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ABSTRACT
Understanding taxonomic relationships, such as hypernymy and
hyponymy, is a fundamental aspect of conceptual reasoning. While
large language models (LLMs) have shown impressive performance
across a variety of NLP tasks, their ability to recognize and infer
hierarchical relationships remains underexplored. In this work, we
introduce LLM-Hype, a targeted evaluation framework designed
to systematically assess LLMs’ capability in hypernym-hyponym
reasoning. Our framework constructs taxonomy graphs from di-
verse resources that encode hierarchical semantics, we generate
carefully labeled test cases containing both positive and negative
examples. To probe model reasoning under varied conditions, we
design four complementary prompting strategies: (1) direct prompts
assessing internalized knowledge, (2) definition-based prompts aug-
menting queries with natural language definitions, (3) structure-
based prompts leveraging structural cues from taxonomies, and (4)
hybrid prompts combining definitional and structural information.
We conduct a comprehensive evaluation across five topic-specific
datasets and a total of 12 representative LLMs. Experimental results
reveal that definition-based prompts consistently yield the highest
accuracy, underscoring the effectiveness of explicit semantic con-
text. In contrast, structure-based prompts do not provide consistent
benefits and may degrade performance in some cases. Among the
evaluated models, GPT-4o and Gemini-2.5 demonstrate robust and
stable performance, while GLM-4 exhibits divergent behavior, sug-
gesting underlying differences in reasoning strategies or training
data. Overall, LLM-Hype offers a robust framework for analyzing
conceptual hierarchy understanding in LLMs and provides valuable
insights into their reasoning capabilities and limitations.
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1 INTRODUCTION
Hierarchical semantic relationships, particularly hypernym-hyponym
(“is-a") relations, are fundamental to linguistic semantics and play
a pivotal role in various natural language processing (NLP) appli-
cations, such as word sense disambiguation, information retrieval,
text classification, and knowledge graph and ontologies construc-
tion [16, 20, 29]. These is-a relationships enable systems to infer
implicit knowledge by leveraging structured taxonomies or ontolo-
gies. For instance, recognizing that a "dalmatian" is a type of "dog"
allows NLP systems to generalize and reason across different levels
of abstraction, improving both precision and recall in downstream
tasks.

Traditional methods for identifying hypernym-hyponym rela-
tions can be categorized into pattern-based approaches, distribu-
tional methods, and hybrid techniques. Pattern-based methods rely
on predefined linguistic patterns (e.g., Hearst patterns) to detect
these relations [21, 40]. While they often achieve high precision,
their coverage is inherently limited, as they may not capture novel
or uncommon expressions and typically require labor-intensive
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pattern engineering. Distributional methods, grounded in the dis-
tributional hypothesis, infer taxonomic relations by analyzing con-
textual co-occurrence patterns in large corpora [26, 47]. Although
effective within the scope of the training domain, they often strug-
gle to generalize to out-of-domain settings and may lack sensitivity
to fine-grained semantic distinctions. Hybrid approaches seek to
integrate the precision of pattern-based methods with the broader
coverage of distributional models [14, 48]. However, their perfor-
mance remains highly dependent on the quality and diversity of
the underlying data sources, and they continue to face challenges
such as data sparsity, noise, and representation bias.

Recent advances in large language models (LLMs), such as GPT-4
[34] and LLaMA [43], have opened up new possibilities for con-
ceptual and relational reasoning. Unlike traditional methods that
depend on explicit patterns or distributional signals, LLMs are
trained on massive corpora and learn to encode semantic knowl-
edge implicitly through next-token prediction objectives [8]. This
enables them to generalize beyond surface-level cues and poten-
tially infer hypernym-hyponym relations even in the absence of
explicit syntactic indicators. Moreover, LLMs have demonstrated
impressive performance on a wide range of zero-shot and few-shot
tasks, suggesting a latent capacity for taxonomic reasoning [27, 46].
However, despite their empirical success, it remains unclear how
reliably and systematically LLMs can identify and reason over hier-
archical relations—a question that calls for targeted and rigorous
evaluation.

In this paper, we present LLM-Hype, a targeted evaluation frame-
work for systematically assessing the ability of LLMs to infer hypernym-
hyponym relationships. Our framework builds taxonomy graphs
from a diverse set of resources that encode hierarchical semantics
via concept definitions, instance-level data, and schema-level struc-
tures. From these graphs, we generate carefully labeled test cases
containing both positive and negative examples. To probe model
reasoning under varied conditions, we design four complementary
prompting strategies: (1) direct prompts, which assess the model’s
internalized knowledge by asking it to judge a relationship with no
additional context; (2) definition-based prompts, which augment the
query with natural language definitions of the involved concepts to
test reasoning over explicit semantic content; (3) structure-based
prompts, which provide structural cues from the taxonomy to eval-
uate the model’s capacity for structured reasoning; and (4) hybrid
prompts, which integrate both definitional and structural informa-
tion, offering a comprehensive input that challenges the model to
synthesize heterogeneous signals. Each test case is paired with all
prompt types and submitted to the LLMs under evaluation.

