

We envision future research using graph-enhanced LLMs to address
the challenges causing the current gap in pattern-based spatial
search (Figure 2). Specifically, we envision the computational chal-
lenges being addressed through approximation, the heterogeneous
nature of spatial entities and relations being addressed through an
ensemble of methods, learning objectives, and data sources, and
the graph query input challenge being addressed through natural
language to graph conversion using pre-trained language models.
Below we describe each of these ideas in greater depth.
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Figure 2: Vision for graph-enhanced search using an LLM. A
user interacts with the LLM, which interprets the query and
leverages appropriate spatial models and graphs to answer
the search question.

3.1 Computational Efficiency Through
Approximation

To alleviate the computational challenges associated with resolving
spatial queries that require searching for patterns in a large quan-
tity of spatial entities, we envision achieving efficient, real time
search through approximation. Traditional spatial pattern matching
methods typically perform exact search, often using pruning and
other techniques to reduce some of the computational burden. A
few approaches perform approximate search, but these are typically
limited in expressivity, supporting only point entities and metric
relations [7], or localizing the search to the entities that are relevant
for a particular problem space, like roads and city blocks for the
road network alignment task [35]. We envision leveraging graph-
enhanced LLMs that can access reference spatial information to
perform flexible, approximate spatial pattern search across a variety
of domains. Using LLMs would avoid the NP-hard complexity of
exact spatial pattern search, while maintaining flexibility, which is
critical to support multiple domains and deal with noisy data tags,
which are commonplace in spatial data.

To ensure approximate LLM-based methods achieve reasonable
accuracy, a spatial pattern matching benchmark should be devel-
oped. State of the art spatial pattern matching approaches typically
use pruning techniques, binning, localization, and approximate
methods to search through candidate entities efficiently. However,
the accuracy and efficiency of these approaches can depend on
the size of the localized region or pruned entity set, which may
vary significantly based on the query, dataset, and method being
used. Presently, empirical testing is done using ad-hoc datasets
which vary from paper to paper. Without a common benchmark
or leader-board, spatial pattern matching methods cannot be rig-
orously evaluated with respect to one another and the trade-off
between accuracy and efficiency of different techniques cannot be
fully understood [28]. To elicit worst-case behavior in traditional
methods for a fair comparison, we envision a spatial pattern match-
ing benchmark that includes complex datasets and large query
patterns covering the major types of spatial entities and relations.
Further, such a benchmark should vary query and dataset charac-
teristics that may influence the size of the pruned candidate set for
some methods, which can significantly impact runtime.

Of particular importance, based on initial exploration, is the size
of the query pattern, which has a large impact on performance. We
further observed that most of the current spatial pattern matching
approaches test their method on ad-hoc datasets containing query

patterns of no more than six entities [6, 25]. Based on the theoreti-
cal complexities derived in Schneider et al., spatial pattern search
over larger query patterns or complex questions with many spatial
constraints remains an open problem, with most existing methods
having a complexity that is exponential in the size of the query [31].
As a result, including large query patterns in a benchmark will be
critical to evaluating existing approaches and weighing the benefits
of approximate methods, like graph-based LLM methods, that likely
scale better, at the cost of search precision and recall.

3.2 Reasoning Over Heterogeneous Spatial
Relationships with Graph-Enhanced LLMs

To address the heterogeneity in spatial entities and relations that can
appear in spatial reasoning questions, we suggest using an ensemble
of models or reference graph databases, each of which is tailored to
a certain type of spatial relation (Figure 3). For instance, following
Schneider et al., one graph may include distances on the edges,
making it useful for metric spatial reasoning questions [33, 34],
and another may include nodes representing points, lines, and
regions with qualitative relationships between them, making it
useful for topological spatial reasoning. By doing retrieval from each
of these separate data stores, or by developing expert models that
are trained to do different types of spatial reasoning, the results can
be combined to achieve rigorous reasoning over the heterogeneous
set of possible spatial relationships.

