
Scalable Graph-based Retrieval-Augmented Generation via
Locality-Sensitive Hashing

Fangyuan Zhang
∗

Huawei Hong Kong Research Center

Hong Kong, China

zhang.fangyuan@huawei.com

Zhengjun Huang
∗

HKUST

Hong Kong, China

zhuangff@connect.ust.hk

Yingli Zhou
∗†

CUHK-Shenzhen

Shenzhen, China

yinglizhou@link.cuhk.edu.cn

Qintian Guo

HKUST

Hong Kong, China

qtguo@ust.hk

Wensheng Luo

Hunan University

Changsha, China

luowensheng@hnu.edu.cn

Xiaofang Zhou

HKUST

Hong Kong, China

zxf@cse.ust.hk

ABSTRACT
Graph-based Retrieval-Augmented Generation (Graph-RAG) has

been proven to be effective in enhancing the performance of large

language models (LLMs) by incorporating structured knowledge

retrieval. Among various Graph-RAG designs, Tree-Organized RAG

methods have shown particularly promising results due to their

ability to organize and retrieve relevant context efficiently. How-

ever, these tree-based methods often face scalability challenges

when applied to large-text datasets, resulting in high computa-

tional costs during graph construction phase and suboptimal query

performance. To address these limitations, we propose a novel un-

derlying architecture that utilizes randomprojection-based Locality-

Sensitive Hashing (LSH) to enhance both the efficiency and scala-

bility of Tree-Organized RAG systems. By exploiting LSH to guide

data partitioning and node insertion in a multi-phased graph con-

struction fashion, our method significantly accelerates graph con-

struction and improves the accuracy and speed of query retrieval in

large-text settings. Experimental results demonstrate that our LSH-

enhanced multi-phased RAG system maintains the advantages of

hierarchical organization while offering substantial improvements

in both construction time and query effectiveness on large-scale

datasets.

VLDBWorkshop Reference Format:
Fangyuan Zhang, Zhengjun Huang, Yingli Zhou, Qintian Guo, Wensheng

Luo, and Xiaofang Zhou. Scalable Graph-based Retrieval-Augmented

Generation via Locality-Sensitive Hashing. VLDB 2025 Workshop:

LLM+Graph.

VLDBWorkshop Artifact Availability:
The source code, data, and/or other artifacts have been made available at

https://github.com/EverM0re/Scalable-GraphRAG.

∗
Fangyuan Zhang, Zhengjun Huang, and Yingli Zhou are joint first authors.

†
Yingli Zhou is the corresponding author.

This work is licensed under the Creative Commons BY-NC-ND 4.0 International

License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of

this license. For any use beyond those covered by this license, obtain permission by

emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights

licensed to the VLDB Endowment.

Proceedings of the VLDB Endowment. ISSN 2150-8097.

1 INTRODUCTION
The rapid development of Large Language Models (LLMs) like

GPT-4 [1], Gemini [33], Qwen [39], and LLaMA [34] has revolu-

tionized natural language processing, achieving state-of-the-art

performance in many tasks [26, 45, 47]. However, despite their

scalability and generalization, LLMs face challenges in handling

domain-specific questions, multi-hop reasoning, and deep contex-

tual understanding [12, 50], often producing weak or incorrect

answers and suffering from hallucinations [19, 20, 42], where fab-

ricated or misleading information is produced due to the lack of

domain-aligned or real-time knowledge in the model’s pretraining

corpus. While fine-tuning LLMs with domain-specific data [43] can

help, it often incurs high costs and offers limited improvements,

especially in specialized domains with few resources [2, 13].

To overcome these challenges, Retrieval-Augmented Generation

(RAG) [6, 11, 24, 37, 38, 44] has emerged as a promising paradigm

that augments LLMs with external knowledge sources, thereby

improving factual accuracy, interpreting ability, and trustworthi-

ness [23, 27, 48, 49, 51]. RAG methods typically extract pertinent

information from external text corpora, relational datasets, or graph

structures to assist in question-answering tasks. Recent RAG ap-

proaches have increasingly explored graph structured knowledge as

external memory, leading to the development of graph-based RAG

methods. These methods capture complex relationships among enti-

ties and support more structured, multi-hop retrieval [15–17, 29, 46].

More recently, tree-based RAG variants have gained attention for

their hierarchical representation and efficient top-down traversal

strategies, achieving promising results in multi-hop QA and long-

context reasoning tasks [8, 18, 40].

Nevertheless, graph-based RAG methods face critical scalabil-

ity issues when deployed on large-scale datasets. Specifically, the

construction of large tree graphs often encounters failures due

to memory and time limitations arising from information redun-

dancy, which also significantly impacts query accuracy. [7, 52]. To

address these limitations, we propose a novel framework that inte-

grates Locality-Sensitive Hashing (LSH) [22] with tree-based RAG

in a multi-phased construction fashion, enabling efficient and scal-

able retrieval in massive data regimes. Our method leverages LSH

to perform approximate similarity search, effectively pruning the

https://github.com/EverM0re/Scalable-GraphRAG
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org

candidate space before hierarchical tree traversal. This design sig-

nificantly boosts retrieval efficiency while maintaining high answer

accuracy.

In summary, our contributions are as follows:

• We identify and analyze the limitations of current LLMs in han-

dling domain-specific and multi-hop questions.

• We propose a novel LSH-enhanced tree-based RAG architecture

in a multi-phased construction fashion to support light-weighted

graph construction and reduce time consumption due to infor-

mation redundancy.

• We conduct extensive experiments across multiple domains and

QA benchmarks in both specific and abstract styles, demonstrat-

ing the superior scalability and accuracy of ourmethod compared

to existing Graph-RAG systems.

2 RELATEDWORK
In this section, we introduce some related works of RAG and Graph-

RAG, along with the introduction to Tree-Organized Retrieval.