We conduct a systematic evaluation of LLM performance across
diverse datasets, prompting strategies, and model families, using
the number of correct and incorrect identifications, along with
overall accuracy, as evaluation metrics. Specifically, we use two
data sources: a traditional hypernym-hyponym dataset (SE16) and
a widely used knowledge graph (DBpedia). From these sources, we
construct five topic-specific datasets, each containing 20 positive
and 20 negative examples randomly sampled from a larger pool
of test cases. In total, 12 representative LLMs are included in the
comparison. Our experimental results reveal several key trends.
Definition-based prompts generally yield the highest accuracy, sug-
gesting that providing semantic context helps models make more

informed relational judgments. In contrast, prompts incorporat-
ing structural information do not consistently lead to performance
gains and may even hinder performance in certain cases. In terms
of model comparison, some LLMs—such as GPT-4o and Gemini-
2.5—demonstrate consistently strong and stable performance, while
others, like GLM-4, show distinct behavior compared to themajority
of models, indicating potential differences in reasoning strategies
or training biases.

Our key contributions are as follows:

• Taxonomy-Aware Evaluation Framework (LLM-Hype):
We propose LLM-Hype, a comprehensive evaluation frame-
work for systematically assessing the hypernym-hyponym
inference ability of LLMs. This framework leverages di-
verse hierarchical resources (e.g. concept definitions and
knowledge graphs) to construct taxonomy graphs, which
are used to generate labeled test cases with both positive
and negative examples. This method advances over ad-hoc
benchmarks by explicitly modeling taxonomy graphs, en-
suring comprehensive coverage of semantic relationships
while controlling for data bias–a critical innovation for
reliable LLM evaluation in relational reasoning.

• Systematic Prompting Strategies for Hierarchical Rea-
soning: We design and evaluate four distinct prompting
strategies—direct, definition-based, structure-based, and
hybrid prompts—to probe different aspects of model rea-
soning. These strategies provide varied levels of semantic
context, from simple queries to integrated definitional and
structural information. Unlike traditional single-prompt
approaches, these strategies systematically probe different
reasoning facets–internal knowledge, semantic understand-
ing, structural logic, and integrated reasoning–enabling a
fine-grained analysis of model capabilities and limitations
in taxonomic tasks.

• Systematic EvaluationAcrossDatasets andModel Fam-
ilies: We conduct a robust evaluation across five topic-
specific datasets constructed from two data sources (SE16
and DBpedia), and 12 representative LLMs. This enables a
thorough comparison of model performance under differ-
ent prompting conditions, highlighting trends and model-
specific behaviors.

• Key Insights on Prompting and Model Performance:
Our experiments reveal that definition-based prompts gen-
erally enhance accuracy, while structural prompts do not
always lead to improvements. Additionally, model compari-
son reveals notable differences in reasoning strategies, with
some LLMs (e.g., GPT-4o and Gemini-2.5) showing strong
performance stability, while others (e.g., GLM-4) display
more divergent behavior, suggesting variations in training
and reasoning.

The paper is organized as follows: Section 2 provides background
knowledge on ontologies and large language models. Section 3
details our evaluation approach. Section 4 presents the experimental
results, while Section 5 reviews related work. Finally, Section 6
concludes the paper and outlines directions for future research.

2



2 BACKGROUND KNOWLEDGE
This section provides an overview of key concepts related to taxon-
omy graph, ontologies, and LLMs.

2.1 Taxonomy Graph
A taxonomy graph is a structured representation of hierarchical
relationships among concepts, typically organized through is-a
(hypernym-hyponym) links. In such graphs, nodes represent con-
cepts or entities, and directed edges indicate subsumption relation-
ships, where one concept is a subclass or a more specific instance of
another. This structure forms a backbone for organizing knowledge
in a way that supports inheritance, abstraction, and category-based
reasoning [19].

Unlike general knowledge graphs that may contain a wide va-
riety of relation types (e.g., part-of, located-in, causes), taxonomy
graphs focus specifically on semantic hierarchies. They are com-
monly derived from structured ontologies (e.g., WordNet [32]),
instance-level knowledge bases (e.g., DBpedia [4]), or curated schema-
level taxonomies. These graphs are foundational inmany tasks, such
as concept classification, semantic search, question answering, and
textual entailment [33].

In the context of evaluating LLMs, taxonomy graphs provide a
grounded and interpretable structure for probing the model’s ability
to infer hypernym-hyponym relationships. Reasoning accurately
over these hierarchical structures requires models to recognize
abstract category inclusion, generalization, and transitive subsump-
tion—all key aspects of symbolic and conceptual understanding
[7].

2.2 Ontologies
An ontology is a structured representation of knowledge that con-
sists of classes, object properties, data properties, and individuals.
In this framework, individuals represent concrete instances in a
specific domain, classes denote sets of such instances, object proper-
ties describe relationships between individuals, and data properties
associate individuals with literal values such as numbers, strings,
or dates. For example, the property hasWeight is a data property
linking a person to a numeric value, while hasSpouse is an object
property representing a relation between two individuals. Ontolo-
gies are commonly expressed using the Web Ontology Language
(OWL) [22], a widely adopted standard in the Semantic Web.