A spatial reasoning mechanism can be developed in a variety
of ways, including by using an Heterogeneous Graph Neural Net-
work (HGNN) [36] or Heterogeneous Graph Transformer [16] ar-
chitecture, where the learning objective complements the goal of
spatial reasoning. Instead of the masked language model or next
token prediction objectives that enable LLMs to learn grammatical
structure of language, a spatial learning objective, like a distance
reconstruction learning objective, could be developed. For exam-
ple, to accomplish metric spatial reasoning, random walks could
be taken through a fully connected graph of places and distances
between them, where some edges and nodes are masked. Then, the
model could reconstruct the full walk, using the masked version,
allowing the model to learn to predict how far apart different places
are to each other, by identifying them in a reference graph and
aligning the masked walk to its corresponding reference subgraph.

A topological spatial reasoning model would need to encode
region and line data to enable topological reasoning. These types of
geographic data are usually stored in trees, so a learning objective
could seek to reconstruct the topological relationships by traversing
a masked region quadtree. Since there are 9 distinct topological
operators [5], one approach may be to develop one topological sub-
model per operator, and have a topological relationship identifier
to determine the appropriate model to use given clues in the query,
such as the word “contains” or “intersects.” Tailored approaches can
also be developed for directional spatial pattern matching, using
graphs to encode the critical spatial properties needed to answer
the questions, and developing models capable of reasoning over
that information.



Spatial Knowledge Graphs

Metric Spatial Information

Topological Spatial Information

Restaurant X next to Rock Creek Park

Restaurant Y inside Nationals Park

(Restaurant Y, Navy Yard Metro, 0.1 Km)
(Restaurant X, Columbia Heights Metro, 0.3 Km)

(Restaurant Y, Waterfront Metro, 0.4 Km)

Directional Spatial Information

Restaurant X North of Nationals Park

Restaurant Y East of Waterfront Metro

Road DC295 intersects Anacostia Park

(Restaurant Z, Capitol South Metro, 0.6 Km)

Restaurant Z West of Anacostia Park
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"What restaurants are next to a park and
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Graph Query
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Figure 3: Vision for spatial search using graph-enhanced LLMs. User inputs a spatial query, which is interpreted and converted
into a graph query. Geographic reasoning agent or module uses query to select geospatial knowledge stored in graph(s) and
perform graph reasoning to resolve the query. Ranked results are outputted.

3.3 Converting Natural Language into Spatial
Graph Queries Using Language Models

To bridge the gap between pattern-based spatial search and tradi-
tional search engines and platforms that require textual input, we
draw inspiration from the Natural Language to Structured Query
Language (NL2SQL) literature which uses LLMs to generate struc-
tured queries based on natural language input [3, 14, 19]. We envi-
sion an LLM-based conversion process that turns natural language
text into a pictorial spatial pattern representation, enabling pattern-
based spatial search via natural language input. While previous
work has investigated methods for semantic parsing of spatial in-
formation from natural language for robotics and other applica-
tions [10, 18], no studies have tackled the problem of generating
pictorial or graph queries for spatial pattern matching given text
input. Moreover, many semantic parsing methods for extracting
spatial relations are brittle, making them unsuitable for arbitrary
text input from users describing spatial patterns for search. Instead,
to enable spatial pattern matching over natural language input, an
LLM could be used to interpret a user’s text input and construct a
query or series of queries over graph data stores containing spatial
entities and relation constraints.

The challenge of applying LLMs to tasks involving geospatial
reasoning is further complicated by the lack of representation of
lesser-known places in training data. Many obscure places have
long, complex names that are out-of-vocabulary for LLMs, mak-
ing it even harder for LLMs to associate them with their physical
location in the world and reason about them. Given the vast ar-
ray of possible places that can be included in a question requiring
spatial reasoning, a basic ‘world model’ is needed to complement

the existing linguistic knowledge held in LLMs, with the ability to
pull more obscure places from a data store, rather than relying on
trained knowledge of every place on earth.

