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ABSTRACT
Graphs are recently being proposed as a powerful alternative to
modeling legislation and conducting legislative knowledge man-
agement. However, the adoption of such a novel solution depends
on the possibility of mapping a fundamentally unstructured source
of data within graph objects, namely, nodes, edges, and properties.
In this work, we introduce a pipeline for constructing the most
extensive Knowledge Graph designed to support the structured rep-
resentation and analysis of U.S. public laws. The pipeline is based on
a recently introduced unifying property graph model, with nodes
representing acts and articles and edges capturing their reference
links and containing the text of the laws, thus combining seman-
tics, metadata, and content in a structured database. Our pipeline
processes all available digitalized U.S. public laws, with older bills
available only as image-based PDFs and more recent laws, which
instead are published in more modern semi-structured formats such
as HTML and XML. To achieve this, we develop an LLM-assisted
strategy that also involves fine-tuning LLMs (from the LLama and
Mistral families) to extract knowledge from these documents and
infer nodes and edge information from low-quality, unstructured
texts processed through the popular OCR engine Tesseract. The
pipeline’s design and the integration of LLMs aims to create the
most complete and integrated representation of U.S. legislation,
which is crucial for allowing historical and temporal analysis, for
instance, from the economic community.

VLDBWorkshop Reference Format:
Andrea Colombo and Francesco Cambria. LLM-assisted Construction of
the United States Legislative Graph. VLDB 2025 Workshop: LLM+Graph.

1 INTRODUCTION
The complexity of legislative texts as unstructured data and the
growing demand for the possibility of conducting analysis have
highlighted the importance of creating accessible and structured
resources for managing legislative knowledge. In the legislative
context, one of the main challenges is navigating the intricate set
of references and interdependencies that characterize laws, with
recursive patterns linking documents through multiple types of
citations, thus raising complexity in the navigation.

An emerging powerful technology for modeling complex and
interconnected information is Knowledge Graphs (KGs), especially
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if the underlying data naturally takes the form of graphs that can be
stored within graph databases. Recent works have started applying
such technology to model legislative systems by representing laws
and their content as nodes and citations as edges [4, 5]. Unifying
graph database schemas that aim to model multiple different legis-
lations by capturing the common foundations are also being pro-
posed [15], also favored by the adoption of internationally adopted
publication standards, such as the Legal Knowledge Interchange
Format (LKIF) [20] or AkomaNtoso [36, 37], which defines common
XML schemas to capture the internal structure of laws and acts.

Building graphs of legislation is a powerful way to unlock novel
knowledge management applications that allow monitoring pat-
terns and complexities [16]. In addition, it favors economic sciences
that rely on network theory to detect trends in the evolution of
legislation, which are crucial to understanding the social dynamics
of a country [7, 40]. In particular, the Property Graph (PG) model,
whose Graph Query Language (GQL) has recently become an ISO
standard [22], has been recently proposed as a powerful alternative
to modelling legislation, thanks to its ability to combine semantics
and properties in a flexible and rich schema, particularly useful to
network analysis applications, a unique feature of PGs that distin-
guishes the data model from the more popular RDF-based graph
model.

By following this trend, in this paper, we build a pipeline that
allows us to build the most comprehensive Knowledge Graph de-
signed to support the structured representation and analysis of U.S.
public laws, i.e., the bills introduced by the federal U.S. Congress.
The creation of the graph involved addressing several challenges in-
herent to legislative data. First, U.S. laws are available in diverse dig-
ital formats according to the publication year, from semi-structured
XML to unstructured, low-quality images in PDFs, necessitating the
development of preprocessing and extraction techniques based on
optical character recognition (OCR) engines. Furthermore, the XML
schema adopted by the Library of Congress is a US-specific schema,
which requires ad-hoc procedures for converting it into graph ob-
jects. Then, we tackle the problem of identifying references among
acts, an issue further expanded by the presence of the United States
Code, a periodically published and updated systematic collection of
introduced laws whose instability and content harm the possibility
of using it as a bridge to link introduced laws.

To this end, we developed a pipeline that automates the construc-
tion of the Knowledge Graph, starting from a document published
as PDF images, HTML, or XML. A key element of our pipeline is the
integration of open-source Large Language Models (LLMs), to (i)
act as legislative experts to correct OCR-induced errors, (ii) extract
and infer edges and references by learning from available data, (iii)
classify edges into the distinct types of references, namely, amends,
abrogates, is legal basis of and cites references that might link acts
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and (iv) integrate properties of graph objects to integrate helpful
information and metadata which are crucial for unlocking powerful
graph-based traversal analysis. Finally, we discuss potential appli-
cations enabled and facilitated by the availability of a Knowledge
Graph of the U.S. legislation.

Our contributions can be summarized as follows:

• We build a pipeline powered by Large Language Models to
assist in constructing the U.S. Congress legislative graph.
First, we adopt tailored methods to improve OCR perfor-
mance for more accurate digitization of legislative text.
Then, based on the fine-tuning of two specialized Mistral-
7B models. One model is tailored for extracting references
between legal provisions, while the other focuses on identi-
fying high-level subjects and topics from the text of an act.
By leveraging the adaptability and reasoning capabilities of
LLMs, our approach enables accurate, scalable information
extraction and supports the long-term sustainability and
extensibility of the pipeline.