A central component of an ontology is the taxonomy graph,
which encodes hierarchical relationships among concepts via sub-
class (or is-a) links [23]. These structures are derived from TBox
axioms such as 𝐶 ⊑ 𝐷 , indicating that concept 𝐶 is a subclass (hy-
ponym) of 𝐷 (hypernym). The resulting taxonomy forms a directed
acyclic graph that supports concept subsumption, inheritance, and
logical reasoning.

Beyond taxonomic hierarchies, ontologies also incorporate rich
structural semantics. These include domain and range constraints
on properties, disjointness axioms, property chains, and cardinal-
ity restrictions. Such schema-level structures provide additional
context about how concepts and relationships are organized and in-
teract. This structural information is particularly useful for enabling

inference, detecting inconsistencies, and supporting knowledge-
based reasoning in applications such as semantic search, informa-
tion integration, and question answering.

In this work, we utilize both taxonomic hierarchies and struc-
tural relations from ontologies and knowledge graphs to construct
evaluation scenarios for assessing LLMs’ capability in conceptual
reasoning, with a focus on hypernym-hyponym inference.

2.3 Large Language Models
Large Language Models (LLMs) are a class of deep learning-based
NLP models designed to generate, comprehend, and manipulate nat-
ural language texts at scale. Their core innovation lies in leveraging
massive datasets and powerful architectures—primarily the Trans-
former — to capture semantic, syntactic, and contextual nuances of
language. Trained with self-supervised objectives, LLMs use mech-
anisms such as autoregression or self-attention to model language
effectively. Over recent years, LLMs have demonstrated remarkable
capabilities across a wide range of tasks, including text generation
[37], machine translation [28], dialogue systems [2], and code gen-
eration [24], making them a central pillar in the advancement of
modern artificial intelligence.

The development of LLMs builds upon a series of foundational
milestones in NLP. The era of word embeddings, exemplified by
models such as Word2Vec [31] and GloVe [38], marked the transi-
tion from symbolic or statistical methods to distributed semantic
representations. However, these embeddings were static, failing
to capture context-dependent meanings. Contextualized models
like ELMo [39] addressed this limitation by introducing dynamic
word representations using bidirectional LSTMs. The introduction
of the Transformer architecture by Vaswani et al. [44] revolution-
ized the field by enabling parallelizable and scalable self-attention
mechanisms. The pretrain-finetune paradigm, popularized by BERT
[13], enabled general-purpose language models through large-scale
unsupervised pretraining followed by supervised finetuning. In
parallel, autoregressive models such as GPT [8] emphasized genera-
tive capabilities and cross-task generalization. More recent models
like GPT-4 [35], Flamingo [1], and ChatGPT integrate multimodal
inputs and leverage Reinforcement Learning from Human Feed-
back (RLHF) [36] to align model behavior with human preferences,
improving both response quality and safety.

To conduct a representative and comprehensive evaluation of
current LLMs, we selected a range of state-of-the-art models by
leading research institutions and technology companies (see Table
1). The release dates listed in the table are primarily sourced from
Wikipedia1 or official websites. These models include OpenAI’s
GPT-3.5, GPT-4 [34], and GPT-4o, which reflect major milestones
in scaling and instruction tuning; Google’s Gemini 2.5 [18], a pow-
erful multimodal model designed for advanced reasoning and inte-
gration across input types; Meta’s LLaMA-3.3 [30], an influential
open-weight model widely used in academic research; and sev-
eral competitive models from the Chinese AI ecosystem, such as
GLM-4 (Zhipu AI) [50], Qwen-2.5 (Alibaba) [3], Baichuan-4 Turbo
(Baichuan) [5], Doubao-1.5 (ByteDance) [9], and Hunyuan (Tencent)
[42], all of which demonstrate strong performance in multilingual
and instruction-following tasks. We also included DeepSeek-R1

1https://en.wikipedia.org/wiki/
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Figure 1: The framework to evaluate the ability of a LLM to identify hypernym-hyponym relationships.

Model name Version Release Affiliated
date institution

GPT-3.5 3.5 2022.11 OpenAI
GPT-4 4 2023.03 OpenAI
GLM-4 4 2024.01 Zhipu AI
GPT-4o 4o 2024.05 OpenAI
Baichuan-4 4-Turbo 2024.05 Baichuan Intelligent

Technology
Qwen-2.5 2.5-72b-instruct 2024.09 Alibaba
DeepSeek-R1 R1 2024.11 DeepSeek
DeepSeek-V3 V3 2024.12 DeepSeek
LLaMA-3.3 3.3-70b-instruct 2024.12 Meta
Doubao-1.5 1.5-pro-32k 2025.01 ByteDance
Hunyuan Standard 2025.02 Tencent
Gemini-2.5 2.5-pro-exp 2025.03 Google

Table 1: Overview of selected LLMs for evaluation.

and DeepSeek-V3 [12], open-weight models designed for both code
and natural language tasks. The selection covers a diverse set of
model architectures, affiliations, and release timelines, aiming to
capture the breadth of current LLM development across different
regions and application domains. This ensures that the comparative
evaluation reflects both the technical advancements and the global
landscape of LLM deployment.