4 CONCLUSION

Spatial reasoning is a key component required to answer many
questions. New research techniques must be developed to enable
LLMs to reason over spatial data, which is commonly stored in
the form of a graph. We outline several challenges associated with
spatial reasoning through LLMs, including computational complex-
ity, heterogeneity of spatial entities and relations, and non-textual
query input format. To address these issues we envision a future in
which search engines integrate with LLMs that use graph-enhanced
reasoning to answer complex spatial questions. We hope that by
identifying interesting and worthwhile open problems in graph-
enhanced LLM spatial reasoning, this work will spark further efforts
to equip LLMs with new abilities that make them better suited to
serve everyday users in a variety of applications.

ACKNOWLEDGMENTS

This work was sponsored in part by the NSF under Grants IIS-18-
16889, I1S-20-41415, and IIS-21-14451.

REFERENCES

[1] Axel Backlund and Lukas Petersson. 2025. Vending-Bench: A Benchmark for
Long-Term Coherence of Autonomous Agents. arXiv:2502.15840 [cs.AI] https:
//arxiv.org/abs/2502.15840

[2] Prabin Bhandari, Antonios Anastasopoulos, and Dieter Pfoser. 2023. Are Large
Language Models Geospatially Knowledgeable?. In Proceedings of the 31st ACM
International Conference on Advances in Geographic Information Systems (Ham-
burg, Germany) (SIGSPATIAL °23). Association for Computing Machinery, New


https://arxiv.org/abs/2502.15840
https://arxiv.org/abs/2502.15840
https://arxiv.org/abs/2502.15840

(3]

(4]

(9]

[10]

[11]

[12]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

York, NY, USA, Article 75, 4 pages. https://doi.org/10.1145/3589132.3625625
Ursin Brunner and Kurt Stockinger. 2021. ValueNet: A Natural Language-to-SQL
System that Learns from Database Information. In 2021 IEEE 37th International
Conference on Data Engineering (ICDE). IEEE, 2177-2182. https://doi.org/10.
1109/ICDE51399.2021.00220

Xin Cao, Gao Cong, Tao Guo, Christian S. Jensen, and Beng Chin Ooi. 2015.
Efficient Processing of Spatial Group Keyword Queries. ACM Trans. Database
Syst. 40, 2, Article 13 (jun 2015), 48 pages. https://doi.org/10.1145/2772600
Anderson Chaves Carniel. 2024. Defining and designing spatial queries:
the role of spatial relationships. Geo-spatial Information Science 27,
6 (2024), 1868-1892. https://doi.org/10.1080/10095020.2022.2163924
arXiv:https://doi.org/10.1080/10095020.2022.2163924

Hongmei Chen, Yixiang Fang, Ying Zhang, Wenjie Zhang, and Lizhen Wang.
2019. ESPM: Efficient spatial pattern matching. IEEE Transactions on Knowledge
and Data Engineering 32, 6 (2019), 1227-1233.

Lisi Chen, Gao Cong, Christian S Jensen, and Dingming Wu. 2013. Spatial
keyword query processing: An experimental evaluation. Proceedings of the VLDB
Endowment 6, 3 (2013), 217-228.

Yue Chen, Kaiyu Feng, Gao Cong, and Han Mao Kiah. 2022. Example-based
spatial pattern matching. Proceedings of the VLDB Endowment 15, 11 (2022),
2572-2584.

Aniket Didolkar, Anirudh Goyal, Nan Rosemary Ke, Siyuan Guo, Michal Valko,
Timothy Lillicrap, Danilo Jimenez Rezende, Yoshua Bengio, Michael C Mozer,
and Sanjeev Arora. 2024. Metacognitive capabilities of llms: An exploration
in mathematical problem solving. Advances in Neural Information Processing
Systems 37 (2024), 19783-19812.