• We construct and share the most extensive Knowledge
Graph of U.S. public laws (available at [14]), spanning over
60 years of legislative history, including laws previously ex-
isting only as non-machine-readable images, making them
accessible and analyzable in a structured digital format.

2 RELATEDWORK
Legislative knowledge has traditionally been modeled by utilizing
XML schemas to represent the internal structure of documents,
with many proposals of XML-based models to handle and unify the
differences between legislative traditions. More recently, advance-
ments in knowledge Graph technology have attracted the interest
of the computer law community since graph representation can
be crucial in capturing the tangled net of connections between
laws. As highlighted in [33], legal documents are linked through
various relationships, such as amendments and implementations,
significantly influencing their legal value. Other works also suggest
modeling the data as a graph to enhance the exploration of the
different connections between laws [32] and propose graph match-
ing for performing better information retrieval tasks within legal
collections [34].

The modeling of such acts within a graph database, which main-
tains the richness of knowledge as the one proposed in [15], finds
natural applications of network analysis techniques. For instance,
in [8], authors propose a method for evaluating the similarity be-
tween legal documents, significantly improving accuracy by lever-
aging their citation network. In [10], network analysis is used to
evaluate the structure of the French Environmental Code, while
in [11], the entire French Legal Code is represented as a graph and
analyzed. Concerning the U.S. legislation, [9] evaluates the cita-
tion network of the United States Code by examining its degree
distribution; however, this work limits the analysis to a version
of the United States Code, a collection of laws built by the U.S.
bureaucracy and already organized in chapters and do not consider
the flow of laws as introduced by the Congress, thus missing the
importance of the temporal evolution of the U.S. legislation.

A first effort in modeling U.S. laws into graphs, and in particular,
adopting the property graph model, was conducted with the Legis

Graph project [25]; however, this effort was very limited on the
amount of data that was considered (with laws only from the 114th
Congress). Additionally, their focus was on connecting the actions
of legislators, committees, and bills in Congress, thus not consid-
ering the textual content of the laws and, especially, not modeling
the network of citations among acts.

In the rest of the sections, pushed by recent developments in
LLMs efficacy in extracting information, we follow the line of efforts
in organizing legislative knowledge within a graph model, such
as the ones undergoing in Italy [4, 15], and we present a similar
resource for the U.S. legislation, by using LLMs to support the KG
construction.

3 KNOWLEDGE GRAPH CONSTRUCTION
In this section, we present our approach and pipeline deriving the
Knowledge Graph of the U.S. public laws, published on a federal
level. First, we outline the underlying database model, the data
source, and the challenges related to the documents-to-graph trans-
formation. Then, we present how we employed Large Language
Models to derive a machine-readable and accurate version of all
the bills and how we transformed such elements into graph objects.
Finally, we discuss the technique we adopted to derive references
among acts. An overview of the pipeline we implemented is pre-
sented in Figure 1.

3.1 Property Graphs and Legislative Knowledge
The property graph data model is a versatile and widely utilized
framework for structuring and managing knowledge graphs. It ex-
tends the traditional graph representation by embedding attributes
into nodes and edges, enabling the representation of intricate re-
lationships and detailed properties within a domain [19]. In this
model, nodes represent entities or concepts and are often cate-
gorized with labels that classify them into distinct types. Edges
capture the relationships between nodes and are similarly typed
to reflect their specific nature. Both nodes and edges are enriched
with properties, which take the form of key-value pairs that store
additional contextual information.

The property graph model is particularly suited for knowledge
graphs because it handles heterogeneous data effectively and sup-
ports complex queries. Unlike relational databases, where relation-
ships are inferred through joins, the property graph treats rela-
tionships as first-class entities, explicitly representing connections
within the data. This explicit structure facilitates efficient traversals
and querying in interconnected datasets, making it ideal for appli-
cations requiring semantic depth and contextual richness with a
high degree of flexibility [18]. The PG-Schema [6] that we adopted
follows the line of [15], where a unifying graph schema for legisla-
tion was proposed, with additions that encode US-specific features
as node properties (i.e., the presence of a short title and subjects
for each law). Thus, the graph schema becomes:

CREATE GRAPH TYPE lawsGraphType STRICT{
(lawType: Law {id STRING, title STRING,
chamber STRING, congress INT, publicationDate
DATE, lawnumber INT, presentedDate DATE,
subjects LIST, shortTitle STRING, lawText
STRING}),



Figure 1: Pipeline for constructing a Knowledge Graph (KG) of U.S. legislation using Large Language Models (LLMs). The
process involves extracting and classifying edges from various legislative document formats (PDF, HTML, XML) and combining
LLM fine-tuning with few-shot learning techniques for edge and node properties retrieval and classification.