3 APPROACH
In this section, we first present an overview of our proposed ap-
proach for evaluating the reasoning depth of LLMs in detecting
logical conflicts within DL ontologies. We then describe in detail the
two core tasks of our approach: dataset construction and prompt
design.

3.1 Evaluation Framework
The overall process of our approach is illustrated in Figure 1. We
present LLM-Hype, a targeted evaluation framework designed to
assess the ability of LLMs to identify hypernym-hyponym relation-
ships.

The framework consists of three key components: dataset con-
struction, prompt design, and evaluation metric specification. It

starts with a collection of data sources, including traditional hypernym-
hyponymdatasets, knowledge graphs, and ontologies. These sources
offer rich semantic structures that form the foundation of the eval-
uation benchmark. From these resources, we construct concept
hierarchies and derive labeled pairs — positive examples represent-
ing valid hypernym-hyponym relations, and negative examples
such as sibling or semantically unrelated concepts.

To systematically probe the reasoning abilities of LLMs, we de-
sign a variety of prompts to leverage different types of information,
including explicit relational cues, textual definitions of concepts,
and structural signals derived from hierarchical concept graphs. By
varying the content and context presented in these prompts, we aim
to explore how LLMs interpret and utilize semantic information
when identifying hypernym-hyponym relationships. This strat-
egy allows us to assess not only overall performance, but also the
models’ sensitivity to different forms of semantic representation.

For evaluation, we use the number of correctly / incorrectly
identified samples, and the accuracy in binary classification as the
primary metric—measuring whether an LLM correctly identifies
hypernymy. We conduct comparative experiments across multiple
LLM families and prompt types, providing a multidimensional per-
spective on performance. This framework not only benchmarks
current capabilities but also highlights the strengths and limitations
of LLMs in structured semantic reasoning tasks.

3.2 Dataset Construction
The dataset construction process begins with the creation of a
concept hierarchy graph, built upon existing data sources. Based on
this hierarchy, both positive and negative examples are generated
for evaluation.

To construct the concept hierarchy, we consider twomain sources:
traditional hypernym-hyponym extraction datasets and ontology-
based datasets rich in structural information. Traditional datasets
typically provide pairs of conceptswith annotated hypernym-hyponym
relations along with textual definitions for each concept. In contrast,
ontology-based datasets not only declare subsumption relations
but also offer additional semantic information, such as formal defi-
nitions, and a variety of relationships among concepts, properties,
and instances. For each extracted hypernym-hyponym pair, we
first initialize an empty directed graph. Each node in the graph
corresponds to either a hypernym or a hyponym. A directed edge is
added from a hyponym node to a hypernym node if such a relation
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exists between them. For clarity, we define the following variables
and functions:

• 𝑙𝑠: The set of all leaf nodes, i.e., nodes with no outgoing
edges.

• 𝑟𝑠: The set of all root nodes, i.e., nodes with no incoming
edges.

• paths(𝑞, 𝑟 ): The set of all paths from a leaf node 𝑞 to a
reachable root node 𝑟 .

• pathNodes(𝑞, 𝑝): For a given path 𝑝 ∈ paths(𝑞, 𝑟 ), this de-
notes the set of all intermediate nodes on the path, ex-
cluding 𝑞. Each node in pathNodes(𝑞, 𝑝) is considered a
hypernym of 𝑞.

• anchors(𝑞): The union of all intermediate nodes from all
valid paths from 𝑞 to any reachable root node, i.e.,

anchors(𝑞) =
⋃

𝑟𝑜𝑜𝑡 ∈rs

⋃
𝑝∈paths(𝑞,𝑟𝑜𝑜𝑡 )

pathNodes(𝑞, 𝑝) .

When constructing positive examples, we compute anchors for
each leaf node𝑞, and define the corresponding hypernym-hyponym
pairs as:

nodesPairs(𝑞) = {(𝑞, sup) | sup ∈ anchor, anchor ∈ anchors(𝑞)}

That is, each pair (𝑞, sup) represents a hyponym-hypernym relation,
where 𝑞 is the hyponym and sup is one of its hypernyms derived
from the hierarchy.We denote the complete set of positive examples
as allNodesPairs, defined as:

allNodesPairs =
⋃

𝑙𝑒𝑎𝑓 ∈ls
nodesPairs(𝑙𝑒𝑎𝑓 )

The set allNodesPairs constitutes candidate positive examples to be
used in the evaluation process.