Kais Dukes. 2014. SemEval-2014 Task 6: Supervised Semantic Parsing of Robotic
Spatial Commands. In Proceedings of the 8th International Workshop on Semantic
Evaluation (SemEval 2014), Preslav Nakov and Torsten Zesch (Eds.). Association
for Computational Linguistics, Dublin, Ireland, 45-53. https://doi.org/10.3115/
v1/514-2006

Yixiang Fang, Reynold Cheng, Jikun Wang, Lukito Budiman, Gao Cong, and
Nikos Mamoulis. 2018. SpaceKey: exploring patterns in spatial databases. In
2018 IEEE 34th International Conference on Data Engineering (ICDE). IEEE, IEEE,
1577-1580.

Yixiang Fang, Yun Li, Reynold Cheng, Nikos Mamoulis, and Gao Cong. 2019.
Evaluating pattern matching queries for spatial databases. The VLDB Journal 28
(2019), 649-673.

Andre Folkers, Hanan Samet, and Aya Soffer. 2000. Processing pictorial queries
with multiple instances using isomorphic subgraphs. In Proceedings 15th Interna-
tional Conference on Pattern Recognition. ICPR-2000, Vol. 4. IEEE, IEEE, 51-54.
Han Fu, Chang Liu, Bin Wu, Feifei Li, Jian Tan, and Jianling Sun. 2023. CatSQL:
Towards Real World Natural Language to SQL Applications. Proc. VLDB Endow.
16, 6 (Feb. 2023), 1534-1547. https://doi.org/10.14778/3583140.3583165

David Ha and Jiirgen Schmidhuber. 2018. World models. https://doi.org/10.
5281/ZENODO.1207631

Ziniu Hu, Yuxiao Dong, Kuansan Wang, and Yizhou Sun. 2020. Heterogeneous
Graph Transformer. In Proceedings of The Web Conference 2020 (Taipei, Tai-
wan) (WWW ’20). Association for Computing Machinery, New York, NY, USA,
2704-2710. https://doi.org/10.1145/3366423.3380027

Zhekun Huang, Haizhong Qian, Xiao Wang, Defu Lin, Junwei Wang, and
Limin Xie. 2023.  Graph neural network-based identification of ditch
matching patterns across multi-scale geospatial data.  Geocarto Interna-
tional 38, 1 (2023), 2294900.  https://doi.org/10.1080/10106049.2023.2294900
arXiv:https://doi.org/10.1080/10106049.2023.2294900

Dohyun Kim, Nayoung Oh, Deokmin Hwang, and Daehyung Park. 2024. LINGO-
Space: Language-Conditioned Incremental Grounding for Space. Proceedings
of the AAAI Conference on Artificial Intelligence 38, 9 (Mar. 2024), 10314-10322.
https://doi.org/10.1609/aaai.v38i9.28898

Hyeonji Kim, Byeong-Hoon So, Wook-Shin Han, and Hongrae Lee. 2020. Natural
language to SQL: where are we today? Proc. VLDB Endow. 13, 10 (June 2020),
1737-1750. https://doi.org/10.14778/3401960.3401970

Philippe Laban, Wojciech Kryscinski, Divyansh Agarwal, Alexander Fabbri,
Caiming Xiong, Shafiq Joty, and Chien-Sheng Wu. 2023. SummEdits: Measuring
LLM Ability at Factual Reasoning Through The Lens of Summarization. In
Proceedings of the 2023 Conference on Empirical Methods in Natural Language
Processing, Houda Bouamor, Juan Pino, and Kalika Bali (Eds.). Association for
Computational Linguistics, Singapore, 9662-9676. https://doi.org/10.18653/v1/
2023.emnlp-main.600

Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio Petroni, Vladimir
Karpukhin, Naman Goyal, Heinrich Kiittler, Mike Lewis, Wen-tau Yih, Tim Rock-
téschel, et al. 2020. Retrieval-augmented generation for knowledge-intensive nlp
tasks. Advances in Neural Information Processing Systems 33 (2020), 9459-9474.
Jiawei Liu, Chungiu Steven Xia, Yuyao Wang, and Lingming Zhang. 2023. Is your
code generated by chatgpt really correct? rigorous evaluation of large language
models for code generation. Advances in Neural Information Processing Systems
36 (2023), 21558-21572.

