
ExperimentLens: Interactive Visual Analytics and Explainability
for ML Experiment Management

Stavros Maroulis
stavmars@athenarc.gr

ATHENA Research Center
Athens, Greece

Vassilis Stamatopoulos
bstam@athenarc.gr

ATHENA Research Center &
University of Ioannina

Greece

Panagiotis Gidarakos
pgidar@athenarc.gr

ATHENA Research Center
Athens, Greece

Konstantinos Tsopelas
k.tsopelas@athenarc.gr

ATHENA Research Center
Athens, Greece

Nikolas Masouras
nmasouras@athenarc.gr
ATHENA Research Center

Athens, Greece

Konstantinos Kozanis
kkozanis@athenarc.gr

ATHENA Research Center
Athens, Greece

Nikolas Theologitis
n.theologitis@athenarc.gr
ATHENA Research Center

Athens, Greece

George Papastefanatos
gpapas@athenarc.gr

ATHENA Research Center
Athens, Greece

Giorgos Giannopoulos
giann@athenarc.gr

ATHENA Research Center
Athens, Greece

Erik G. Nilsson
erik.g.nilsson@sintef.no

SINTEF Digital
Oslo, Norway

ABSTRACT
The widespread adoption of experiment tracking and MLOps plat-
forms has streamlined the management of machine learning work-
flows. Yet, these platforms often fall short in supporting interactive
visual analysis that combines experiment results, data exploration,
and model explainability within a unified interface. To address this
gap, we introduce ExperimentLens, an extensible experiment ana-
lytics tool that operates on top of existing tracking infrastructures
and supports multiple platforms through a simple adapter interface.
ExperimentLens offers a rich, web-based environment for com-
paring runs, visualizing performance metrics, exploring datasets,
and interpreting model outputs. Its modular architecture augments
standard tracking systems with flexible, interactive capabilities that
support both routine monitoring and in-depth analysis. We illus-
trate ExperimentLens’ functionality through a walkthrough of its
architecture and user interface.
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1 INTRODUCTION
The rapid growth of machine learning has driven the adoption of ex-
periment tracking and MLOps platforms, such as MLflow, Neptune,
ClearML, and ZenML [3, 5–7]. These tools provide essential infras-
tructure to log and manage experiments by capturing parameters,
metrics, and artifacts, supporting reproducibility and model devel-
opment. ML experiments typically involve iterative training and
evaluation with varying hyperparameters, data, and algorithms.

Consider a common setup where practitioners use Scikit-learn
[8] to train ML models and MLflow to track their experiments. They
iteratively adjust preprocessing steps, tune hyperparameters, and
retrain models, logging each run’s metrics, and output artifacts.
This setup enables them to manage different configurations and
iterations of their experiments, with the goal of comparing perfor-
mance across runs and refining model performance. Achieving this
requires users to assess how preprocessing steps, hyperparameters,
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and data characteristics affect performance. It also calls for rich, in-
teractive visual exploration of metrics, underlying data, and output
artifacts. Explainability methods further support this process by
helping users interpret model behavior and guide refinement.

While platforms like MLflow streamline experiment tracking,
their analysis capabilities are often limited to basic metric visu-
alizations. Most such tools lack a unified interface that combines
trackingwith interactive exploration of metrics, datasets, model out-
puts, and explainability results. To perform more advanced visual
analysis, users must generate plots manually during experiment
execution and log them as static artifacts, limiting interactivity and
constraining analysis to what was predefined during experiment
setup. As experiment volumes and parameter spaces grow, flexible
and insightful interfaces become increasingly important. Visual
analytics and interactive exploration help users identify patterns,
compare workflows, and better understand model decisions.

To address these challenges, we introduce ExperimentLens, an
experiment analytics tool that integrates with experiment tracking
infrastructures and augments them with comprehensive visual
analytics, dataset exploration, and explainability-driven analysis. By
leveraging existing tracking backends for data storage and retrieval,
ExperimentLens allows users to retain their preferred experiment
management workflows while benefiting from a powerful suite
of interactive visualization and analysis tools. Through a simple
adapter interface, ExperimentLens supports multiple tracking tools
without vendor lock-in, enabling users to compare and monitor
experiment runs alongside detailed exploration of input datasets
and model predictions within a unified interface.

