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ABSTRACT

Recommendation unlearning erases the influence of specific data
from a well-trained recommender system. However, existing un-
learning approaches either require costly retraining or significantly
reduce recommendation accuracy. In response, this work introduces
a system-agnostic, lightweight unlearning framework, LightUL,
which proposes a whitening module to enable efficient unlearning
by exclusively training a small MLP on the data to be unlearned
and “phantom users” to anonymize interaction data to preserve
collaborative information, thereby alleviating performance degrada-
tion. Experimental results show that LightUL outperforms existing
solutions in both effectiveness and efficiency.
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1 INTRODUCTION

Recommender systems [5, 12, 13] leverage vast amounts of user
interaction data (e.g., clicks, purchases) to provide personalized
recommendations. However, such data often contains sensitive or
personal information. Recent regulations, such as the General Data
Protection Regulation (GDPR) [3], mandate that service providers
comply with user requests to erase their data. This requires not
only deleting such data, referred to as forgotten set, from datasets
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Figure 1: Overview of the retrain and reverse unlearning,.
Here, M, M/, M" and AM are model parameters.

but also ensuring that the trained systems to “forget” them. This
process is known as Recommendation Unlearning [7, 14, 17].

As shown in Fig. 1, existing solutions for recommendation un-
learning fall into two main groups[8]: retrain and/or reverse un-
learning. Retrain unlearning [1, 18] is a straightforward yet costly
approach that involves retraining the system from scratch after
deleting the forgotten set, which is impractical for real-world ap-
plication involving large-scale train sets and frequent unlearning
requests. Though some methods[1, 8] propose to partition the data
to train multiple sub-models ahead, allowing retraining to be limited
to the affected sub-models, this approach is only effective when the
forgotten set is not distributed across numerous partitions, which
is a condition that rarely holds in practice. Reverse unlearning
methods [9, 20] estimate the impact of forgotten data on model pa-
rameters using reverse gradient operations. However, their reliance
on localized Hessian approximations limits their ability to capture
the global influence of graph convolutions, resulting in suboptimal
unlearning efficacy and recommendation accuracy.

To address these limitations, we propose a system-agnostic light-
weight framework, LightUL, which can be plugged into any recom-
mender system (called base model) for unlearning. The framework
consists of two key designs, i.e., the whitening module and phan-
tom users. Firstly, the whitening module fine-tunes the user/item
embeddings by a frozen base model with a simple Multi-Layer Per-
ception (MLP), which is trained to aligning the representation of
the forgotten interactions with those of non-existing interactions.
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This method achieves efficient unlearning by exclusively training
a small MLP on the forgotten set and an equal-sized set of ran-
domly selected samples, which is typically much smaller than the
entire train set. Secondly, to alleviate accuracy decline, we propose
an anonymization strategy (detailed in Sec. 3.2) that creates non-
existent “phantom users,” to preserve anonymized collaborative
information in the forgotten set for maintaining accuracy. This
strategy is unidirectional (i.e., phantom users cannot be traced back
to the original users), complying with regulations, e.g., GDPR [3],
that permit the preservation of anonymized data. Experimental
results demonstrate that our proposed method outperforms state-
of-the-art unlearning methods in both effectiveness and efficiency.

2 PRELIMINARIES

This section introduces the preliminaries relevant to our approach.

Recommender systems: Let ¢ and I denote the sets of users
and items, respectively. The set R € U X T represents the user-item
interaction records (e.g., clicks, purchases). Recommender systems
are trained on R to predict the likelihood of a user u € U interacting
with an item i € 7. Specifically, these systems assign a score to each
user-item pair, where a higher score indicates a greater probability
of interaction. The top-ranked items are then recommended to each
user. Typically, the systems learn user and item embeddings from
interactions and aggregate them (e.g., via inner product or neural
networks) to generate prediction scores.

Recommendation unlearning: Let R¢ denote the set of inter-
actions to be unlearned (forgotten set), and Ry = R \ Ry represent
the set of interactions to be retained (retained set). Recommendation
unlearning aims to erase the influence of R ¢ from a system trained
on R. Effective unlearning should achieve three objectives: (1) com-
pletely eliminate the influence of the forgotten set, (2) perform
unlearning as quickly as possible, and (3) maintain high recommen-
dation accuracy after unlearning.

3 METHODOLOGY

To achieve the objectives outlined above, this section introduces
our proposed unlearning framework, LightUL, as depicted in Fig. 2.

3.1 Whitening module

To effectively unlearn the forgotten set, we design a system-agnostic
whitening module that can be plugged into existing recommender
systems, which fine-tunes the user or item embeddings that affect
recommendation results.