[23

[24

[25]

IS
S

[27

[28

[29

[30

[31

(32

[33

[34

[35

[36]

Ahmed Mahmood and Walid G. Aref. 2017. Query Processing Techniques for Big
Spatial-Keyword Data. In Proceedings of the 2017 ACM International Conference
on Management of Data (Chicago, Illinois, USA) (SIGMOD ’17). Association for
Computing Machinery, New York, NY, USA, 1777-1782. https://doi.org/10.1145/
3035918.3054773

Ahmed R. Mahmood and Walid G. Aref. 2019. Querying Spatial-Keyword Data.
Springer International Publishing, Cham, 7-23. https://doi.org/10.1007/978-3-
031-01867-1_2

Carlos Minervino, Claudio Campelo, Maxwell Oliveira, and Salatiel Silva. 2024.
QQESPM: A Quantitative and Qualitative Spatial Pattern Matching Algorithm.
arXiv:2312.08992 [cs.DB] https://arxiv.org/abs/2312.08992

Kent O’Sullivan, Nicole R. Schneider, Aleeza Rasheed, and Hanan Samet. 2023.
GESTALT: Geospatially Enhanced Search with Terrain Augmented Location
Targeting. In Proceedings of the 2nd ACM SIGSPATIAL International Workshop on
Searching and Mining Large Collections of Geospatial Data (Hamburg, Germany)
(GeoSearch ’23). Association for Computing Machinery, New York, NY, USA,
Article 1, 8 pages. https://doi.org/10.1145/3615890.3628535

Kent O’Sullivan, Nicole R. Schneider, and Hanan Samet. 2023. COMPASS: Cardi-
nal Orientation Manipulation and Pattern-Aware Spatial Search. In Proceedings
of the 2nd ACM SIGSPATIAL International Workshop on Searching and Mining
Large Collections of Geospatial Data (Hamburg, Germany) (GeoSearch '23). As-
sociation for Computing Machinery, New York, NY, USA, Article 5, 8 pages.
https://doi.org/10.1145/3615890.3628537

Kent O’Sullivan, Nicole R. Schneider, and Hanan Samet. 2024. Metric Reasoning in
Large Language Models. In Proceedings of the 32nd ACM International Conference
on Advances in Geographic Information Systems (Atlanta, GA, USA) (SIGSPATIAL
°24). Association for Computing Machinery, New York, NY, USA, 501-504. https:
//doi.org/10.1145/3678717.3691226

Jianzhong Qi, Zuqing Li, and Egemen Tanin. 2023. MaaSDB: Spatial Databases
in the Era of Large Language Models (Vision Paper). In Proceedings of the 31st
ACM International Conference on Advances in Geographic Information Systems
(Hamburg, Germany) (SIGSPATIAL °23). Association for Computing Machinery,
New York, NY, USA, Article 54, 4 pages. https://doi.org/10.1145/3589132.3625597
Nicole R. Schneider, Avik Das, Kent O’Sullivan, and Hanan Samet. 2024. Cross-
Lingual Clustering Using Large Language Models. In Proceedings of the 7th ACM
SIGSPATIAL International Workshop on Al for Geographic Knowledge Discovery
(Atlanta, GA, USA) (GeoAI °24). Association for Computing Machinery, New
York, NY, USA, 1-10. https://doi.org/10.1145/3687123.3698280

Nicole R. Schneider, Kent O’Sullivan, and Hanan Samet. 2024. Graph-based
Spatial Pattern Matching: A Theoretical Comparison. In Proceedings of the 32nd
ACM International Conference on Advances in Geographic Information Systems
(Atlanta, GA, USA) (SIGSPATIAL °24). Association for Computing Machinery,
New York, NY, USA, 505-508. https://doi.org/10.1145/3678717.3691227

Nicole R. Schneider, Kent O’Sullivan, and Hanan Samet. 2024. The Future of
Graph-based Spatial Pattern Matching (Vision Paper). In 40th IEEE International
Conference on Data Engineering, ICDE 2024 — SEAGraph Workshop. IEEE, IEEE,
Utrecht, Netherlands, 360-364.

