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ABSTRACT

Modern machine learning (ML) systems deployed in high-stakes
domains such as hiring, lending, and healthcare heavily rely on
structured, often user-provided input data. Errors in this data can
arise from natural causes, such as noise, missing values, typos, or
from strategic user manipulation intended to alter decision out-
comes. Existing ML pipelines typically treat all input errors uni-
formly, lacking mechanisms to distinguish between accidental er-
rors and intentional manipulations. The goal of this research is
to develop a diagnostic framework that identifies erroneous input
features, estimates the likelihood that each error was intentional,
and quantifies its influence on the model’s output. In this paper,
we outline the foundational challenges of our research agenda. We
discuss risks and potentials in trying to separate intentional from
non-intentional errors.
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1 INTRODUCTION

Modern machine learning (ML) systems are routinely deployed
in high-stakes automated decision systems (ADS), such as hiring
platforms, loan approvals, and healthcare triage, where predictions
depend on structured, often user-provided input data [31]. Errors in
this input are common and can arise from a variety of sources: from
natural mistakes, e.g., typos, missing values, to deliberate attempts
of outcome manipulation [16]. While there is a large body of work
on error detection and correction [1, 19, 26], reasoning about the
origin and intention of data errors has been neglected. Data errors
may result from unintentional benign noise, distribution shifts, or
user confusion [28, 29], or from intentional input manipulation.
Intentional data manipulation has been observed in collaborative
knowledge bases, such as Wikipedia and Wikidata [32], where some
users deliberately insert falsified or misleading content, known
as vandalism, to manipulate public information or disrupt down-
stream systems. One notable form of such manipulation is coordi-
nated disinformation campaigns, often executed by so-called Web
Brigades [27]. Unlike unintentional user mistakes, these edits are
often subtle, syntactically correct, and socially manipulative, de-
signed to bypass detection systems. Recent advances in multilingual
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vandalism detection have shown that distinguishing such data cor-
ruptions requires careful modeling of both content semantics and
user behavior, including fairness-aware evaluation to avoid bias
against new or anonymous contributors [12, 32]. Yet, there has been
little attention to this topic in common data curation pipelines, es-
pecially when structured datasets drive high-stakes decisions or
automated learning processes.

Insight into user intent can inform safeguards during data collec-
tion and foster awareness of underlying socio-economic patterns.
The lack of such knowledge undermines both trust and accountabil-
ity. A strategically altered input feature, such as falsified education
credentials in hiring or inflated income in a loan application, can
lead to incorrect, unfair, or even dangerous decisions [31].

From a technical perspective, understanding the origin of data
errors is essential for data quality assurance tasks; for instance,
to design effective cleaning routines that target the most impact-
ful and plausible corrections, ultimately guiding more responsible
downstream decisions (e.g., which features to prioritize for repair
or what repair procedure to choose [20]). For example, if an error is
identified as intentional and shows signs of targeted manipulation,
its correction should not merely revert it to a frequent value, but
instead account for the likely direction of manipulation. Correcting
an intentionally inflated income field should lead to a plausible
lower value that neutralizes the manipulation’s intended effect.

Diagnosing intent behind data errors remains fundamentally
challenging, due to missing ground truth labels, ambiguous user be-
havior, context-sensitive manipulation. Thus, in this paper we argue
for research on what drives certain errors to occur in the first place.
Are they the result of deliberate manipulation, or simply random
mistakes? We begin our analysis informed by ML security princi-
ples [6, 30] from the attack perspective: what kind of adversarial
or strategic behavior could result in input manipulation, and what
are the associated incentives? With this approach we transform
the problem of distinguishing intentional and non-intentional data
errors, which might be intractable, into the problem of identifying
the occurrence of well-defined attacks.

Identifying Intentional errors generally requires the identifica-
tion of an error and an intrinsic intent. Historically, there has been
the awareness for intentional errors that aim at system-level dis-
ruption. Here, the adversaries intentionally introduce erroneous
inputs with the goal of degrading the performance of a downstream
model, corrupting decision pipelines, or undermining trust in the
ML system as a whole (Destroy Model Integrity) [5, 6, 9, 18, 30]. This
type of attack has received considerable attention by the research
community in machine learning and we do not aim at expanding it
further. Instead, we focus on intentional errors that aim at manipu-
lating the implications of the data usage regarding individual data
points or groups of data entries. Here we identify Individual-level
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and Group-level manipulation as the two main categories that we
will further define later.

Examples of Individual-level manipulation can include the follow-
ing cases. A single user falsifies or omits information, e.g., inflating
income or fabricating education credentials to increase their chance
for a favorable decision. Another example is that minority users
alter data inputs in response to a historically unfair system, e.g.,
masking sensitive attributes to avoid discriminatory outcomes [31].
A further form may emerge in the obfuscation of personal data us-
ing outlier-like placeholders, e.g., ’1000’ for age gain or ’0’ for blood
pressure [24]. While such entries might reflect privacy-protecting
behavior rather than malicious intent, they may still have strong
model impact and warrant diagnostic attention.