Design principles: In designing the whitening module, we
propose and follow the three principles: (1) The embeddings of
unaffected users and items should remain unchanged before and
after the unlearning process to preserve accurate information. (2)
The predictions for forgotten interactions should exhibit signifi-
cant differences before and after unlearning. (3) The predictions of
forgotten interactions after unlearning should be similar to those
of non-existing interactions.

Module design: As shown in Fig. 2, a whitening layer is intro-
duced after the frozen base model, which encodes users and items
into embeddings. The purpose of this whitening layer is to adjust
the user and item embeddings to achieve unlearned recommenda-
tions. Specifically, for a user or item o with embedding e, € R?, the

whitening layer WL is defined as:

¢ = WL(ey) = {Q(ev) ifovis ai.fected, )
ey otherwise,

where v is considered affected if it is involved in at least one forgot-
ten interaction. Here, Q : RY — RY is a differentiable function, and
e, remains unchanged for unaffected users or items. This design
ensures that the whitening layer exclusively influences the embed-
dings of users or items involved in forgotten interactions, aligning
with the first design principle.

Training: To train the whitening module, we design two loss
functions to train the whitening layer, guided by the second and
third design principles. First, we compute the system predictions
for forgotten interactions before and after unlearning, and then
increase their distance using a contrastive learning loss: L; =
Z(uier, ~Ino(AGG(ey, ei) — AGG(ey,, e])), where e, and ej, de-
note the embedding of user u before and after the whitening layer
WL, respectively. o is the sigmoid function that maps a score into
(0, 1) range. AGG represents the aggregation function used in the
base model (e.g., inner product, neural networks). In this work,
we instantiate our LightUL with two representative recommender
systems: BPRMF [13] and LightGCN [5]. Both of their aggregation
functions are vector inner products.

Besides, we make the prediction scores of the forgotten interac-
tions close to those of non-existing interactions as follows.

1
Ly= — (AGG(e], €}.) — AGG(e),. €}-))%,

0] (u,i*,i")€e0

where O = {(u,i*,i7)|(w,i*) € Ry, (u,i7) € R™} and (u,i%,i7) is
a training sample for this loss function. Here, R~ contains randomly
sampled user-item pairs that do not exist in R; i~ is a randomly sam-
pled negative sample that u has not interacted before. Finally, the
loss function is a combination of L1 and Ly: Ly pr = aLi +(1—a)La,
where « is a hyper-parameter to balance the two loss functions.
The whitening module achieves efficient recommendation
unlearning from the following perspectives. (1) It modifies
only the original embeddings generated by the base model, avoiding
the need for prohibited retraining of different sub-models or reverse
gradient operations, which require significantly more GPU memory.
(2) We freeze the base model and implement Q using a Multi-Layer
Perception (MLP), which has significantly fewer parameters than
the base model. (3) Training involves only the forgotten set and an
equal-sized set of randomly selected samples, eliminating the need
to access the substantially larger entire train set.

3.2 Phantom Users

Unlearning interaction data from a recommender system often leads
to a decline in accuracy. To address this issue, we introduce “phan-
tom users,” which are non-existent users designed to anonymize
real users while retaining a portion of the forgotten interactions. By
preserving part of the anonymized interaction patterns, phantom
users help maintain recommendation accuracy.

Generation strategy: Each real user is assigned to a phantom
user, and a single phantom user can be associated with multiple
real users to ensure anonymization. Specifically, we first apply k-
means clustering [15] on user embeddings derived from the base
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Figure 2: Overview of LightUL framework, which consists of two key designs, i.e., © whitening module and @ phantom users.

Table 1: Statistical details of datasets.

ML-1IM  Gowalla Yelp

#User 6,038 29,858 31,668
#Item 3,883 40,981 38,048
#Interaction 1,000,209 5,946,257 8,827,696

model to divide users into clusters. Each cluster corresponds to a
phantom user and represents multiple real users, where k is set to
n% of the total number of real users, and 0 < n < 100 is a hyper-
parameter. This strategy ensures that users within each cluster
share similar interaction patterns. As illustrated in Fig. 2, when a
real user submits an unlearning request, the interactions involving
that user are linked to its assigned phantom user, thereby preserving
the anonymized collaborative information of the real users.

Training: After creating the phantom users prior to the un-
learning process, we randomly initialize their user embeddings
and train them while simultaneously updating the related item em-
beddings during unlearning. We employ the widely used Bayesian
Personalized Ranking (BPR) loss [11, 12]:

Lpy = Z

(piti~)eP

~Ina(AGG(ep, €. ) — AGG(ep, e}-)),

where (p,i*,i7) is a training sample for this loss function and
denotes the set of them. p is a phantom user and i* is an item
that has an interaction record associated with p. i~ is a randomly
selected negative sample with no interaction associated with p.