2.1 Graph Retrieval Augmented Generation
When faced with domain-specific queries or multi-hop queries,

current LLMs may generate a weak or meaningless and non-factual

responses, i.e., hallucinations [19, 20]. To mitigate this problem,

Retrieval-Augmented Generation (RAG) [6, 11, 38] has emerged

as a powerful framework for enhancing the factual accuracy and

grounding capabilities of LLMs which combines a retriever that

fetches relevant documents from an external corpus with a LLM that

uses them to produce more accurate and informed responses(i.e.,

Vanilla RAG).

In contrast, Graph-RAG [16] introduces a structured, offline

pre-processing stage that transforms the raw corpus into a graph

or hierarchical structure, enabling more efficient and accurate re-

trieval during the generation phase [46]. By encoding semantic

relationships between documents, passages, or entities ahead of

time, GraphRAG reduces redundancy and improves the contextual

coherence of retrieved results. This offline organization significantly

accelerates retrieval at inference time and enhances the relevance

of the supporting evidence, leading to improved response quality

for the LLM compared to traditional RAG [15].

2.2 Tree-Organized Graph Retrieval
Tree-Organized graph retrieval [7] is a novel approach in retrieval-

augmented generation that organizes knowledge or documents into

a hierarchical tree or tree-like structure, enabling faster and more

semantically meaningful retrieval in large-scale systems.

Instead of treating knowledge as a flat graph (like traditional

Graph-RAG), tree-based methods leverage semantic hierarchies,

grouping related nodes under shared "topics" or "supernodes", al-

lowing for logarithmic-time access paths and multi-resolution rea-

soning. Recent research has introduced significant variants of tree-

structured RAG, including hierarchical organization trees [3, 7],

hierarchical entity trees [25], Monte Carlo Tree Search (MCTS)

frameworks [8, 18], and other tree-based structures [31]. These ap-

proaches have demonstrated notable improvements in both query

accuracy and the efficiency of graph construction. Furthermore,

recent evaluations of Graph-RAG systems have highlighted the

Figure 1: Basic GraphRAG workflow.

benefits of Tree-Organized graph retrieval methods [52], but due

to applications of Gaussian Mixture Models (GMMs), large-scaled

datasets face the problem of extension or failure of the graph build-

ing stage.

3 PRELIMINARIES
In this section, we offer basic introduction to the usual workflow

of Graph-RAG systems and concepts of locality-sensitive hashing

(LSH).

3.1 GraphRAG workflow
Graph-RAG systems enhance language model outputs by incorpo-

rating external knowledge through a three-stage workflow: graph

building, index construction, and retrieval based generation [52].

As shown in figure 1, in the offline stage, documents are encoded

into dense vector representations and optionally structured into

a semantic graph structure to reflect relationships such as topical

similarity. The second stage constructs an efficient index to support

fast retrieval of relevant content. Finally, in the online stage, the

system retrieves the top-matching documents based on the query

and feeds, allowing the generative model to produce more informed,

contextually grounded responses [16].

3.2 Locality-Sensitive Hashing
Locality Sensitive Hashing (LSH) is a well-established technique

for efficient similarity search in high-dimensional space [22]. It

provides a probabilistic method for hashing input vectors such that

similar vectors are mapped to the same or nearby buckets with high

probability. As can be seen in figure 2, unlike traditional hash func-

tions, the hashing process of LSH intends to maximize the collision

of similar vectors to form clusters. LSH accelerates similarity search

by hashing high-dimensional vectors into buckets using functions

that ensure similar vectors are likely to collide, allowing approx-

imate nearest neighbors to be found efficiently from a reduced

candidate set. In RAG systems, LSH is usually employed to quickly

retrieve semantically relevant documents from a large corpus given

an input query embedding [21]. Compared to exhaustive similarity

search or exact nearest neighbors (e.g., via FAISS [4] or brute-force

dot product), LSH offers a faster alternative with lower memory and

compute requirements, making it attractive for latency-sensitive

applications such as real-time QA or chatbot systems.

2

Figure 2: Comparison of LSH hashing process and regular
hash functions.

4 PIPELINE
Building on the idea that LSH can not only be applied in the retriev-

ing stage but can also be utilized in graph building, our method

uses a novel hyperplane-based LSH method to construct a layer-

based tree building pipeline. In this section we will break down our

pipeline and introduce component by component.

4.1 LSH with Random Projections
To address the problems proposed above, a novel method of ran-
domprojection-based LSH is proposed, which is not only efficient

but also well-suited to clustering embeddings generated for chunk

similarity matching. This approach maintains the inherent com-

putational advantages of LSH while offering a more robust and

interpretable clustering process.

Hyperplane Construction. The key idea behind our approach

is to project high-dimensional vectors onto a set of random hy-

perplanes. These hyperplanes serve as decision boundaries that

allow us to categorize vectors based on their orientation relative

to these planes. The external corpus is first chopped up into equal

sized chunks and transformed into normalized high dimensional

vectors, denoted by 𝑣𝑖 ∈ R𝑑 . Let {ℎ1, ℎ2, ..., ℎ𝑘 } denote a set of 𝑘
randomly generated hyperplanes, each represented as a vector in

the same dimensional space. The hash function for a given vector 𝑣

is computed as follows:

hash(𝑣) = [sign(𝑣 · ℎ1), sign(𝑣 · ℎ2), ..., sign(𝑣 · ℎ𝑘)]

Here, each projection 𝑣 · ℎ𝑖 corresponds to the inner product:

𝑣 · ℎ𝑖 =
𝑑∑︁
𝑗=1

𝑣 𝑗 · ℎ𝑖, 𝑗

which determines the side of the hyperplane ℎ𝑖 on which the vector

𝑣 lies. If the dot product is positive, the vector lies on one side of the

hyperplane. Otherwise, it lies on the opposite side. This produces a

binary value for each projection: 1 for positive and 0 for negative.

The resulting binary vector is concatenated to form a 𝑘-bit hash

code. In our method, the dimensionality of the hash codes corre-

sponds to the dimensionality of the chunk embeddings, with each

hyperplane contributing a single bit to the resulting hash code.

Similarity and Bucket Assignment. Once hash codes are gener-

ated, bucket assignment is performed by comparing the hash codes

using Hamming distance[28], a common metric for binary vectors.