(:lawType)-[referenceType: is_legal_basis_of]
->(:lawType),
(:lawType)-[referenceType:amends|abrogates|cites]
->(:lawType)}

3.2 Data Source
The Congress.gov Application Programming Interface (API) [28],
developed by the U.S. Library of Congress, offers a structured way
for Congress and the public to access and retrieve machine-readable
data, i.e., the federal congressional bills from the collections hosted
by the Library of Congress. The available bills on the portal cover
the years from 1951 to 2024. While most recent bills are available
in an XML or HTML format, older bills are only available as dig-
italized PDFs, i.e., images that have been scanned and added to
the collection of bills. If multiple formats of the same law were
available, we preferred the XML version over HTML because its
structured tagging is more consistent, facilitating the conversion
to graph objects [41]. In Figure 2, we report the number of laws
available each year in different formats. There are 11,425 PDF laws
from 1951 to 1992, 3,640 HTML laws from 1989 to 2014, and 2,982
XML laws from 2006 to 2024. Thus, we implement additional steps
to our pipeline to expand the graph to all U.S. legislation available in
digital version, allowing us to derive, to the best of our knowledge,
the widest structured database of congressional legislation. In Fig-
ure 1, we depict the number of bills available for each publication
format.

Congress Bills and Legislation. Congressional bills represent
formal legislative proposals introduced within the United States
Congress, which comprises two chambers: the House of Represen-
tatives and the Senate. A legislative proposal may take the form
of either a bill or a joint resolution, and it can originate in either
chamber. It is worth noting that multiple versions of a single bill
often emerge during the legislative process. These variations may

Figure 2: Distribution of the number of laws each year in the
different available document formats.

result from successful amendments made, for instance, when a bill
transitions from one chamber to the other after passage in the orig-
inating chamber. Nevertheless, while the API gives access to all
of these intermediate versions, we are interested in retrieving the
final version of the law, as introduced within the legislation. We
can distinguish between public and private bills. While public bills
address general public matters and pertain to individuals only as
members of broader categories, private bills aim to confer benefits
limited to one or more specific individuals, including corporations
or institutions, usually in cases where no alternative legal remedy
exists. Resolutions, though also legislative acts, differ from bills in
their scope and purpose. Simple resolutions pertain to the opera-
tions or collective opinions of a single chamber, while concurrent
resolutions address issues affecting both chambers or express their
shared stance on public policy [27].



In the proposed Knowledge Graph, we represent only public
bills (or either law) as nodes in the graph, as they are the legislative
basic units that represent the federal legislative system and are
relevant for deriving the graph of in-force federal legislation. In
the following paragraphs and sections, we will refer to bills or laws
(interchangeably) to indicate Congress-introduced public bills.
The United States Code. The United States Code represents the
codified organization of the general and permanent laws of the
United States, arranged systematically by subject matter. It com-
prises 53 titles, each addressing a broad area of law, and is published
by the Office of the Law Revision Counsel of the U.S. House of Rep-
resentatives. Initially released in 1926, the U.S. Code’s second main
edition followed in 1934, with subsequent primary editions issued
at six-year intervals since that time [45].

The unstable nature of the U.S. Code, with new sections and top-
ics being introduced at any publication, poses a significant challenge
in its full integration into a structured Knowledge Graph, which
should capture the temporal evolution of the legislative system and
aims at modeling the interdependencies among acts. However, since
its contents directly derive from the bills introduced by Congress
and can be traced by selecting the corresponding law, we decided
to exclude it from a direct representation in the graph.
Document Metadata as Node Properties. For each introduced
bill, the Library of Congress API provides useful bill-specific meta-
data, such as the bill type, the bill number, the Congress that enacted
the bill, the originating chamber, and the date of introduction and/or
publication. Such information is available for all acts and can be
directly assigned as properties of each law node. However, only
some of these attributes are available only for a portion of laws, thus
harming the possibility of conducting a comprehensive analysis
and navigation of the graph by leveraging such information.
Quality of Digitalized Bills. While the adoption of international
standards and machine-readable formats like XML-based ones natu-
rally improves the quality and accessibility of legislative documents,
such a conversion exercise has not been extended to old U.S. legisla-
tion, which is vastly available as figures within PDFs (see Figure 1).
Finally, as we target to obtain a structured representation of bills
and their references, both PDF and HTML-based bills do not tag ref-
erences that appear within their text, raising the issue of (uniquely)
identifying the reference within an unstructured text.

3.3 LLM-Enanched OCR
The advent of powerful Large Language Models (LLMs) has stim-
ulated their use also as correction agents for Optical Character
Recognition (OCR) tasks and, in particular, to fix OCR-induced
errors derived from bad quality or other noise and image misalign-
ment that results in wrong extraction of texts. For instance, in [30],
they use LLMs to enrich the outputs of OCR applied to documents
containing financial invoices, and they demonstrate that, by fusing
OCR engines, such as Tesseract, with the two LLM models, Llama3
and Mistral, they improve the accuracy and reliability of informa-
tion extraction operations. In [44], they also started using LLMs
to enhance the OCR quality of scanned historical newspapers by
using a prompt-based approach that instructs the model to detect
and correct OCR errors and achieving a significant reduction in
character-reading error rate. For this task, we prefer a two-step

approach, instead of the more recently introduced vision models
since (i) laws are mostly text and starting from a more controlled
OCR-based output provides a more reliable output and (ii) the LLM
fixing task allows us to use more flexibility in the choice of the
model, with a reduction of costs and computational power required.
Similarly, in [26, 29], they demonstrate the power of LLMs in ex-
tracting structured information from text, evaluating the ability of
models like GPT-3 to accomplish the extraction task.