To construct negative examples, we utilize both hierarchical and
structural information in the following three ways: (1) We identify
sibling nodes—i.e., nodes that share the same immediate parent
in the hierarchy—based on the commonly adopted assumption in
ontology construction that sibling concepts are mutually exclu-
sive within the same classification scheme. For each pair of sibling
nodes, we generate a negative example. (2) We construct negative
examples by inverting the semantic relations used in the construc-
tion of positive examples. Specifically, we refer to the templates of
positive prompts and reverse their semantic direction to generate
negative counterparts. (3) We extract additional negative examples
using disjointness relations. For any node 𝑛, if a concept 𝑐 is explic-
itly declared to be disjoint with 𝑛 and 𝑐 is formally defined in the
dataset, then both (𝑛, 𝑐) and (𝑐, 𝑛) are treated as negative examples.
Furthermore, for each ancestor node 𝑎 of 𝑛, we also construct the
negative pairs (𝑎, 𝑐) and (𝑐, 𝑎).

It should be noted that: (1) Based on the methods for constructing
positive and negative examples, a large number of candidate exam-
ples may be generated. For specific experiments, a fixed number of
examples can be selected using an appropriate sampling strategy.
(2) Certain negative examples may lead to incorrect constructions
due to special cases. For instance, suppose a classification schema
defines both Student andMasterStudent as subclasses of Person.
In such a case, creating a negative example like (MasterStudent,
Student) would be invalid. To ensure correctness, all automatically
selected negative examples are manually verified. If any incorrect

negative example is identified, it is replaced with another selected
example from the remaining pool of negative examples.

3.3 Prompt Design
In this section, we design four distinct types of prompts to system-
atically evaluate the capability of LLMs in identifying hypernym-
hyponym relationships. These prompts are constructed based on
different levels and sources of contextual information, aiming to
disentangle the contribution of internal knowledge, definitional
semantics, and structural signals. The four types are as follows:

• Direct Prompts (Prompt-Direct) rely solely on explicitly
querying whether a hypernym-hyponym relation holds
between a given node pair. These prompts exclude any
definitional or structural context, requiring the LLM to rely
entirely on its internal knowledge. The model is then asked
to verify the correctness of this claim.

• Definition-based Prompts (Prompt-Definition) extend
the direct prompt by providing natural language definitions
for both concepts in the given node pair. These definitions
can be obtained from the source dataset, generated by the
LLM, or retrieved from external lexical resources. The goal
is to supply semantic content that may help the model
better interpret the conceptual relationship before making
a judgment.

• Structure-based Prompts (Prompt-Structure) incorpo-
rate structural information associated with the given con-
cepts. Depending on the underlying dataset, this may in-
clude concept-level hierarchy (e.g., ancestors, descendants,
siblings), instance-level connections (e.g., shared instances),
or schema-level axioms (e.g., disjointness or domain/range
constraints). When both instance-level and schema-level
information are available, the prompt includes both, encour-
aging the model to reason using the structured context.

• Combined Prompts (Prompt-Combined) fuse both defi-
nitional and structural information. Specifically, the prompt
presents definitions of the given concepts along with their
structural context derived from the concept graph. This
comprehensive design provides the richest informational
grounding, intended to assess the model’s ability to synthe-
size heterogeneous signals in making relational judgments.

In the following, we design specific prompt templates for a node
pair (𝐴, 𝐵). In each template, [MASK] is filled with either true or
false. The interpretation of [p] depends on the direction of the
taxonomy initialization. If the taxonomy is top-down, [p] repre-
sents a superclass relation (e.g., “the superclass”, “the parent class”,
“a supertype”); in a bottom-up taxonomy, [p] denotes a subclass
relation (e.g., “a subclass”, “the child class”, “a subtype”, “a kind”).

First, we design a prompt template forPrompt-Direct, following
the format proposed in [17]:

"Identify whether the following statement is true or
false: (𝐴 |𝐵) is [p] of (𝐵 |𝐴). This statement is [MASK].
You need to give not only true or false, but also an
explanation of why you made this choice."

Such prompts serve as a baseline for assessing the language model’s
ability to recognize taxonomic relationships without relying on any
external context.
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We further design a second type of prompt template that incor-
porates the definitions of the concepts involved:

"Suppose [qm] is defined as [def(qm)], and [an] is
defined as [def(an)]. Identify whether the following
statement is true or false: (𝐴 |𝐵) is [p] of (𝐵 |𝐴). This
statement is [MASK]. You need to give not only true
or false, but also an explanation of why you made
this choice."

In this template, [def(A)] and [def(B)] denote the textual defini-
tions of the hyponym and hypernym, respectively.

We also propose a third type of prompt template that leverages
the structural relations associated with the candidate concept:

"Suppose [A] has the following relations: NL1, NL2, ...
Suppose [B] has the following relations: NL1’, NL2’, ...
Based on the above relational information, identify
whether the following statement is true or false: ([A]
| [B]) is [p] of ([B] | [A]). This statement is [MASK].
You must provide not only true or false, but also an
explanation for your decision."

Here, NL1, NL2, ... and NL1’, NL2’, ... refer to natural
language expressions of structural relations associated with [A]
and [B], respectively — such as their parent classes, subclasses,
instances, or related properties. The model is instructed to use
these relational cues to assess the hierarchical relationship between
[A] and [B].