Given two hash codes ℎ(𝑣1) and ℎ(𝑣2), the Hamming distance is

defined as:

Ham(ℎ(𝑣1), ℎ(𝑣2)) =
𝑘∑︁
𝑖=1

I[ℎ𝑖 (𝑣1) ≠ ℎ𝑖 (𝑣2)]

where I is the indicator function. A smaller Hamming distance im-

plies higher similarity between the original corpus chunks, guiding

the clustering process and facilitating efficient retrieval. As can be

seen in Figure 3, this technique effectively preserves local semantic

similarity while enabling scalable hashing for high-dimensional

inputs.

Theoretical Analysis. Given prior analysis, we now provide an

analysis of the correctness of our approach of LSH using random

projections. Let 𝑣1, 𝑣2 ∈ R𝑑 be two normalized vectors, the angular

distance between the two vectors is given by 𝜃 , which is the an-

gle between them in the high-dimensional space. Then the cosine

similarity between these vectors is then defined as:

sim(𝑣1, 𝑣2) = cos(𝜃)

where cos(𝜃) represents the cosine of the angle 𝜃 between the

vectors. This measure is a key component in determining how

similar the two vectors are: the closer cos(𝜃) is to 1, the more

similar the vectors are. Then consider a random hyperplane ℎ that

is sampled from a distribution which satisfies the properties of LSH.

The hyperplane acts as a decision boundary that will divide the

space into two halves.

Given the above definitions, we now present the following theo-

rem that quantifies the probability of a collision between the two

vectors 𝑣1 and 𝑣2.

Theorem 4.1. Given two normalized vectors 𝑣1, 𝑣2 ∈ R𝑑 and a
random hyperplane ℎ, the probability 𝑃 (ℎ(𝑣1) = ℎ(𝑣2)) that both
vectors 𝑣1 and 𝑣2 are on the same side of hyperplane ℎ increases as
their angular distance 𝜃 decreases. The probability is given as follows:

𝑃 (ℎ(𝑣1) = ℎ(𝑣2)) =
1 + cos(𝜃)

2

This theorem provides a key insight into how the method of

random projection-based LSH ensures that similar vectors are more

likely to collide (i.e., be mapped to the same bucket). The probability

that two vectors lie on the same side of the proposed hyperplane

is directly related to the cosine similarity between the vectors.

According to the method, whether the vectors are on the same

side of the hyperplane is reflected in the corresponding bits of

their hash codes. Therefore, across a set of 𝑛 hyperplanes, the

greater the number of hyperplanes on which the vectors fall on

the same side, the smaller their Hamming distance will be. This,

in turn, increases the likelihood that they will be hashed into the

same bucket. In conclusion, this demonstrates that the greater the

similarity between the vectors, the higher the probability they will

be assigned to the same bucket, thereby validating the correctness

of the random projection-based LSH approach.

3

Figure 3: Overview of our method.

4.2 Multi-phased Graph Construction
Utilizing the proposed random projection LSH method, the multi-

phased graph construction is carried out in the following order.

Bucket Rearranging and Grouping. Once the hash codes have

been computed, the vectors are assigned to buckets according to

their Hamming distance. While this step groups similar vectors

together, the distribution of vectors across buckets is often imbal-

anced. Some buckets may contain a large number of vectors, while

others may have very few.

To address this issue, we employ a post-processing step that

ensures the final clusters meet predefined size constraints. Let 𝐵𝑖
denote the 𝑖-th bucket, and |𝐵𝑖 | its size. Let 𝑠min and 𝑠max represent

the lower and upper bounds of acceptable cluster sizes. Then each

bucket is evaluated based on the condition:

𝑠min ≤ |𝐵𝑖 | ≤ 𝑠max

Buckets not satisfying this condition are processed accordingly:

• Splitting overly large buckets: If |𝐵𝑖 | > 𝑠max, the bucket is

split into smaller clusters, typically using a secondary clustering

strategy or random partitioning.

• Merging small buckets: If |𝐵𝑖 | < 𝑠min, it is merged with its most

similar neighboring bucket 𝐵 𝑗 , minimizing Hamming distance

Ham(𝐵𝑖 , 𝐵 𝑗).
• Enforcing cluster size constraints: After merging or splitting,

each final cluster 𝐶𝑘 satisfies:

I [𝑠min ≤ |𝐶𝑘 | ≤ 𝑠max] = 1

This post-processing step is critical for balancing the trade-off

between maintaining the advantages of LSH (e.g., speed and locality

preservation) and ensuring that the resulting clusters are both

meaningful and appropriately sized for downstream tasks.

Multi-phased construction and parallel retrieving. Once the

grouping phase has been completed, the process transitions into

the summarization phase, where a LLM is employed to distill the

essential content of each chunk group, thereby generating a new

set of summarized chunks. These newly created chunks serve as

a refined abstraction of the original content, capturing the core

elements while reducing redundancy. The resulting layer of sum-

marized chunks is then subjected to the graph-building phase once

again. This iterative process continues until the top-level summary

layer reaches a sufficient level of condensation, ensuring that the

information retained is both relevant and contextually rich.

This multi-layered approach culminates in a tree structure, with

the base layer corresponding to the original corpus chunks and each

subsequent layer representing a progressively more condensed and

concentrated aggregation of information. As the tree structure as-

cends, the nodes represent higher-level abstractions, each retaining

the essential content of its predecessors while omitting unnecessary

details.

In the retrieval stage, the system leverages an optimizer to per-

form an efficient top-k search across all phases of the graph con-

struction. This search process allows the model to retrieve the most

relevant information from each layer of the hierarchical graph

structure, selecting the top-k results that best match the query’s

context. By utilizing the multi-phased graph construction, the re-

trieval system can dynamically access information at various levels

of abstraction, ensuring that the retrieved content is both accu-

rate and contextually aligned with the query’s requirements. This

approach significantly enhances the scalability and effectiveness

4

of the retrieval process, particularly for large-scale datasets with

complex hierarchical structures.