Following these lines of research, we combined a widely popular
OCR engine, i.e., Tesseract [43], with an adequately instructed LLM
to achieve a consistent and accurate extraction of PDF-scanned
bills. In detail, we employed an open-source LLM, the LLama-3 70B
model, to act as a correction agent for OCR digitalized documents
and carefully instruct it to handle and read legislative bills. To this
aim, we adopted the following steps:

(1) Each OCR digitalized document is split intomultiple chunks
if the length is higher than the length of the output of
the LLama-3 model, which is restricted to 2048 max token
output.

(2) The LLM is provided with the following system instruc-
tions, which combines popular prompt instructions used
in LLM text correction [46], designed for maintaining both
the content and keeping all information, minimizing the
potential hallucinations:

Correct OCR-induced errors in the text, ensuring it
flows coherently with the previous context. Follow
these guidelines:
1. Fix OCR-induced typos and errors:
- Correct words split across line breaks
- Fix common OCR errors (e.g., 'rn' misread as 'm')
- Use context and common sense to correct errors
- Only fix clear errors, don't alter the content

unnecessarily
- Do not add extra periods or any unnecessary

punctuation
2. Maintain original structure:
- Keep all headings and subheadings intact
3. Preserve original content:
- Keep all important information from the original

text
- Do not add any new information not present in

the original text
- Remove unnecessary line breaks within sentences

or paragraphs
- Maintain paragraph breaks
4. Maintain coherence:
- Ensure the content connects smoothly with the

previous context
- Handle text that starts or ends mid-sentence

appropriately
IMPORTANT: Respond ONLY with the corrected text.
Preserve all original formatting, including line
breaks. Do not include any introduction, explanation,
or metadata.

(3) Each chunk is parsed within the following template, creat-
ing a set of LLM requests:



Previous context:{previousChunk.lastParagraph}
Current chunk to process:{currentChunk}
Corrected text:

(4) Each LLM request is performed by providing the system
content and a small set of manually crafted examples that
instruct the LLM on the OCR correction task, thus perform-
ing the so-called few-shot learning [38]

(5) Chunks are joined to output a single document
Each bill is thus modeled as a node in the graph, with the high-

quality text resulting from the LLM being a property of each node.
As a unique identifier for each node, we use the public law alphanu-
meric format, replicating what is used by the Library of Congress:

<chamber-acronym><number of congress>-<law number> (1)

3.4 Edge Derivation and Classification
Each act of the Congress is cited through a short title, which is
indicated in a specific section of the act itself. For instance, at the
beginning of its content, law HR86-705 states that: This act may be
cited as the “Mineral Leasing Act Revision of 1960”. Thus, all other
acts that refer to law HR86-705 must use such a short title.

The XML structure adopted by the Library of Congress for pub-
lishing the introduced bills includes the use of specific tags to indi-
cate the presence of references throughout the text, as, for instance:

. . . Section 21 of the Small Business Act <external-xref legal-doc="usc"
parsable-cite="usc/15/648">15 U.S.C. 648</external-xref> is amended
by adding at the end the following: . . .

Therefore, for bills whose XML version is available, we can ex-
tract such citations by leveraging the xref tags. However, when
parsing such elements, two scenarios might occur:

(1) The tagged XML element explicitly indicates the referenced
Public Law through its identifier, as in (1), allowing us to
directly retrieve the destination node and, thus, the edge.

(2) The tagged XML element indicates the part of the U.S. Code
that is being referenced. As described in Section 3.2, rules
deriving from introduced acts are arranged within the U.S.
Code according to the subject or topic. However, the unsta-
ble nature of the U.S. Code, with sections being updated,
moved, or added, hinders the possibility of utilizing the U.S.
Code as a bridge towards the underlying real introduced
bill being cited. Nevertheless, while the tag contains the
Section of the U.S. Code being referenced, we noticed that
the textual citation always refers to the introduced act (see
previous example). Thus, in such a scenario, we use the xref
tag as a placeholder, which indicates the position where
there is a textual citation, and we then parse the text to
derive the short title of the referenced act (in the previous
example, “Small Business Act”). To derive the reference, we
implement heuristics that leverage the linguistic feature
of how legislative acts are cited in U.S. acts (e.g., in most
cases, the citation is preceded by a the article). We use the
node metadata (i.e., the short title) to retrieve the public
law identifier through an exact string matching.