Finally, we design a fourth type of prompt template that inte-
grates both structural relations and concept definitions to support
more comprehensive reasoning:

"Suppose [A] has the following relations: NL1, NL2, ...
Suppose [B] has the following relations: NL1’, NL2’, ...
Suppose [A] is defined as [def(A)], and [B] is defined
as [def(B)]. Based on the above definitions and rela-
tional information, identify whether the following
statement is true or false: ([A] | [B]) is [p] of ([B] |
[A]). This statement is [MASK]. You must provide not
only true or false, but also an explanation for your
decision."

By combining structural and definitional information, this prompt
encourages the model to engage in multi-source reasoning.

4 EXPERIMENTS
In this section, we first describe the dataset constructed using the
method presented in Section 3.2. We then evaluate the impact of
different prompting strategies on model performance. Based on the
hard cases identified in this initial evaluation, we further compare
the performance of various LLMs.

4.1 Datasets
To construct a concept hierarchy graph, we selected two well-
established sources of hypernym-hyponym data: the SemEval-2016
dataset and the DBpedia knowledge graph. The SemEval-2016
dataset originates from Task 13 of the SemEval-2016 competition:
Taxonomy Extraction Evaluation [6]. This task focuses on develop-
ing NLP systems capable of automatically identifying and organiz-
ing scientific concepts and terms into taxonomies that accurately

represent domain-specific knowledge structures. From this dataset,
we selected three classification schemes: SE-Environment, SE-
Food, and SE-Science. DBpedia, by contrast, is an open-source
structured knowledge base extracted from Wikipedia, which trans-
forms unstructured textual content into structured, queryable data.
Given the extensive volume of information available in DBpedia,
we used SPARQL queries—the standard language for querying RDF
data [25]—to extract both annotation data and structural relation-
ships associated with two high-level: classes Animal and Person.
The resulting datasets are referred to as DBpedia-Animal and
DBpedia-Person, respectively. In total, five data sources were se-
lected, and then the corresponding concept hierarchy graphs were
constructed.

Based on the constructed graphs, both positive and negative
examples were generated. Specifically, over 10,000 positive and
10,000 negative examples were produced for SE-Environment; over
500 positive and 3,000 negative examples for SE-Food; and over
6,000 positive and 6,000 negative examples for SE-Science. Given
the large volume of examples generated from these datasets, we
randomly sampled 20 positive and 20 negative examples from each
dataset for use in the experiment. For the DBpedia-based datasets,
we directly constructed 20 positive and 20 negative examples for
each of DBpedia-Animal and DBpedia-Person.

4.2 Effect of Different Prompting Strategies
To evaluate the impact of different prompting strategies, we select
three representative models: DeepSeek-R1, GLM-4, and GPT-4. First,
we compare the number of incorrect identifications each model
makes on the constructed dataset. Then, we analyze the models’
performance across different types of test samples. Finally, we pro-
vide a summary of the overall performance under each prompting
strategy.

First of all, we compare the number of false identifications made
by DeepSeek-R1, GLM-4, and GPT-4 across five datasets and four
prompt types (see Figure 2). In the figure, bars are omitted when
a model correctly identifies all test examples for a given dataset.
From the figure, we can obtain the following observations. (1) Com-
paring DBpedia and SE16 datasets: The examples in the two
DBpedia-based datasets are generally much simpler than those in
the SE16 datasets. All three models are mostly able to correctly
determine the hypernym-hyponym relationships for DBpedia sam-
ples. Notably, with the Prompt-Combined setting, all three models
are capable of making entirely correct judgments on these datasets.
In contrast, the SE16 datasets are considerably more challenging.
No prompt type yields perfect performance across SE16, and each
dataset results in at least 5 incorrect judgments by each model.
The SE-Environment dataset is especially difficult, with each model
making more than 10 errors. This is primarily because the positive
and negative examples in the DBpedia datasets involve more com-
mon and widely known concept pairs, such as Person–Astronaut
or Athlete, whereas the SE16 datasets include many uncommon,
domain-specific, or technical terms—such as defoliation, seismic
monitoring, pragmatics, and morphology—making semantic rela-
tionship identification more difficult. (2) Comparing the four
prompt types: Overall, Prompt-Definition performs the best. For
DeepSeek-R1 and GPT-4, the two structurally enriched prompts
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Figure 2: Number of false identifications across different
datasets and prompts using DeepSeek-R1, GLM-4 and GPT-4,
respectively.

do not provide any improvements in hypernym recognition. How-
ever, for GLM-4 on the SE-Environment dataset, these structured
prompts lead to clear performance gains. For instance, the sim-
plest prompt, Prompt-Direct, results in 12 incorrect identifications,
whereas the two structured prompts reduce the number of errors
to 6 and 8, respectively.