Complexity analysis. The multi-phased graph construction pro-

cess proceeds hierarchically, where each layer of the graph is built

by clustering the chunks from the previous layer. The process stops

under two conditions: (1) when the maximum number of layers 𝐿

has been reached, or (2) when the number of chunks in the current

layer drops below a predefined minimum threshold, 𝑛min. Through

the setting of bucket merging and splitting process, at each layer

the number of chunks is reduced by at least 𝑘 . Assign the initial

number of chunks to be𝑛𝑐 .

For the first grouping stage, the clustering operation involves

𝑛𝑐 chunks and has a time complexity of 𝑂 (𝑛𝑐 · 𝑑), where 𝑑 is the

dimensionality of each chunk. At each subsequent layer 𝑙 , the num-

ber of chunks is reduced to approximately
𝑛𝑐
𝑘𝑙
, and the clustering

operation at layer 𝑙 takes 𝑂

(
𝑛𝑐
𝑘𝑙

· 𝑑
)
. The total time complexity

across all layers can be expressed as the sum of the complexities at

each layer:

𝑇
total

= 𝑂 (𝑛𝑐 · 𝑑) +𝑂
(𝑛𝑐
𝑘

· 𝑑
)
+𝑂

(𝑛𝑐
𝑘2

· 𝑑
)
+ · · ·

This sum forms a geometric series, which can be approximated as:

𝑇
total

= 𝑂

(
𝑛𝑐 · 𝑑 · 𝑘𝐿

𝑘 − 1

)
Thus, the time complexity of the graph construction process is

𝑂

(
𝑛𝑐 · 𝑑 · 𝑘𝐿

𝑘−1

)
in worst case, which scales with the initial num-

ber of chunks and the maximum number of layers. In the cases

where the number of chunks falls below 𝑛min before reaching the

maximum number of layers, the process stops even earlier.

4.3 Advantages of the Proposed Approach
The proposed hyperplane based LSH clustering method offers sev-

eral compelling advantages, making it a valuable tool for tasks

involving high-dimensional embeddings:

• Semantic Alignment: By leveraging angular similarity through

dot products, this method aligns well with the characteristics of

modern embedding models, such as those based on transformer

architectures, where semantic similarity is often represented by

small angular distances[36].

• Scalability: The hash computation is highly efficient, with a time

complexity of 𝑂 (𝑘𝑑), and the bucket assignment process can be

easily parallelized, allowing for scalability in large datasets.

• Interpretability: The binary hash codes provide an interpretable
way to track and understand the cluster formation process. Each

cluster can be traced back to a specific hash code, enabling trans-

parency in the clustering process.

• Robustness to Size Variability: The ability to split large buck-

ets and merge small ones ensures that the final clusters are bal-

anced and reflect the inherent structure of the data, while still

maintaining efficient grouping.

The proposed multi-phase graph construction and parallel re-

trieval strategy also offers several notable advantages, particularly

in improving retrieval quality, representation granularity, and re-

sponse robustness:

• Hierarchical Abstraction: The system iteratively summarizes

information into a hierarchy, enabling access to both detailed

and abstracted data, which is useful for high-level reasoning and

synthesis tasks.

• Multi-Level Semantic Coverage: By preserving all graph lay-

ers during retrieval, the system allows extraction of both detailed

and summarized information, supporting context-specific and

generalized evidence retrieval in a single query.

• Parallel Retrieval Efficiency: The parallel top-𝑘 retrieval across
layers reduces latency and improves evidence gathering, enhanc-

ing both relevance and factual accuracy in model outputs.

5 EXPERIMENTS
This chapter elaborates the experiments we conducted utilizing our

method and frontier baseline models. Section 5.1 introduces the

setup of the experiments, including dataset and baseline introduc-

tion along with evaluation metrics. The results are then displayed

in section 5.2.

5.1 Experiment Setup
Datasets: To evaluate the efficiency and accuracy of our method,

we employ 4 real-world datasets, including both specific and ab-

stract queries. The following are basic information about the specific

datasets utilized in our work.

• HotpotQA [41] is a large-scale question-answering dataset com-

prising approximately 113,000 Wikipedia-based question-answer

pairs. It is specifically designed to test and enhance multi-hop

reasoning capabilities in natural language processing models,

regarded as one of the most authoritative and tested benchmark

dataset in the field.

• MuSiQue [35] is a dataset designed to advance research in multi-

hop question answering which comprises approximately 25,000

questions that require reasoning across 2 to 4 interconnected

facts to derive an answer, testing ability on handling complex

question structures and connective reasoning.

• MultiHopRag [32] is a dataset specifically designed to evaluate

RAG systems on complex multi-hop queries. It comprises 2,556

queries, each requiring the integration of information from 2

to 4 distinct documents, reflecting real-world scenarios where

answers are not confined to a single source.

• ALCE [10] is the first benchmark for automatically evaluating

citation quality in long-text responses generated by LLMs. It

focuses on realistic, end-to-end question answering tasks that

require both retrieving information and citing relevant sources

accurately.

Aside from the above mentioned specific datasets, we employ a

abstract dataset UltraDomain [30] which comprises tasks with

long context and high-level query on over 20 specialized domains,

requiring higher understanding and summary abilities. We will

employ the domain dataset of computer science, legal and mixed

knowledge. We also employ the abstract summary problems offered

by Multihop-RAG, known as MultihopSum [32].

Baselines: Three graph-based RAG systems are chosen as the base-

line models for our method.

5

Table 1: Graph construction time on specific datasets

Methods MultiHop MuSiQue ALCE HotpotQA

Our Method 71.98s 866.93s 2442.82s 1979.32s

GraphRAG 2215.66s 19392.49s 50274.21s 45381.43s

Raptor 945.41s - - -

RaptorBal 103.76s 1061.72s 3203.82s 2918.33s

• GraphRAG [5]: GraphRAG is an innovative approach that en-

hances RAG by integrating structured knowledge graphs, en-

abling more accurate and context-aware retrieval. By modeling

semantic relationships between entities and passages, it supports

multi-hop reasoning and improves the relevance and coherence

of retrieved content, particularly for complex or domain-specific

queries.