Edge Inference. While for the XML-published bills, we can lever-
age tags and heuristics to detect the references to other acts, the

approach does not apply to HTML and, especially, PDF-derived
bills. In both cases, no tag is available in the text, which can be
used to retrieve the cited act. A potential tool to solve this issue
is Eyecite [17], an open-source tool to extract references (through
Hyperscan [47]) from raw text. It is based on a regular expressions
database built from multiple sources and specifically designed for
the United States’ laws and citations. However, when we tried to
run it, the results were unsatisfactory since it only detected the
compact U.S. Code reference without the short titles of acts. For
instance, in the previous example, Eyecite would extract the ref-
erence “15 U.S.C. 648” instead of the short title one, which is the
only way to infer an edge between two public laws since no other
identifier is available and used when citing another legal document.
In fact, the U.S. code references are inconsistent over time since the
U.S. code evolves and can’t be used to map bills directly.
LLM Edge Extractor. In its instruct chat-based version, Mistral
7B is a large language model that balances accuracy and computa-
tional efficiency in performing specific tasks [23]. It is significantly
smaller than larger models like GPT-4 or Llama3-70B, outperform-
ing comparable large language models. It is released under the
Apache 2.0 license, allowing users to fine-tune for specific tasks.
In our scenario, we fine-tuned the model to extract references to
other acts based on the short title1. To this aim, we leveraged the
XML-derived citations to create a training dataset of true pairs of
texts and citations. To facilitate the task, we split the text of laws
into paragraphs by wrapping the text (this is also done for the
inference task). Through this approach, we created a dataset of 18k
pairs2, split into 80-20 training and validation sets for fine-tuning.
The model has been trained for 3200 steps with a batch size of 4,
4-bit quantization using bits and bytes, and a LoRA rank of 64. We
use the paged Adam optimizer, a learning rate of 5e-05, and a cosine
learning rate scheduler with a 0.03 warm-up fraction. We used an
A100 GPU with 40 GB of memory, and the best model reported a
validation loss of 1.001. In our Appendix, we illustrate the details of
the parameters used for fine-tuning the model (Table A.1) and, in
Figure A.1, we show the training and validation loss of the training
process. The model is publicly available at [2].

For performing inference, we combined the fine-tuned model
with few-shot learning, which enhances the accuracy of the model
by instructing it with a small set of manually crafted examples that
are provided as contextual input to the model [38, 48].
Results. The number of detected citations is depicted in Table 2,
where we compare our approach with benchmarks, namely a de-
terministic approach (which can only be used on XML files) and
Eyecite, as described in the previous paragraphs. The LLM-based
approach outperforms both benchmarks and can find many more
citations that can be used to generate an interconnected legislative
graph. For PDFs, the approaches are comparable, which is most
likely due to citations to much older acts that the LLM has rarely
seen during training. Focusing only on edges that can be repre-
sented within the graph (due to the presence of both the source and
destination node), we get 31.180 unique citations. This figure does
not include multiple citations with the same source and destination.

1During our tests, we experienced better results by fine-tuning a Mistral model rather
than a Llama3-7B. The analysis of such differences is out-of-scope of this work.
2The dataset is available at [1]



Paragraph of the law Reference Type
(c) Reporting Amendment.–The Sudan Peace Act (50 U.S.C. 1701 note) is amended by
striking section 8 and inserting the following:. . .

The Sudan Peace Act AMENDS

2. Since the enactment of the Trafficking Victims Protection Act of 2000 (division A of
Public Law 106-386), the United States Government has made significant progress in
investigating and prosecuting acts of trafficking and in responding to the needs of
victims of trafficking in the United States and abroad . . .

Trafficking Victims Protection Act of 2000 CITES

Table 1: Few-shot learning example provided to the LLama-3 70B model for performing edge labeling, i.e., classifying the
reference according to its type and coherently with the graph schema

Approach PDFs HTMLs XMLs

Deterministic (XML Tags) - - 18.801
Eyecite [17] 26.266 23.112 10.551
LLM Edge Extractor 27.556 36.567 25.852

Table 2: Citations to other acts extracted by different ap-
proaches, based on the publication format available. The
deterministic approach refers to using XML tags, combined
with heuristics, to detect references. Also, note that Eyecite
does not detect short titles but only U.S. Code references,
which do not allow to derive the edge, as discussed in Sec-
tion 3.2. Note that some of the citations found by our ap-
proach do not become edges in our KG since they refer to
laws published before 1951.

Edge Labelling. Citations can have different meanings, and users
might be interested in having a richer set of citation labels to use
when conducting their analysis. This issue has been studied in [39],
where authors built a manually annotated dataset that contains
labeled U.S. law references according to their types, very close to
the ones of our graph schema. However, since the dataset is not
publicly available, we can’t leverage such a resource in our context.
To tackle this, we adopted a few-shot learning approach of a large
LLM model, instructing it to perform text classification. We adopt
the following instructions as system content:

You are an assistant that, based on a reference, you have
to classify it into the following categories:
-'AMENDS', if the text is modifying something about the

reference law
-'ABROGATES', if the text is scraping something about the

reference law
-'IS_LEGAL_BASIS_OF', if the reference law is used as the

foundation for stating something
-'CITES' in the rest of the cases, such as when it is a

generic citation

and we provide the LLM with manually annotated examples that
we present in Table 1. The approach resulted in the creation of 2.979
AMENDS edges, 201 ABROGATES edges, 1.843 IS_LEGAL_BASIS_OF
edges and 28.000 CITES ones. We manually evaluated samples of
such reclassification and noted that, as desired, the approach was
quite conservative and accurate, meaning it re-classifies edges in
safe cases, leaving doubtful cases with the generic CITES label.
In future iterations, such accurate classifications can be used to

further reclassify additional edges by fine-tuning dedicated LLMs
that are suited for the classification task, such as adopting a BERT
model that demonstrates state-of-the-art performance in various
domains. [12, 49]