Second, we compare the number of false identifications across ex-
ample types and prompt types on SE16 datasets using DeepSeek-R1,
GLM-4, and GPT-4 (see Figure 3). As in Figure 2, bars are omitted
when all positive or negative examples are correctly identified by a
model. From the figure, it is evident that negative examples are gen-
erally easier to be identified correctly than positive ones. All three
models are able to correctly classify nearly all negative examples
across the SE16 datasets, except for a few errors made by GLM-4 on
the SE-environment dataset. Moreover, for negative examples, the
two prompt types that incorporate structural information nearly
achieve 100% accuracy. This can be largely attributed to the concep-
tual complexity of the SE datasets: determining that two concepts
do not have a hypernym-hyponym relationship is often much easier
than determining that they do, especially when domain-specific or
uncommon terms are involved.

Figure 3: False identifications across example types and
prompt types on SE16 datasets using DeepSeek-R1, GLM-
4, and GPT-4.

Finally, we compare identification accuracy across all datasets
and the four prompt types (see Figure 4). Several trends emerge
from the results: GLM-4 consistently outperforms the other mod-
els, achieving high accuracy across all prompt types, with the
Prompt-Combined configuration yielding the best overall perfor-
mance. GPT-4 also demonstrates strong results, particularly with
Prompt-Definition, which delivers the highest accuracy among
its prompt variants. DeepSeek-R1 performs moderately well, with
Prompt-Definition again being the most effective, though its ac-
curacy drops noticeably under the Prompt-Structure condition.
In contrast, GPT-3.5 exhibits the weakest performance, especially
when using Prompt-Structure, indicating limited ability to interpret
structured prompts. Overall, Prompt-Definition tends to deliver
robust performance across models, while Prompt-Structure proves
to be the least effective—particularly for GPT-3.5 and DeepSeek-R1.
These findings suggest that clear definitional information is more
beneficial than structured or combined prompts for identifying
hypernym-hyponym relationships. In other words, structural infor-
mation should be incorporated selectively when supporting such
relational identification.
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Figure 4: Accuracy of identification across all datasets and
prompts.

4.3 Performance Comparison of Different LLMs
To further evaluate the performance of more LLMs, we selected
40 challenging cases from the constructed positive and negative
examples based on the experimental results presented in the pre-
vious section. A challenging case refers to a positive or negative
example that at least one LLM failed to correctly identify. The spe-
cific selection details are shown in Table 2. For the comparison, we
selected 12 LLMs as introduced in Section 2.3. To better highlight
the differences among models, we limited the evaluation to the
Prompt-Direct and Prompt-Combined settings.

Dataset Negative examples Positive Examples
DBpedia-Animal 0 9
DBpedia-Person 0 10
SE-environment 6 5
SE-food 3 2
SE-science 2 3

Table 2: Number of selected challenging cases.

Figure 5 presents the number of false identifications made by 12
LLMs on the 40 challenging cases under two prompting strategies:
Prompt-Direct and Prompt-Combined. From the figure, we can
draw the following observations:

• Prompt-Combined generally results in fewer errors on neg-
ative examples across most models, indicating that com-
bining prompts enhances the ability of LLMs to correctly
reject invalid hypernym-hyponym relations. For example,
DeepSeek-V3 shows a significant reduction in errors, from
9 under Prompt-Direct to just 1 under Prompt-Combined.

• In contrast, Prompt-Combined does not consistently im-
prove performance on positive examples. With the excep-
tion of DeepSeek-R1, GLM-4, GPT-3.5, and Qwen-2.5, most
models made more errors under Prompt-Combined than
under Prompt-Direct. For instance, DeepSeek-V3 produced
only 2 errors under Prompt-Direct but 11 under Prompt-
Combined.

• Unlike most other models, GLM-4 performed worst on neg-
ative examples but best on positive ones. It produced the
fewest errors on positive examples—two and one under

LLMs Number of false Number of correct Accuracy
idenfications idenfications

Baichuan-4 17 63 78.75%
DeepSeek-R1 15 65 81.25%
DeepSeek-V3 16 64 80.00%
GPT-4 12 68 85.00%
GPT-4o 10 70 87.50%
LLaMA-3.3 13 67 83.75%
Doubao-1.5 13 67 83.75%
GPT-3.5 32 48 60.00%
GLM-4 13 67 83.75%
Gemini-2.5 11 69 86.25%
Hunyuan 13 67 83.75%
Qwen-2.5 20 60 75.00%

Table 3: Performance of LLMs over the challenging cases
without distinguishing between positive and negative exam-
ples or different prompting strategies.

Prompt-Direct and Prompt-Combined, respectively—yet
made the highest number of errors on negative examples.

• Among all the models, Gemini-2.5, GPT-4, GPT-4o, and
Doubao-1.5 exhibited relatively stable performance, pro-
ducing a moderate and balanced number of errors across
both positive and negative cases.

To evaluate the overall performance of the selected LLMs, we
present aggregated experimental results—without differentiating
between positive and negative examples or varying prompt strate-
gies—based on the number of correct and incorrect identifications,
as well as overall accuracy (see Table 3). Among all evaluated mod-
els, GPT-4o achieved the highest accuracy (87.50%), closely followed
by Gemini-2.5 (86.25%) and GPT-4 (85.00%), demonstrating strong
and consistent performance in recognizing hypernym-hyponym
relations. Models such as LLaMA-3.3, Doubao-1.5, GLM-4, and Hun-
yuan also performed well, each achieving an accuracy of 83.75%,
reflecting their robustness in this task. In contrast, GPT-3.5 exhib-
ited the weakest performance, with a significantly lower accuracy
of 60.00%, suggesting its limitations in handling fine-grained se-
mantic structures. Overall, newer and more advanced models con-
sistently outperform earlier or less capable ones, underscoring the
importance of architectural improvements and training data scale
in relation extraction tasks.