Now, we can get the final loss function: L = Ly p+ALpy +y||®||§,
where A is a tunable hyper-parameter that controls the weight of
phantom user loss term. © denotes all trainable parameters in the
model, and y is the weight of regularization.

4 EXPERIMENTS

We conduct experiments to evaluate our proposed methods.

4.1 Experimental Setups
This subsection details our exerimental setups.

Datasets. We conduct experiments on three datasets, i.e., ML-
1M [10], Gowalla [4], and Yelp [19]. Their statistics are in Table 1.

Evaluation methodology. We randomly split the dataset into
train/validation/test sets by 8:1:1 ratio. Same as [1, 2, 16], we ran-
domly select 1% interactions from the train set as the forgotten

set. To evaluate the recommendation accuracy, we adopt the all-
ranking protocol [5, 12] and report NDCG@20 and NDCG@50 [6]
for recommendation accuracy. To evaluate unlearning complete-
ness, we follow previous works [2] to construct a test set containing
all forgotten interactions and an equal number of randomly sam-
pled retained interactions, labeling forgotten interactions as 0 and
retained ones as 1. Unlearning completeness is measured by the
Area Under the Curve (AUC) on this set, with higher AUC values
indicating better unlearning completeness.

Baselines. We instantiate our LightUL with two representative
recommendation systems (BPRMF [13] and LightGCN [5]), and
then compare with state-of-the-art unlearning methods:

e Original: The trained system before unlearning.

e Retrain: This method deletes all the forgotten set and re-
trains the system from scratch.

e RecEraser [1]: This method splits the data and system into
shards and only retrains the affected shards.

e LASER [8]: This method retrains the system from the latest
unaffected intermediate checkpoint.

e TFRU [20]: This method employs influence functions with
Hessian-Vector Product (HVP) to estimate and mitigate the
impact of forgotten data on model parameters.

e LightUL-WM: An ablation of LightUL, which only contains
the whitening module without using the phantom users.

Implementation details. We tune hyper-parameters carefully us-
ing a grid search to achieve optimal performance for all methods.
For LASER and RecEraser, we also optimize them for batch unlearn-
ing by grouping the data from the same partition together. For IFRU,
we adopt the grid search space used in its original paper [20]. For
LightUL, we set the learning rate to 0.005, and the training batch
size is 512. The embedding dimension size for all users and items is
64. The number of layers in LightGCN is 3. By default, the trade-off
coefficient « is set to 0.5, the phantom user loss weight A is 2, and
the regularization weight y is 1e-4. The phantom user ratio is set
to n% = 40% by default.

4.2 Recommendation Accuracy

Table 2 presents the accuracy of the systems after unlearning using
different methods. We made the following observations: (1) Our
methods (LightUL and LightUL-WM) outperform all state-of-the-art
baselines in terms of recommendation accuracy. The methods effec-
tively narrow the performance gap with Retrain. In certain cases,
such as on the ML-1M and GOWALLA datasets using the Light GCN
system, LightUL even outperforms Retrain. The results highlight



Table 2: NDCG@20 and @50 after unlearning,.

Table 3: Unlearning AUC across different baselines.

ML-1M GOWALLA Yelp
@20 @50 @20 @50 @20 @50

Original 0.2260  0.2649  0.0814 0.1105 0.0277  0.0438
Retrain 0.2255  0.2640  0.0854  0.1141  0.0286  0.0445

System Method

RecEraser 0.0956  0.1224  0.0325 0.0483  0.0133  0.0215

BPRMF LASER 0.1542  0.1916  0.0408  0.0500  0.0096  0.0155
IFRU 0.1870  0.2203  0.0561 0.0813  0.0219  0.0351

LightUL-WM  0.2196  0.2589  0.0814 0.1105 0.0278 0.0439

LightUL 0.2260 0.2642 0.0815 0.1105 0.0277  0.0438

Original 0.2855  0.3145 0.1355 0.1642  0.0460  0.0658

Retrain 0.2855 0.3099 0.1354 0.1636  0.0461  0.0657

ich RecEraser 0.1002  0.1266 ~ 0.1026  0.1260  0.0374  0.0545
LightGCN LASER 0.1389  0.1668  0.0635 0.0761  0.0205 0.0295

IFRU 0.1801  0.2172  0.1241  0.1522  0.0394  0.0580

LightUL-WM  0.2822  0.3062 0.1356  0.1642  0.0437  0.0636
LightUL 0.2902 0.3186 0.1358 0.1644 0.0449 0.0650

Performance on ML-1M Dataset (NDCG@50) Performance on GOWALLA Dataset (NDCG@50)
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Figure 3: Robustness analysis of phantom user ratio.

the effectiveness of LightUL in maintaining recommendation ac-
curacy. (2) LightUL outperforms the ablation variant LightUL-WM
in most scenarios, except for BPRMF on the GOWALLA and Yelp
datasets, where LightUL-WM achieves comparable performance.
These results indicate that our proposed phantom user strategy can
effectively preserve collaborative signals for maintaining recom-
mendation accuracy.