• RAPTOR [31]: RAPTOR (Recursive Abstractive Processing for

Tree-Organized Retrieval) is an advanced Tree-Organized RAG

technique developed to enhance the performance of LLMs when

processing extensive and complex documents. RAPTOR employs

a recursive process of embedding, clustering, and summarizing

text chunks to construct a hierarchical tree structure from the

bottom up. Studies have demonstrated that RAPTOR significantly

outperforms traditional retrieval-augmented LLMs, particularly

in tasks requiring complex and multi-step reasoning[52].

• RaptorBalanced [52]: Recent evaluations of RAPTOR shows

that on large-scaled datasets, the Gasussian mixture classifying

method fails to separate the chunk embeddings, so RaptorBal-

anced is introduced.

Evaluation metrics: According to recent work [52], specific QA

tasks will be evaluated with adjusted accuracy and recall, except

for ALCE, which metric will follow existing work [31] using string

recall (STRREC), string exact matching (STREM) and string hit

(STRHIT). For the abstract QA tasks, prior work [5, 14] proposed a

LLM-guided evaluation method, where a LLM evaluator is utilized

to evaluate the performance of twomodels based on comprehensive-

ness, diversity, etc. In this work, the performance will be evaluated

based on comprehensiveness, diversity and empowerment and a

final overall result will be given. The result of the evaluation will

be displayed in a win rate percentage form.

Implementation details: All of our experiments are produced on

NVIDIA A100 80GB GPUs. For clarity and justice, our method and

all baselines will be implemented on the recently proposed unified

GraphRAG framework [52]. Baselines will inherit the parameter

settings proposed in their original paper.

5.2 Results
Three main results are conducted to evaluate our method. Perfor-

mance on specific QA and abstract QA will be tested and compared

with state-of-the-art Graph-RAG systems, where accuracy, recall

and graph building time will be evaluated. Also, a chunk size ex-

periment is conducted to test the robustness of our method against

different chunking method.

Specific QA: The performance of our proposed method is evalu-

ated on four real-world, domain-specific QA datasets that have been

widely adopted in recent research. Given that RAPTOR has been

demonstrated as one of the strongest graph-based RAG systems [52],

Figure 4: Accurcay and recall on specific datasets

and that GraphRAG is among the most established models in this

category, we adopt GraphRAG, RAPTOR, and RaptorBalanced as

baseline methods. The evaluation focuses on both accuracy and

recall, as shown in Figure 4, while the corresponding graph con-

struction times are summarized in Table 1.

Across all four benchmark datasets, our method achieves consis-

tent and substantial improvements over both RaptorBalanced and

GraphRAG. Notably, RAPTOR fails to complete graph construction

on certain datasets due to instability in its Gaussian Mixture-based

clustering component, and is thus only evaluated on the MultiHo-

pRAG dataset.

In the Musique dataset, our method achieves absolute gains of

approximately 5% in both accuracy and recall over RaptorBalanced,

while also significantly reducing graph construction time compared

to RAPTOR and GraphRAG, respectively. For the HotpotQA dataset,

although the performance gap is narrower, our method still leads

in both metrics, highlighting its robustness in multi-hop reasoning.

On the MultiHopRAG dataset, while our recall is slightly lower

than that of GraphRAG, our model achieves the highest accuracy

at 64.34%, indicating better answer precision. The most significant

improvement is observed on the ALCE dataset, where our model

surpasses RaptorBalanced by over 6 percentage points in structural

recall (STRREC) and more than 1 percentage point in structural

exact match (STREM), reflecting stronger capacity in retrieving

semantically and structurally relevant evidence. These results sug-

gest that our multilayered graph construction strategy effectively

generates more informative and structured graphs for downstream

retrieval and generation.

In addition to retrieval effectiveness, ourmethod exhibitsmarkedly

superior graph construction efficiency across all datasets. This is

attributed to the hyperplane-based LSH mechanism, which enables

both faster and more scalable graph construction. The alignment of

improved accuracy and reduced offline preprocessing time further

demonstrates the robustness and practicality of our approach.

Collectively, these results provide strong empirical evidence for

the effectiveness and efficiency of our model in diverse domain-

specificQA scenarios. The consistent outperformance across datasets

6

Table 2: Abstract QA result on our method vs. GraphRAG

Dataset Comprehensive Diversity Empower Overall

Mix 56% 52% 49% 51%

CS 53% 58% 48% 55%

legal 33% 54% 42% 42%

MultiSum 56% 42% 55% 52%

Table 3: Abstract QA result on our method vs. RAPTOR

Dataset Comprehensive Diversity Empower Overall

Mix 67% 62% 47% 54%

CS 52% 48% 41% 46%

legal 58% 42% 61% 52%

MultiSum 51% 57% 53% 53%

and metrics affirms the superiority of our method in balancing re-

trieval quality with offline construction cost, positioning it as a

more reliable and scalable alternative to existing graph-based RAG

frameworks.

Abstract QA: In this section we evaluate the performance of our

method, GraphRAG and RAPTOR on abstract QA datasets, the re-

sults are displayed in Table 2 and Table 3 in the form of head to head

win rates. The win rate of our model against the corresponding

baseline is displayed. Based on the experimental results, our pro-

posed method demonstrates clear superiority over both GraphRAG

and RAPTOR in handliing Abstract Queries across multiple datasets.

When comparing our method to GraphRAG, we observe consis-

tently higher performance in key metrics such as comprehensive-

ness, diversity, and empowerment. In particular, our method shows

marked improvements in the "CS" and "Legal" datasets, where it

outperforms GraphRAG by a significant margin, especially in com-

prehensiveness and diversity.

Moreover, when compared to RAPTOR, our method again excels

across all metrics and datasets. It achieves notable improvements in

the "Mix" and "Multihop-Sum" datasets, particularly in comprehen-

siveness and diversity, while also leading in empowerment across

all domains. The overall winning percentage of our method sur-

passes both competitors, demonstrating its robust and versatile

performance.