Outline. The remainder of this paper is structured as follows.
Section 2 discusses related work and situates ExperimentLens in
the context of existing experiment tracking and MLOps tools. Sec-
tion 3 presents the overall architecture of ExperimentLens. Section 4
provides a walkthrough of the UI, demonstrating key features for
experiment monitoring, comparison, and workflow inspection. Fi-
nally, we conclude with a summary of our contributions.

2 RELATEDWORK
MLOps tools vary in scope and capabilities, offering features such
as experiment orchestration, tracking, model versioning, data man-
agement, and deployment [1]. Platforms like W&B, ClearML, and
ZenML [3, 5, 10] target the full ML lifecycle, while others focus on
specific aspects like experiment tracking and monitoring [2, 6, 7].

Such tracking tools typically store metadata, metrics, and arti-
facts (e.g. trained models), to support reproducibility, comparison,
and analysis. While most tools provide basic visualizations, these
are often limited to scalar metrics and artifact listings. Further, they
generally do not support interactive exploration of input and output
data. To enable richer visual analysis, users must generate plots
manually during experiment setup and log them as static artifacts.

In parallel, tools for visual model explainability have been pro-
posed [4, 9], offering rich interfaces for inspecting predictions and
explanations. However, these tools are not integrated with experi-
ment tracking pipelines, making it difficult to analyze model behav-
ior within the broader experimentation workflow. While users can
manually add explainability methods to run during the experiment
and store the results as plot artifacts, this still limits the analysis to

what was predefined during setup. The results cannot be dynami-
cally generated or adapted once the experiment has completed.

These limitations highlight the need for tools that bridge ex-
periment tracking with interactive, explainability-driven analysis.
ExperimentLens is designed to address this gap.

3 ARCHITECTURE
ExperimentLens uses a modular architecture with three main layers
(Figure 1): the Experiment Infrastructure, the Experiment & Data
Abstraction Layer, and the User Interface. This separation enables
integration with existing tracking systems, efficient backend pro-
cessing, and interactive exploration of experiment results.

The Experiment Infrastructure layer includes external com-
ponents such as experiment trackers (e.g., MLflow), which manage
run-level metadata (e.g., parameters, metrics, workflow structure). It
also includes artifact storage systems that hold input datasets, inter-
mediate results, experiment outputs (e.g., predictions), and trained
models. The system is designed to be extensible: new experiment
trackers and storage sources can be integrated by implementing
standardized adapter interfaces.

At the core of the system, the Experiment & Data Abstraction
Layer acts as the backend engine. The Experiment Metadata Service
connects to external trackers through these adapters and translates
their metadata into a unified internal format, exposing consistent
access to parameters, metrics, and workflow information. Currently,
an adapter has been implemented for MLflow, enabling integration
with this tracking backend. The Experiment Data Service retrieves
input/output datasets and supports query execution, filtering, and
formatting of data for visualization. To ensure responsiveness, the
Data Access Optimization module caches metadata, stores remote
files locally, and maintains in-memory indexes and caches over
them for efficient querying and rapid visualization rendering.

Finally, theML Evaluation & Explainability component integrates
model artifacts and predictions to compute performance metrics
and post-hoc explanations, supporting both global and local inter-
pretability methods. To enable this, certain data must be available
at analysis time—such as the trained model, prediction outputs,
ground truth labels, and test datasets. These resources must be ex-
plicitly stored during experiment execution to ensure compatibility
with downstream explainability modules.

TheUser Interface layer provides interactive tools for exploring
experiments and analyzing results. It includes views for workflow
inspection, metric and parameter visualizations, model performance
summaries, explainability outputs, and dataset-level exploration.
Users can also rate individual runs, enabling the capture of subjec-
tive feedback alongside tracked metrics.

Implementation Details. ExperimentLens features a Java 17
backend built with Spring Boot and a React-Redux frontend. Ex-
plainability components are implemented in Python and integrated
into the backend via gRPC services.