Besides, Fig. 3 shows the NDCG@50 of LightUL using Light GCN
and BPRMF across different phantom user ratios on the ML-1M and
GOWALLA datasets.! The results demonstrate that, although our
default setting is 40%, the performance remains robust for phantom
user ratios ranging from 10% to 80%. These findings validate the
robustness of LightUL to hyper-parameter variations.

4.3 Unlearning Completeness

Table 3 reports the results for unlearning completeness. We make
the following observations: (1) The system before unlearning (re-
ferred to as Original) achieves an AUC of approximately 0.5 across
all datasets and base models, indicating its inability to differentiate
between forgotten and retained interactions. In contrast, Retrain
demonstrates significantly improved performance compared to
Original, confirming the effectiveness of our evaluation method-
ology in examining a system’s ability to distinguish between for-
gotten and retained interactions. (2) Our methods outperform all
of the baselines, demonstrating its superiority in erase the influ-
ence of forgotten interactions. However, LightUL performs worse

1We omit the results for Yelp dataset for this experiment due to space constraints.

BPRMF
ML-1IM  Gowalla  Yelp

LightGCN
ML-1IM  Gowalla  Yelp

Method

Original 0.5045 0.4941 0.5088  0.4898 0.5017 0.5021

Retrain 0.6485 0.7547 0.7286  0.6353 0.7599 0.7613
RecEraser 0.6292 0.6690 0.6491  0.6234 0.7710 0.7712
LASER 0.5910 0.6246 0.6184  0.5716 0.5690 0.5465
IFRU 0.6367 0.8788 0.8274  0.5231 0.5888 0.5715

LightUL-WM  0.7891 0.9283 0.8331 0.7892 0.8456 0.9517
LightUL 0.6891 0.9006 0.8327  0.6654 0.8428 0.8580

Table 4: Running time (minutes) of unlearning.

Method BPRMF LightGCN
ML-1IM  Gowalla Yelp ML-IM Gowalla Yelp
Retrain 20.51 41.32 49.50 7.39 41.80 166.95
RecEraser 49.53 44.06 42.38 27.15 105.82  203.20
LASER 30.09 28.16 41.02 29.73 64.35 75.20
IFRU 0.06 0.15 0.26 0.24 1.52 2.46
LightUL-WM 0.80 0.63 0.90 1.75 1.41 8.73
LightUL 1.25 0.68 0.95 2.69 2.75 10.68

than LightUL-WM, suggesting that using phantom users to retain
collaborative information may reduce unlearning completeness.

4.4 Unlearning Efficiency

Table 4 shows the running time (in minutes) for each unlearning
method. Notably, IFRU offers the fastest times (0.06-2.46 minutes),
while our LightUL maintains competitive efficiency with a modest
increase (0.63-10.68 minutes), achieving a 40x speedup over Re-
train on Gowalla with BPRMF. This underscores LightUL’s strong
unlearning efficiency. Moreover, as shown in Sec. 4.3, LightUL ex-
cels in unlearning completeness, especially for LightGCN, outper-
forming IFRU by better mitigating the forgotten data’s influence
while preserving recommendation quality, due to its ability to han-
dle complex graph structures and global influences that IFRU’s
localized Hessian approximations struggle to address. In some in-
stances, LASER and RecEraser exceed Retrain’s runtime, likely due
to distributed unlearning across numerous partitions, necessitating
extensive sub-model retraining.

5 CONCLUSIONS

In this paper, we introduced LightUL, a novel system-agnostic
framework for efficient recommendation unlearning. The frame-
work incorporates two key components: a whitening module that
enables efficient unlearning by focusing exclusively on forgotten
set and fine-tuning a small MLP, and phantom users , which pre-
serve collaborative information anonymously to maintain recom-
mendation accuracy. Our experiments proved the efficiency and
effectiveness of LightUL. This work offers a practical solution for
real-world recommender systems with large-scale datasets and
frequent unlearning requests.
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