In case of Group-level manipulation, data is strategically altered
to improve outcomes for an entire group or to discriminate others
under a particular data-specific policy or treatment. Such manipu-
lation can take both coordinated and emergent forms. An illustra-
tive example for the former is when a subgroup, e.g., women in a
workplace, collectively adjust self-reported working hours to meet
eligibility thresholds for promotion [31].

Research Questions: This work is motivated by several long-term
research questions:

e How can we systematically characterize and distinguish pat-
terns of intentional versus unintentional input errors in datasets
that are subject to downstream tasks, such as ML pipelines?
To what extent are defined attack models and the resulting
input errors correlated with feature importance, outcome in-
centives, and systematic shifts in decision boundaries, and how
effectively do these factors model intentional manipulation?

e What are efficient algorithms to capture heuristics that describe
manipulated data and model slices? Is there a common pattern
among different types of attacks or do we need individual de-
tection algorithms for different types of intent? How dataset-
or domain-specific is effective intent detection?

e What are the evaluation benchmarks and metrics suitable for
distinguishing intentional and non-intentional errors?

Contributions: Our paper lays the groundwork for a broader
research agenda on intent identification. Rather than presenting
a finalized system, we articulate core challenges, formalize key
concepts, and propose foundational components that guide our
future research in this emerging space. As a step toward answering
these questions, this paper contributes a foundational conceptual
framework for intent attribution:

e We introduce a taxonomy of manipulation types, including
falsification, masking, obfuscation, and coordinated group-level
attacks, spanning both individual and collective behaviors.

e We define attacker capabilities and constraints, formalizing a
threat model over tabular datasets.

e We propose a suite of interpretable heuristics to estimate ma-
nipulation likelihood and outcome significance. We outline a
lightweight, adaptive aggregation scheme for combining these
signals in a weakly-supervised way.

2 RELATED WORK

The challenges posed by anomalous or manipulated inputs have
been explored from multiple angles across the machine learning

literature, including adversarial robustness, error detection, fair-
ness, and data quality. However, these research directions typically
operate in isolation, each addressing a different slice of the broader
input reliability problem. In this section, we review relevant work
across these domains, highlighting both their strengths and their
limitations in handling semantically meaningful, intent-driven in-
put perturbations in structured data.

Adpversarial Inputs to ML Systems. Adversarial inputs have been
extensively studied in the context of unstructured data, particularly
in image classification, where small, imperceptible perturbations
can significantly alter model predictions. Seminal works such as
the Fast Gradient Sign Method (FGSM) by Goodfellow et al. [9], Pro-
jected Gradient Descent (PGD) by Madry et al. [18], and the Carlini
& Wagner (CW) attack [5] demonstrated how deep learning models
are vulnerable to gradient-based adversarial perturbations. More
recently, research has extended adversarial attacks to tabular and
structured data domains. Cartella et al. [6] propose model-agnostic
adversarial techniques for imbalanced tabular datasets in fraud
detection scenarios. Their work revealed that even minimal but
targeted changes in input features can mislead standard classifiers.

Complementing these works, He et al. [11] provide a repro-
ducible benchmark for evaluating adversarial attacks on tabular
data using both effectiveness and imperceptibility metrics. Their
framework includes implementations of PGD, C&W, DeepFool [21],
and LowProFool [3], and systematically quantifies perturbation
impact through proximity, sparsity, and sensitivity scores. Pierazzi
et al. [23] highlight key challenges in generating realistic attacks
under semantic, syntactic, and contextual constraints, particularly
when manipulating structured objects like PDFs or Android apps.
Ghamizi et al. [8] introduce CoEvAZ2, a search-based adversarial test-
ing framework for credit scoring systems under domain constraints.
Their method employs multi-objective evolutionary algorithms to
generate adversarial examples that optimize for model evasion,
perturbation effort, and gain, while satisfying real-world feature
constraints, e.g., monotonicity, value bounds. Building on the idea
of realistic adversarial behavior in structured domains, Simonetto
et al. [30] introduced CAA, a method for generating adversarial
examples in constrained tabular deep learning models.
Trustworthy and Fair ML. Fairness in ML systems depends not
only on model design but also on upstream processes, such as data
collection and cleaning [31]. Schelter et al. [28] propose FairPrep, a
framework that adjusts preprocessing to improve fairness, showing
that routine cleaning operations can significantly shift fairness
outcomes. However, such methods assume unintentional bias and
overlook strategic user adaptations.

Recent work acknowledges that users may manipulate inputs to
navigate biased systems, e.g., through résumé whitening or masking
sensitive attributes [31]. Yet, fairness-enhancing pipelines treat all
deviations alike, ignoring distinctions between noise, adaptation,
and adversarial manipulation. Guha et al. [10] further caution that
automated cleaning can worsen disparities, revealing that data
quality interventions alone do not guarantee fairness.

Other efforts focus on identifying marginalized groups. Dehghankar
and Asudeh [7] propose a method to discover underperforming
cohorts without requiring sensitive attributes, but their approach
targets structural disparities, not intentional manipulation.