3.5 Nodes Properties Enrichment
As discussed in Section 3.2, recent laws published by the Library
of Congress are provided with useful document-level metadata
assigned as node properties of the KG, while older laws do not
share the same availability of metadata. In this work, we focus
on the subjects attribute, describing the topics regulated by an act,
which, for recent laws, are inserted by experts and are available
for 7857 acts out of the 17k acts (i.e., nodes) that compose our
database. This attribute is crucial for performing structured queries
that enable fast access to documents of interest or to build and
enhance retrieval systems that can easily understand the content
of an act through the topics.

To support such studies, we developed an approach to integrate
missing information that typically characterizes older laws. In par-
ticular, given the availability of acts whose subjects were manually
annotated, we obtain a full representation of the subjects of all laws
of our KG by fine-tuning a light LLM model capable of extracting
subjects from texts. We used the same configuration described in
Table A.1 to fine-tune a second Mistral7B model, a Subject Extractor,
utilizing the same machine. The evolution of the train and valida-
tion losses are available in the Appendix (Figure A.2). Given the
easier task, w.r.t. edge extraction, we achieve a better validation loss
of around 0.83 with the need for fewer steps before convergence.
The fine-tuned model is also publicly available at [3].

In Figure 3, we report the most frequent subjects, combining
both metadata manually inserted by the Library of Congress and
extending such knowledge with our approach to older laws. Such
subjects naturally relate to general legal aspects such as politics,
government, congress, and the economy. Although less frequent,
most extracted subjects reflect the specific details of the laws ex-
amined. Out of the 7717 different subjects extracted, only 5771 are
common to at most 10 laws, and 2817 are found in just a single
law. For example, some of the single-law subjects are "Cigars" or
"Printing paper".

4 APPLICATIONS
In this section, we provide an overview of some of the applications
we unlock by constructing a structured graph of the US legislation
and, in particular, by adopting the Property Graph schema [13].



Figure 3: Top 10 most frequent subjects extracted from the
text of laws. For each subject, the number of laws published
with that specific subject is reported.

Naturally, the advantage of having a structured database of leg-
islative knowledge empowers users to write queries that allow the
derivation of advanced insights in a straightforward way within
the U.S. legislative system, such as retrieving portion of legisla-
tion but also, for instance, measuring the government activity on a
certain subjects by grouping, filtering and counting nodes. Other
tools developed for Property Graphs, as Association Rules and Trig-
gers, could also be used to conduct better knowledge discovery and
update the state of the graph [31].

A natural application of the graph model refers to the possibil-
ity of users to graphically visualize patterns or structures of U.S.
legislation, allowing them to interactively navigate the legislative
corpus, by expanding nodes and traversing edges, also visually [42].
Then, since our pipeline integrates missing properties in older laws,
such as subjects, we unlock analysts, especially in economics, to
conduct temporal analysis on the portion of the graph of interest,
which can be easily derived through graph queries. For instance,
by isolating laws (thus nodes) of a certain period, we characterize
the activity of each Congress over the years.

More advanced insights can be obtained by combining semantics
and graph models with network analysis tools: by projecting parts
of the graph through queries we facilitate the exploration and anal-
ysis of the network topology, by applying centrality or clustering
techniques that account for the specific semantic of the graph. For
instance, one could be interested in analysing only centrality re-
ferred to certain subjects or analyse clusters according to the types
of edges, an analysis that requires a rich data model like ours to
construct the networks,

4.1 Property Graph Queries
As a representative example of the query-based insights our graph
data model can unlock, we present two paradigmatic queries that,
leveraging the graph data model and the graph query language,
empower users of a tool for a better exploration of the legislation.

4.1.1 Lawmaking Patterns. We show in Figure 4 subjects grouped
by three custom macro-topics of interest. These groups are health,
education, and military. By tracking such groups, the activity of

Figure 4: Temporal evolution of laws grouped into macro
topics based on the subjects that are assigned to each graph
node. For each macro topic, the number of laws published in
a 4 years period with that specific subject is reported.

Subject Law
Count

Amended
Percentage

Administrative procedure 226 20.8
Authorization 186 11.6
Congressional oversight 173 15.3
Advisory bodies 170 24.8
Agriculture and Food 167 16.7
Government Operations and Politics 164 5.3
Economics and Public Finance 149 8.2
Congress 145 9.9
Appropriations 140 13.3

Table 3: Top 10 most frequent subjects extracted from the
text of amended laws. The Law Count column shows the
number of amended laws fromwhich the subject is extracted.
The Amended Percentage column displays the percentage
of amended laws relative to the total number of laws that
include that subject.

different governments can be analyzed and scrutinized. In Appen-
dix A.3, we demonstrate how to use Cypher, the graph query lan-
guage for Property Graph, to conduct this kind of analysis.