These results indicate that our approach offers a more effective

and reliable solution for Abstract Query generation, outperforming

existing systems in terms of both consistency and robustness across

a wide range of datasets. The clear advantages observed in this com-

parison underscore the effectiveness of our method, establishing it

as a superior alternative in the field.

Chunk size: Recent studies have shown that chunk size plays a

critical role in the performance of RAG systems, where smaller and

more focused chunks tend to improve accuracy at the expense of

higher computational costs [9]. To systematically evaluate the im-

pact of chunk size on retrieval effectiveness and system efficiency,

we conducted a series of experiments measuring accuracy, recall,

and graph building time across varying chunk sizes. As illustrated

in figure 5, variations in chunk size exert minimal influence on re-

trieval accuracy and recall. Accuracy remains relatively stable, with

Figure 5: Accuracy, recall and graph building time across
different chunk sizes.

a modest peak observed at chunk sizes between 600 and 800, reach-

ing approximately 67.5%, while recall shows a slight upward trend

from 30.3% to 33.4% up to size 1000, after which it plateaus. These

findings indicate that retrieval performance is largely resilient to

moderate adjustments in chunk granularity. In contrast, graph con-

struction time demonstrates more pronounced changes, decreasing

from 54.93 seconds at a chunk size of 400 to 43.17 seconds at 1400.

Although increasing the number of chunks introduces additional

computational overhead and results in longer graph building times,

this remains within acceptable limits. Overall, the results suggest

that chunk size can be effectively tuned to balance computational

efficiency and retrieval accuracy without significantly degrading

system performance for our method.

6 CONCLUSION
In this paper, we presented a scalable and efficient Tree-Organized

Graph-RAG framework enhanced with hyperplane-based Locality-

Sensitive Hashing. By integrating LSH into the clustering stage,

our method improves tree construction speed and retrieval accu-

racy while maintaining semantic coherence. Experimental results

across multiple QA benchmarks demonstrate consistent perfor-

mance gains over strong baselines, confirming the effectiveness

of our approach in both specific and abstract query settings. This

work underscores the potential of combining approximate simi-

larity search with hierarchical structures for advanced retrieval-

augmented generation tasks.

ACKNOWLEDGMENTS
The research work described in this paper was supported by Hong

Kong Research Grants Council and Guangzhou HKUST Fok Ying

Tung Research Institute (grant# 16202722, 16210625, T43-513/23-N,

T22-607/24N, 2023ZD007). It was partially conducted in JC STEM

Lab of Data Science Foundations funded by The Hong Kong Jockey

Club Charities Trust.

REFERENCES
[1] Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Floren-

cia Leoni Aleman, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal

Anadkat, et al. 2023. Gpt-4 technical report. arXiv preprint arXiv:2303.08774
(2023).

7

[2] Jacob Browning. 2024. Getting it right: the limits of fine-tuning large language

models. Ethics and Information Technology 26, 2 (2024), 36.

[3] Xinyue Chen, Pengyu Gao, Jiangjiang Song, and Xiaoyang Tan. 2024. HiQA: A

Hierarchical Contextual Augmentation RAG for Multi-Documents QA. arXiv
preprint arXiv:2402.01767 (2024).

[4] Matthijs Douze, Alexandr Guzhva, Chengqi Deng, Jeff Johnson, Gergely Szilvasy,

Pierre-Emmanuel Mazaré, Maria Lomeli, Lucas Hosseini, and Hervé Jégou. 2024.

The faiss library. arXiv preprint arXiv:2401.08281 (2024).
[5] Darren Edge, Ha Trinh, Newman Cheng, Joshua Bradley, Alex Chao, Apurva

Mody, Steven Truitt, DashaMetropolitansky, Robert OsazuwaNess, and Jonathan

Larson. 2024. From Local to Global: A Graph RAG Approach to Query-Focused

Summarization. arXiv preprint arXiv:2404.16130 (2024).
[6] Wenqi Fan, Yujuan Ding, Liangbo Ning, Shijie Wang, Hengyun Li, Dawei Yin,

Tat-Seng Chua, and Qing Li. 2024. A survey on rag meeting llms: Towards

retrieval-augmented large language models. In Proceedings of the 30th ACM
SIGKDD Conference on Knowledge Discovery and Data Mining. 6491–6501.

[7] Masoomali Fatehkia, Ji Kim Lucas, and Sanjay Chawla. 2024. T-RAG: lessons

from the LLM trenches. arXiv preprint arXiv:2402.07483 (2024).
[8] Wenfeng Feng, Chuzhan Hao, Yuewei Zhang, Jingyi Song, and Hao Wang. 2025.

Airrag: Activating intrinsic reasoning for retrieval augmented generation via

tree-based search. arXiv preprint arXiv:2501.10053 (2025).
[9] Paulo Finardi, Leonardo Avila, Rodrigo Castaldoni, Pedro Gengo, Celio Larcher,

Marcos Piau, Pablo Costa, and Vinicius Caridá. 2024. The chronicles of rag: The

retriever, the chunk and the generator. arXiv preprint arXiv:2401.07883 (2024).
[10] Tianyu Gao, Howard Yen, Jiatong Yu, and Danqi Chen. 2023. Enabling Large

LanguageModels to Generate Text with Citations. arXiv preprint arXiv:2305.14627
(2023).

[11] Yunfan Gao, Yun Xiong, Xinyu Gao, Kangxiang Jia, Jinliu Pan, Yuxi Bi, Yi Dai,

Jiawei Sun, Haofen Wang, and Haofen Wang. 2023. Retrieval-augmented gen-

eration for large language models: A survey. arXiv preprint arXiv:2312.10997 2

(2023).

[12] Yingqiang Ge, Wenyue Hua, Kai Mei, Juntao Tan, Shuyuan Xu, Zelong Li,

Yongfeng Zhang, et al. 2023. Openagi: When llm meets domain experts. Advances
in Neural Information Processing Systems 36 (2023), 5539–5568.