Nicole R Schneider, Nandini Ramachandran, Kent O’Sullivan, and Hanan
Samet. 2025. DistRAG: Towards Distance-Based Spatial Reasoning in LLMs.
arXiv:2506.03424 [cs.CL] https://arxiv.org/abs/2506.03424

Nicole R. Schneider, Nandini Ramachandran, Kent O’Sullivan, and Hanan Samet.
2025. Engineering Prompts for Spatial Questions. In Companion Proceedings of the
ACM on Web Conference 2025 (Sydney NSW, Australia) (WWW °25). Association
for Computing Machinery, New York, NY, USA, 1633-1634. https://doi.org/10.
1145/3701716.3717807

Angela Schwering, Jia Wang, Malumbo Chipofya, Sahib Jan, Rui Li, and Klaus
Broelemann. 2014. SketchMapia: Qualitative representations for the alignment
of sketch and metric maps. Spatial cognition & computation 14, 3 (2014), 220-254.
Chuxu Zhang, Dongjin Song, Chao Huang, Ananthram Swami, and Nitesh V.
Chawla. 2019. Heterogeneous Graph Neural Network. In Proceedings of the 25th
ACM SIGKDD International Conference on Knowledge Discovery & Data Mining
(Anchorage, AK, USA) (KDD ’19). Association for Computing Machinery, New
York, NY, USA, 793-803. https://doi.org/10.1145/3292500.3330961


https://doi.org/10.1145/3589132.3625625
https://doi.org/10.1109/ICDE51399.2021.00220
https://doi.org/10.1109/ICDE51399.2021.00220
https://doi.org/10.1145/2772600
https://doi.org/10.1080/10095020.2022.2163924
https://arxiv.org/abs/https://doi.org/10.1080/10095020.2022.2163924
https://doi.org/10.3115/v1/S14-2006
https://doi.org/10.3115/v1/S14-2006
https://doi.org/10.14778/3583140.3583165
https://doi.org/10.5281/ZENODO.1207631
https://doi.org/10.5281/ZENODO.1207631
https://doi.org/10.1145/3366423.3380027
https://doi.org/10.1080/10106049.2023.2294900
https://arxiv.org/abs/https://doi.org/10.1080/10106049.2023.2294900
https://doi.org/10.1609/aaai.v38i9.28898
https://doi.org/10.14778/3401960.3401970
https://doi.org/10.18653/v1/2023.emnlp-main.600
https://doi.org/10.18653/v1/2023.emnlp-main.600
https://doi.org/10.1145/3035918.3054773
https://doi.org/10.1145/3035918.3054773
https://doi.org/10.1007/978-3-031-01867-1_2
https://doi.org/10.1007/978-3-031-01867-1_2
https://arxiv.org/abs/2312.08992
https://arxiv.org/abs/2312.08992
https://doi.org/10.1145/3615890.3628535
https://doi.org/10.1145/3615890.3628537
https://doi.org/10.1145/3678717.3691226
https://doi.org/10.1145/3678717.3691226
https://doi.org/10.1145/3589132.3625597
https://doi.org/10.1145/3687123.3698280
https://doi.org/10.1145/3678717.3691227
https://arxiv.org/abs/2506.03424
https://arxiv.org/abs/2506.03424
https://doi.org/10.1145/3701716.3717807
https://doi.org/10.1145/3701716.3717807
https://doi.org/10.1145/3292500.3330961

	Abstract
	1 Introduction
	1.1 Vision
	1.2 Contribution

	2 Challenges of Spatial Search
	2.1 Computational Cost
	2.2 Heterogeneous Spatial Relationships
	2.3 Graph Query Input

	3 Vision for Spatially-Aware LLMs
	3.1 Computational Efficiency Through Approximation
	3.2 Reasoning Over Heterogeneous Spatial Relationships with Graph-Enhanced LLMs
	3.3 Converting Natural Language into Spatial Graph Queries Using Language Models

	4 Conclusion
	Acknowledgments
	References