4.1.2 Evolution of Amendment Activity. An interlinked and easily
queryable graph also opens new ways for evaluating the broader
implications of lawmaking. For instance, by combining subjects
with references, our resource can be used to provide insights into the
evolution of U.S. laws in terms of identifying which topics are more
likely to be revised. As a representative use case of such analysis,
we present in Table 3 the ten most frequent subjects extracted from
amended laws, including both the count of amended laws and the
percentage of amended laws relative to the total number of laws
with each specific subject. The average percentage of amended laws
per subject is 26.4%, with a standard deviation of 25.7%, indicating
significant variation in the behavior across different subjects.



Law Title Publication
Year

PageRank
Score

Omnibus Crime Control and Safe Streets Act 1968 57.32
General Government Matters Appropriation Act 1960 56.51
Elementary and Secondary Education Act 1965 45.57
Wild and Scenic Rivers Act 1968 39.49
Immigration and Nationality Act 1952 21.39
Public Law 86-643 1960 19.53
Designation of Great Hall of
the Capitol Visitor Center as Emancipation Hall 2007 14.10

Higher Education Act 1965 13.59
Public Law 100-230 1988 13.38
Small Business Act 1958 11.94

Table 4: Top 10most central lawswithin the largest connected
component of the graph. The Publication Year column shows
the year in which each law was published. The PageRank
Score column displays the score given by the PageRank algo-
rithm to each reported law.

4.2 Network Analysis
By constructing the legislative graph to reflect the underlying se-
mantics of United States legislation, we enable the direct applica-
tion of network analysis techniques to gain deeper insights into
its structure. This includes exploring connectivity and community
structures within the citation network of laws, as well as under-
standing how topics extracted from legal texts are related through
the connections between laws.

Such analysis has been largely exploited by legislative and social
science literature: for example, to highlight the most influential
documents and laws within the legal domain under analysis [24, 35];
and also to study the evolution of a legislative system through
the joint work of both legal and community analysis [40]. In the
following paragraphs, inspired by such literature, we provide some
examples of such techniques, aiming to demonstrate the utility of
having a complete representation of the U.S. legislative system in a
graph, as derived from our LLM-assisted pipeline.

4.2.1 Network Structure and Influential Laws. As a first example,
we can analyze the structure of the resulting graph and identify
the most central nodes, by considering all types of citations, thus
using the entire graph. The full graph contains 17,961 laws, with a
dominant connected component, i.e. the largest subgraph in which
a path exists between every pair of nodes, comprising 6,496 laws.
The graph contains only four other components with more than
five nodes, none exceeding ten, while the remainder are singletons
or pairs. Focusing on the dominant component, i.e., on the portion
of legislation that plays a more important role, the PageRank algo-
rithm can be applied to identify influential laws within the largest
component. In Table 4, the top-ranked nodes are reported: they
cover a diverse range of topics -some procedural or bureaucratic
(General Government Matters Appropriation Act, 1961), others more
operational (Omnibus Crime Control and Safe Streets Act of 1968, El-
ementary and Secondary Education Act of 1965)— but all are notably
older statutes, consistent with the expectation that foundational
laws tend to accumulate more references over time.

4.2.2 Communities and Subjects Classification. The graph struc-
ture also allows us to explore the internal structure of the law net-
work through the application of community detection algorithms.
Understanding how laws cluster together can lead to a better classi-
fication of their subjects. For instance, as communities form around
related laws, a single subject may appear in multiple communities,
revealing overlapping semantic clusters. This helps distinguish be-
tween broadly shared topics—often associated with general legal
themes—and more specific topics that appear in only a few clusters,
highlighting the unique focus of those communities. This unique
focus can help refine existing legal classifications, especially when
different labels describe similar or related topics, and by grouping
related subjects into broader thematic categories, we can reduce
fragmentation and improve interpretability.

We clustered the United States laws into 1,530 distinct com-
munities using the Label Propagation algorithm. Most of these
communities are very small (one or two nodes), but we find a few
mid-sized groups and one very large community containing over
1,000 laws. Then, we cross-referenced the detected communities
with the subject extracted in Section 3.5. For example, we identified
a community of nine law nodes that collectively touch on 46 distinct
topics, all loosely related to nature and the environment. These
topics range from general semantic themes—such as Animals and
Climate Change and Greenhouse Gases—to more legally defined ar-
eas like Public Lands and Natural Resources. This demonstrates how
network-based community detection can complement traditional
classification schemes and reveal meaningful groupings across legal
and semantic dimensions.

4.2.3 Temporal Evolution of Subject Centrality. By combining ref-
erences and subjects, our legislative graph can unlock more inter-
esting graph analysis.