[13] Sreyan Ghosh, Chandra Kiran Reddy Evuru, Sonal Kumar, Deepali Aneja, Zeyu

Jin, Ramani Duraiswami, Dinesh Manocha, et al. 2024. A closer look at the

limitations of instruction tuning. arXiv preprint arXiv:2402.05119 (2024).
[14] Zirui Guo, Lianghao Xia, Yanhua Yu, Tu Ao, and Chao Huang. 2024. LightRAG:

Simple and Fast Retrieval-Augmented Generation. Available at arXiv or similar

venue (specific venue not provided).

[15] HaoyuHan, Harry Shomer, YuWang, Yongjia Lei, Kai Guo, ZhigangHua, Bo Long,

Hui Liu, and Jiliang Tang. 2025. RAG vs. GraphRAG: A Systematic Evaluation

and Key Insights. arXiv preprint arXiv:2502.11371 (2025).
[16] Haoyu Han, Yu Wang, Harry Shomer, Kai Guo, Jiayuan Ding, Yongjia Lei, Ma-

hantesh Halappanavar, Ryan A Rossi, Subhabrata Mukherjee, Xianfeng Tang,

et al. 2024. Retrieval-augmented generation with graphs (graphrag). arXiv
preprint arXiv:2501.00309 (2024).

[17] Yuntong Hu, Zhihan Lei, Zheng Zhang, Bo Pan, Chen Ling, and Liang Zhao. 2024.

Grag: Graph retrieval-augmented generation. arXiv preprint arXiv:2405.16506
(2024).

[18] Yunhai Hu, Yilun Zhao, Chen Zhao, and Arman Cohan. 2025. MCTS-RAG:

Enhancing Retrieval-Augmented Generation with Monte Carlo Tree Search.

arXiv preprint arXiv:2503.20757 (2025).

[19] Lei Huang, Weijiang Yu, Weitao Ma, Weihong Zhong, Zhangyin Feng, Haotian

Wang, Qianglong Chen, Weihua Peng, Xiaocheng Feng, Bing Qin, et al. 2023.

A Survey on Hallucination in Large Language Models: Principles, Taxonomy,

Challenges, and Open Questions. arXiv preprint arXiv:2311.05232 (2023).
[20] Lei Huang, Weijiang Yu, Weitao Ma, Weihong Zhong, Zhangyin Feng, Haotian

Wang, Qianglong Chen, Weihua Peng, Xiaocheng Feng, Bing Qin, et al. 2025. A

survey on hallucination in large language models: Principles, taxonomy, chal-

lenges, and open questions. ACM Transactions on Information Systems 43, 2
(2025), 1–55.

[21] Qazi Mudassar Ilyas. 2025. Enhancing the RAG Pipeline Through Advanced

Optimization. Generative AI Foundations, Developments, and Applications (2025),
59.

[22] Omid Jafari, Preeti Maurya, Parth Nagarkar, Khandker Mushfiqul Islam, and

Chidambaram Crushev. 2021. A survey on locality sensitive hashing algorithms

and their applications. arXiv preprint arXiv:2102.08942 (2021).
[23] Jiarui Li, Ye Yuan, and Zehua Zhang. 2024. Enhancing llm factual accuracy with

rag to counter hallucinations: A case study on domain-specific queries in private

knowledge-bases. arXiv preprint arXiv:2403.10446 (2024).
[24] Yuhan Li, Zhixun Li, Peisong Wang, Jia Li, Xiangguo Sun, Hong Cheng, and

Jeffrey Xu Yu. 2023. A survey of graph meets large language model: Progress

and future directions. arXiv preprint arXiv:2311.12399 (2023).
[25] Zihang Li, Yangdong Ruan, Wenjun Liu, Zhengyang Wang, and Tong Yang. 2025.

CFT-RAG: An Entity Tree Based Retrieval Augmented Generation Algorithm

With Cuckoo Filter. arXiv preprint arXiv:2501.15098 (2025).

[26] Zhixun Li, Liang Wang, Xin Sun, Yifan Luo, Yanqiao Zhu, Dingshuo Chen,

Yingtao Luo, Xiangxin Zhou, Qiang Liu, Shu Wu, et al. 2023. Gslb: The graph

structure learning benchmark. Advances in Neural Information Processing Systems
36 (2023), 30306–30318.

[27] Jingyu Liu, Jiaen Lin, and Yong Liu. 2024. How much can rag help the reasoning

of llm? arXiv preprint arXiv:2410.02338 (2024).
[28] Mohammad Norouzi, David J Fleet, and Russ R Salakhutdinov. 2012. Hamming

distance metric learning. Advances in neural information processing systems 25
(2012).

[29] Boci Peng, Yun Zhu, Yongchao Liu, Xiaohe Bo, Haizhou Shi, Chuntao Hong, Yan

Zhang, and Siliang Tang. 2024. Graph retrieval-augmented generation: A survey.

arXiv preprint arXiv:2408.08921 (2024).
[30] Hongjin Qian, Peitian Zhang, Zheng Liu, Kelong Mao, and Zhicheng Dou. 2024.

MemoRAG: Moving Towards Next-Gen RAG via Memory-Inspired Knowledge

Discovery. arXiv preprint arXiv:2409.05591 (2024).
[31] Parth Sarthi, Salman Abdullah, Aditi Tuli, Shubh Khanna, Anna Goldie, and

Christopher D. Manning. 2024. Raptor: Recursive Abstractive Processing for

Tree-Organized Retrieval. In The Twelfth International Conference on Learning
Representations (ICLR).

[32] Yixuan Tang and Yi Yang. 2024. Multihop-RAG: Benchmarking Retrieval-

Augmented Generation for Multi-hop Queries. arXiv preprint arXiv:2401.15391
(2024).

[33] Gemini Team, Rohan Anil, Sebastian Borgeaud, Jean-Baptiste Alayrac, Jiahui

Yu, Radu Soricut, Johan Schalkwyk, Andrew M Dai, Anja Hauth, Katie Millican,

et al. 2023. Gemini: a family of highly capable multimodal models. arXiv preprint
arXiv:2312.11805 (2023).

[34] Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne

Lachaux, Timothée Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal

Azhar, et al. 2023. Llama: Open and efficient foundation language models. arXiv
preprint arXiv:2302.13971 (2023).