4 EXPERIMENTLENS USER INTERFACE
The User Interface (UI) of our tool comprises several pages designed
to facilitate detailed analysis and intuitive navigation:

Experiment Monitoring Page. The landing page of our tool;
shown in Figure 2. The main component of the page is a table
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Figure 1: System architecture of ExperimentLens.

Figure 2: Experiment Monitoring and Comparative Analysis Pages in ExperimentLens.

displaying the workflows comprising the experiment
(
A
)
, with

each column corresponding to a recordedmetric or parameter. Users
can interact with a single row to navigate to a detailedWorkflow
Page or select multiple rows for side-by-side comparison. A parallel
coordinates visualization

(
B
)
beneath the table depicts the same

set of workflows, where each vertical axis represents a parameter,
and the lines can be colored based on any selected metric to support
multi-dimensional visual filtering.

Comparative Analysis Page. This page offers a focused view
for comparing selected workflows. A compact version of the work-
flow table is displayed on the left side of the page

(
C
)
, enabling

filtering and grouping. Grouping is based on parameters selected by
the user, and results within each group are aggregated, for example
by averaging metric values. The main panel presents comparative
plots, which can be bar charts for single-value metrics or line plots
for series metrics, such as accuracy across epochs

(
D
)
.

Workflow Page. Each workflow has a dedicated page that visu-
alizes its metric and parameter data, metadata, and artifacts, such as
models and datasets. At the top of the page, users can rate the work-
flow, allowing personal feedback to be captured alongside tracked

metrics. A tree view on the left occupies one-fourth of the page,
with two sections

(
E
)
. The Workflow Details section that shows

the datasets, metrics, and parameters of this particular workflow,
and the Model Insights section, which provides performance and
explainability insights for the trained models within the workflow.

Workflow Details. In this view, users can explore individual met-
rics or parameters by selecting them from the tree. For example,
selecting a single parameter presents a visualization of its value
distribution across workflows, along with an option to navigate to
a comparison view filtered to the workflows where this parameter
appears

(
F1

)
. Selecting a dataset activates the data exploration

component, which initially presents a tabular view of the data
(
F2

)
.

From this interface, users can generate configurable visualizations
such as scatter plots, line charts, or bar charts, with relevant axes
and groupings suggested automatically based on the data types and
columns selected. If the dataset contains geolocated information,
a map view is automatically enabled, offering additional visualiza-
tion options including point maps, heatmaps, or trajectory maps
when temporal information is available. This allows for flexible and
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Figure 3: Workflow Page showing workflow metadata, dataset exploration, and model insights with explainability.

intuitive exploration of both standard and more complex datasets
directly within the interface, something that distinguishes Experi-
mentLens from similar offerings.

Model Insights. This view is accessible from the workflow tree
and is enabled for experiments that provide essential resources such
as test datasets, ground truth labels, and trained models. These re-
sources allow ExperimentLens to dynamically compute detailed
model evaluation metrics and explainability analyses after the ex-
periment execution. The view includes comprehensive summaries
of the trained models within the workflow, presenting performance
visualizations such as ROC curves and confusion matrices

(
F3

)
.

Beyond traditional ML analysis, the Model Insights view offers
explainability tools to guide users through model behavior analy-
sis. This includes interactive Partial Dependence Plots (PDP) that
illustrate the marginal effect of features on model predictions, Ac-
cumulated Local Effects (ALE) plots providing localized feature
influence, and counterfactual explanations that help understand
decision boundaries and model sensitivity by showing minimal
input changes required to alter predictions. These explainability
features utilize the test data and trained models and enable users
to better interpret and trust model outcomes

(
F4

)
.

Availability. A demo of the tool can be accessed online at
https://experimentlens.imsi.athenarc.gr/demo. The code is open source
at https://github.com/extremexp-HORIZON/vis-frontend/.

5 CONCLUSION
We presented ExperimentLens, an exeriment analytics tool that
enhances experiment tracking platforms with interactive visualiza-
tions, dataset exploration, and model explainability. Built on stan-
dard MLOps infrastructures, it supports richer analysis of complex

workflows through a modular architecture and adaptable interface
for both routine monitoring and in-depth exploration.
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