5 RELATEDWORK
Understanding hypernym-hyponym relations is essential for build-
ing taxonomies, structuring knowledge, and supporting conceptual
reasoning. While this topic has a long history in traditional NLP,
recent work has started to explore whether LLMs can internalize
and reason about such hierarchical relationships.

[15] examined LLMs’ ability to capture conceptual hierarchies
through concept classification tasks. Their results suggest that
LLMs exhibit a partial understanding of hierarchical relations, par-
ticularly when the class structure is implicitly embedded in the

8



Figure 5: False identifications made by large language models across various example and prompt types.

training data. However, their evaluation was limited to recogniz-
ing coarse-grained category labels rather than explicitly reasoning
about hypernym-hyponym links.

[11] investigated the role of input representation in guiding
LLMs’ interpretation of structured knowledge, including hierar-
chical relations. By comparing linearized triples to fluent text,
they showed that input formatting can significantly influence the
model’s ability to capture taxonomic structure—highlighting the
importance of prompt design in eliciting hypernymic reasoning.

[10] compared prompting and fine-tuning strategies for LLM-
based taxonomy construction. Their findings indicate that prompt-
ing can effectively induce hierarchical structures, especially in
low-resource settings. However, their focus was on generating
taxonomies rather than evaluating whether models actually under-
stand the underlying hypernymy.

[49] proposed Chain-of-Layer, an iterative prompting framework
for building taxonomies with LLMs. By constructing hierarchies
layer by layer and using ensemble filtering to reduce hallucination,
they demonstrated improved generation quality. Yet, the evaluation
focused on output structure, not on the reasoning process behind
hypernym-hyponym decisions.

[41] introduced TaxoGlimpse, a benchmark testing LLMs across
10 taxonomies. They observed that while models perform well in
general domains, their performance degrades on fine-grained or
domain-specific concepts, raising questions about their robustness
in identifying specific hypernymic links.

Wang et al. [45] evaluated LLMs’ reasoning ability over descrip-
tion logic ontologies, with a focus on formal constructs such as
concept inclusion, disjointness, and role restrictions. Their study
included tests on whether models can infer hypernym-hyponym
and disjoint relations under logical semantics. While their work
highlights the potential of LLMs in structured reasoning tasks, it
is grounded in synthetic DL-based benchmarks and emphasizes
symbolic compositionality rather than naturalistic taxonomic un-
derstanding. In contrast, our work assesses hypernym-hyponym
recognition in a realistic, non-formalized setting using data derived
from encyclopedic and lexical taxonomies.

In contrast to these prior works, our approach does not aim to
induce or classify taxonomies, but rather to systematically evaluate
whether LLMs can correctly identify and reason about hypernym-
hyponym relationships. We construct labeled test cases from real-
world hierarchical datasets and design multiple prompt strate-
gies that probe models from linguistic, definitional, and structural
perspectives. Our evaluation isolates the reasoning component
and highlights model strengths and weaknesses in understanding
conceptual hierarchies—offering a targeted diagnostic framework
rather than a generative or classificatory one.

6 CONCLUSIONS AND FUTUREWORK
In this paper, we introduced LLM-Hype, a targeted evaluation
framework for systematically assessing the ability of LLMs to in-
fer hypernym-hyponym relationships. By constructing taxonomy
graphs from diverse data sources and generating carefully labeled
test cases, our framework enables controlled and fine-grained eval-
uation of conceptual hierarchy understanding in LLMs. We further
proposed four complementary prompting strategies to probe differ-
ent dimensions of model reasoning. Through extensive experiments
across multiple datasets and 12 representative LLMs, we found that
definition-based prompts consistently led to the highest accuracy,
highlighting the importance of explicit semantic context. In con-
trast, structure-based prompts offered mixed results, and in some
cases, even degraded performance. Moreover, we observed notable
differences in model behavior, with some LLMs like GPT-4o and
Gemini-2.5 showing robust performance, while others such as GLM-
4 exhibited divergent reasoning patterns. These findings provide
valuable insights into the strengths and limitations of current LLMs
in taxonomic reasoning.

In futurework, we plan to extend LLM-Hype in several directions.
First, we aim to enrich the taxonomy graphs with multilingual and
domain-specific resources to evaluate model generalization across
languages and subject areas. Second, we intend to incorporate more
fine-grained reasoning categories—such as transitivity, asymmetry,
and negation—to better characterize the nature of model errors.
Third, we will explore automated prompt optimization and dynamic
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prompting strategies to further enhance the diagnostic power of
the framework. Finally, integrating human-in-the-loop evaluations
may provide additional interpretability and complement automated
metrics.
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