[35] Harsh Trivedi, Niranjan Balasubramanian, Tushar Khot, and Ashish Sabharwal.

2022. MuSiQue: Multihop Questions via Single-hop Question Composition.

Transactions of the Association for Computational Linguistics 10 (2022), 539–554.
[36] Bin Wang, Angela Wang, Fenxiao Chen, Yuncheng Wang, and C-C Jay Kuo. 2019.

Evaluating word embedding models: Methods and experimental results. APSIPA
transactions on signal and information processing 8 (2019), e19.

[37] Shu Wang, Yixiang Fang, Yingli Zhou, Xilin Liu, and Yuchi Ma. 2025. ArchRAG:

Attributed Community-based Hierarchical Retrieval-Augmented Generation.

[38] Shangyu Wu, Ying Xiong, Yufei Cui, Haolun Wu, Can Chen, Ye Yuan, Lianming

Huang, Xue Liu, Tei-Wei Kuo, Nan Guan, et al. 2024. Retrieval-augmented gener-

ation for natural language processing: A survey. arXiv preprint arXiv:2407.13193
(2024).

[39] An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu,

Chengyuan Li, Dayiheng Liu, Fei Huang, Haoran Wei, et al. 2024. Qwen2. 5

technical report. arXiv preprint arXiv:2412.15115 (2024).
[40] Yahe Yang and Chengyue Huang. 2025. Tree-based RAG-Agent Recommendation

System: A Case Study in Medical Test Data. arXiv preprint arXiv:2501.02727
(2025).

[41] Zhilin Yang, Peng Qi, Saizheng Zhang, Yoshua Bengio, William W Cohen,

Ruslan Salakhutdinov, and Christopher D Manning. 2018. HotpotQA: A

Dataset for Diverse, Explainable Multi-hop Question Answering. arXiv preprint
arXiv:1809.09600 (2018).

[42] Jia-Yu Yao, Kun-Peng Ning, Zhen-Hui Liu, Mu-Nan Ning, Yu-Yang Liu, and Li

Yuan. 2023. Llm lies: Hallucinations are not bugs, but features as adversarial

examples. arXiv preprint arXiv:2310.01469 (2023).
[43] Biao Zhang, Zhongtao Liu, Colin Cherry, and Orhan Firat. 2024. When scaling

meets llm finetuning: The effect of data, model and finetuning method. arXiv
preprint arXiv:2402.17193 (2024).

[44] Fangyuan Zhang, Zhengjun Huang, Yingli Zhou, Qintian Guo, Zhixun Li, Wen-

sheng Luo, Di Jiang, Yixiang Fang, and Xiaofang Zhou. 2025. EraRAG: Efficient

and Incremental Retrieval Augmented Generation for Growing Corpora. arXiv
preprint arXiv:2506.20963 (2025).

[45] Guibin Zhang, Yanwei Yue, Zhixun Li, Sukwon Yun, Guancheng Wan, Kun

Wang, Dawei Cheng, Jeffrey Xu Yu, and Tianlong Chen. 2024. Cut the crap: An

economical communication pipeline for llm-based multi-agent systems. arXiv
preprint arXiv:2410.02506 (2024).

[46] Qinggang Zhang, Shengyuan Chen, Yuanchen Bei, Zheng Yuan, Huachi Zhou,

Zijin Hong, Junnan Dong, Hao Chen, Yi Chang, and Xiao Huang. 2025. A Survey

of Graph Retrieval-Augmented Generation for Customized Large Language

Models. arXiv preprint arXiv:2501.13958 (2025).
[47] Yang Zhang, Hanlei Jin, Dan Meng, Jun Wang, and Jinghua Tan. 2024. A com-

prehensive survey on process-oriented automatic text summarization with ex-

ploration of llm-based methods. arXiv preprint arXiv:2403.02901 (2024).
[48] Shengming Zhao, Yuheng Huang, Jiayang Song, Zhijie Wang, Chengcheng Wan,

and Lei Ma. 2024. Towards understanding retrieval accuracy and prompt quality

in rag systems. arXiv preprint arXiv:2411.19463 (2024).
[49] Siyun Zhao, Yuqing Yang, Zilong Wang, Zhiyuan He, Luna K Qiu, and Lili Qiu.

2024. Retrieval augmented generation (rag) and beyond: A comprehensive

8

survey on how to make your llms use external data more wisely. arXiv preprint
arXiv:2409.14924 (2024).

[50] XUJIANG ZHAO, JIAYING LU, CHENGYUAN DENG, C ZHENG, JUNXIANG

WANG, TANMOY CHOWDHURY, L YUN, HEJIE CUI, ZHANG XUCHAO, TIAN-

JIAO ZHAO, et al. 2023. Beyond One-Model-Fits-All: A Survey of Domain

Specialization for Large Language Models. arXiv preprint arXiv 2305 (2023).

[51] Yujia Zhou, Yan Liu, Xiaoxi Li, Jiajie Jin, Hongjin Qian, Zheng Liu, Chaozhuo Li,

Zhicheng Dou, Tsung-Yi Ho, and Philip S Yu. 2024. Trustworthiness in retrieval-

augmented generation systems: A survey. arXiv preprint arXiv:2409.10102 (2024).
[52] Yingli Zhou, Yaodong Su, Youran Sun, Shu Wang, Taotao Wang, Runyuan He,

Yongwei Zhang, et al. 2025. In-depth Analysis of Graph-based RAG in a Unified

Framework. arXiv preprint arXiv:2503.04338 (2025).

9

	Abstract
	1 Introduction
	2 Related Work
	2.1 Graph Retrieval Augmented Generation
	2.2 Tree-Organized Graph Retrieval

	3 Preliminaries
	3.1 GraphRAG workflow
	3.2 Locality-Sensitive Hashing

	4 Pipeline
	4.1 LSH with Random Projections
	4.2 Multi-phased Graph Construction
	4.3 Advantages of the Proposed Approach

	5 Experiments
	5.1 Experiment Setup
	5.2 Results

	6 Conclusion
	References