First, the flexibility of the property graph data model allows us
to link subjects based on references, thus deriving a network of
co-occurrences among subjects that informs about which subjects
are somehow consistently dependent on others, unveiling hidden
patterns. This can be done by performing projections on the graph:
MATCH (l:Law)
UNWIND l.subjects as sub
WITH count(l.lawID) as countL, sub
CREATE (s:Subject {name: sub});

MATCH (l:Law)
UNWIND l.subjects as sub
WITH l, sub
MATCH (s:Subject)
WHERE s.name = sub
MERGE (l)-[:RELATED_TO]->(s);

MATCH (s1:Subject)<-[:RELATED_TO]-(l1:Law)-[:CITES]->
(l2:Law)-[:RELATED_TO]->(s2:Subject)

MERGE (s1)-[r:CITES_SUB]-(s2)
ON CREATE SET r.lawIDFrom = l1.lawID, r.lawIDTo = l2.lawID

where we first convert subjects to nodes, and we merge edges
to connect laws with their respective subjects. Then, by traversing
laws citations, we can create co-occurrence relationships among
subjects, thus creating a powerful network of subject interactions
to be investigated.



Figure 5: Temporal evolution of the centrality of the 25 most central subjects according to PageRank across the last 30 years.

In the case of the U.S. legislative graph, this step created over
5,000 subject nodes and added more than 1.5 million new edges
capturing the semantic and functional relationships within the leg-
islative systems. On this expanded network, temporal centrality
metrics can be used to evaluate the evolving importance of each
subject throughout the history of the U.S. legislative system, for
instance, by applying the PageRank algorithm to measure the cen-
trality of each subject over time, taking into account only the nodes
and edges that had been introduced up to the year under analysis.

Figure 5 reports the top 25 most central subjects over the past 30
years. Notably, while the top three subjects have consistently held
their positions across decades, from 2015 onward, the entire top-25
ranking has remained unchanged—a marked contrast to earlier
years, where significant fluctuation was observed beyond the top
three. This plateau in subject centrality suggests a stabilization or
ossification of thematic focus in recent legislative activity, marking
a potentially significant shift in the structural dynamics of U.S.
lawmaking. While many of the most frequently occurring subjects
extracted directly from the text of the laws also appear among the
top-ranked in terms of centrality, the two rankings do not fully align.
This divergence highlights how incorporating graph structure and
LLM-based edge construction enables a more refined analysis of
the U.S. legislative system.

5 CONCLUSIONS AND FUTUREWORK
In this paper, we present an LLM-assisted pipeline that constructs
the widest Knowledge Graph representing the U.S. Congressional
legislation since the 50s, for which digitalized documents from the
Library of Congress are available. Compared to previous works, we
adopt a recently published unifying database schema based on the
property graph model, integrating and enriching it with powerful

LLMs capable of transforming unstructured low-quality textual data
into structured information. By modeling the data in a graph, we
allow interested stakeholders to easily query information about the
U.S. legislation, supporting traditional users working with legisla-
tive data and pushing network-based studies on such knowledge or
developing graph-based search systems that synergize with KGs to
achieve better searches. We also provided some relevant application
examples inspired by computer law and social science literature,
which would primarily benefit from the constructed graph.

In future iterations, we aim to expand the pipeline by integrating
other legislation sources, such as Congress resolutions or Presiden-
tial acts that are a relevant part of the U.S. legislation.
Resources. The Property Graph of the U.S. legislation is available
on Zenodo [14]. The fine-tuned LLMs, the Mistral-7B for edge
finding and the Mistral-7B for subject extraction, are available on
HuggingFace [2, 3].
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A APPENDIX
A.1 LLM Fine-tuning Parameters

Parameter Value

Batch Size 4
Learning Rate 5e-05
Training Time 6 h
Best Validation Loss 1.01
Optimization Adam
Training set size 18k
Warm-up fraction 0.03
Fine-tuning Technique LoRa

Table A.1: Fine-tuning parameters and settings to fine-tune
the Mistral model, based on the LoRa technique [21].

A.2 Ref-Finder Fine-Tuning

Figure A.1: Training and validation loss curves for the fine-
tuning of the Ref-Finder. The blue line represents the train-
ing loss at each step, while the orange line represents the
validation loss, which converges after around 2000 steps.

A.3 Subject Extractor Fine-Tuning

Figure A.2: Training and validation loss curves for the fine-
tuning of the Subject Extractor.

A.4 Querying the graph with Cypher
The Cypher query to create macro-topics statistics as in Figure 4
can be formulated as follows:

MATCH (l:Law)
WHERE (ANY(x in l.subjects WHERE lower(x) contains

'education') OR ANY(x in l.subjects WHERE lower(x)
contains 'school'))

RETURN l.publicationDate.year as year, 'Education-related'
AS subject

UNION ALL

MATCH (l:Law)
WHERE (ANY(x in l.subjects WHERE lower(x) contains

'medical') OR ANY(x in l.subjects WHERE lower(x)
contains 'health'))

RETURN l.publicationDate.year as year, 'Health-related'
AS subject

UNION ALL

MATCH (l:Law)
WHERE (ANY(x in l.subjects WHERE lower(x) contains

'military') OR ANY(x in l.subjects WHERE lower(x)
contains 'armed forces'))

RETURN l.publicationDate.year as year, 'Military-related'
AS subject
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