Related studies on integrity threats in collaborative environ-
ments include vandalism detection. Heindorf et al. [12] and Trokhy-
movych et al. [32] propose fairness-aware techniques for detecting
harmful edits in Wikidata and Wikipedia. While these works ad-
dress user intent, they operate in crowd-sourced settings and focus
on overt vandalism, not subtle manipulations in decision systems.
Error Detection in ML Pipelines. Error detection in ML systems
is a well-studied area spanning adversarial robustness, data valida-
tion, and out-of-distribution (OOD) input handling. A common line
of work focuses on identifying whether the model is likely to mis-
predict a given input, especially under adversarial conditions. RED,
proposed by Qiu and Miikkulainen [25], proposes a residual-based
detection system that uses Gaussian Process modeling to estimate
the likelihood of misclassification. Their framework computes the
residual between classifier confidence and true correctness, treating
high-variance predictions as signals of potential OOD or adversarial
inputs. While RED provides a flexible, model-agnostic approach to
detect model uncertainty, it does not attempt to explain the cause of
an error, whether it stems from benign noise, adversarial tampering,
or user manipulation. Nor does it distinguish OOD from adversarial
inputs in a structured diagnostic sense.

Bahat et al. [2] propose an image-specific adversarial detection
method leveraging prediction instability under input transforma-
tions. Although effective in vision tasks, the approach does not
generalize to structured tabular data, where manipulations are se-
mantic rather than perceptual. CIAI introduced by Jain et al. [15],
proposes CIAI a classifier for distinguishing between clean, noisy,
and adversarially perturbed images using Vision Transformers.
CIAI employs center loss and distribution-aware metrics to learn
embeddings for three perturbation classes. While the notion of
separating intentional from unintentional input corruption aligns
conceptually with our goals, CIAI is confined to synthetically per-
turbed image data and assumes attacks generated by adversarial
algorithms, e.g., FGSM, PGD. As a result, it does not generalize to se-
mantically meaningful manipulations that occur in human-entered
data or decision-critical applications like loan approvals or hiring.
Orthogonal to adversarial detection, several systems target general
error detection and data validation.

Error detection systems, such as Raha [19] and Matelda [1],

focus on detecting inconsistent, missing, or anomalous records in
structured datasets. They do not consider user intent, or the causal
relationship between an input error and a model’s decision.
Data Cleaning Prioritization. Data cleaning in ML pipelines is
often resource-constrained, requiring selective intervention under
fixed budget, or human supervision limits. This has led to a growing
body of work on cleaning recommendation systems that aim to
prioritize actions based on their estimated downstream utility. For
example, Naumann et al. [20] propose Comet, a step-by-step data
cleaning framework that estimates the predictive benefit of cleaning
each feature and recommends a cleaning plan that maximizes model
accuracy under a fixed budget. Similarly, HoloClean [26] performs
holistic error repair using probabilistic inference over constraints,
external data, and co-occurrence patterns, prioritizing cells whose
correction is most statistically justified.

These methods typically assume that all detected errors are struc-
turally similar, e.g., due to noise, missing values, or inconsistencies,
and make no distinction between errors arising from accidental vs.

intentional behavior. As a result, existing frameworks may allocate
cleaning effort toward benign anomalies while overlooking manip-
ulations introduced with adversarial or incentive-driven intent.
Summary of related work

While adversarial robustness, fairness auditing, and data qual-
ity research have addressed various forms of input anomalies, to
the best of our knowledge, no existing framework systematically
models the intent behind tabular data errors in machine learning
pipelines. Current approaches typically focus on detecting predic-
tion errors, identifying adversarial examples, or mitigating unfair
outcomes, but treat data errors without distinguishing between
unintentional errors and strategic manipulations.

In adversarial ML, the emphasis has largely been on constructing
attacks or certifying robustness, not on interpreting the nature or
motivation of real-world inputs once received [5, 8, 9, 18]. Similarly,
fairness frameworks may flag bias-amplifying inputs or sensitive
attribute usage, but do not assess whether such features were ma-
nipulated in response to systemic disparities [28, 29]. Even in data
quality research, the focus is on correcting inconsistencies, not
explaining why they occurred [20].

3 PROBLEM DEFINITION

Understanding whether errors in structured datasets are natural
or intentional is critical for ensuring the integrity, fairness, and
robustness of modern ML systems. This section introduces the core
task of inferring the intent behind input errors. Further, it outlines
threat scenarios and constraints that define the knowledge and
capabilities of the incentivized actor (adversary).

3.1 Intent Attribution in Structured Data

The core objective is to distinguish between intentional and unin-
tentional errors and assess their potential impact on downstream
decision systems. To distinguish the two types of errors, we need
an additional signal that serves as a proxy for the intent.

Problem Statement. Given a relational instance D, a set of de-
tected errors &(D), and a model M that is applied on each instance
of D, the objective is to assign each e; € &(D) a score I(e;) indicat-
ing how likely it is to be intentional:

I:&(D) — [0,1]

A high score reflects great likelihood of strategic or adversarial
manipulation, while low scores indicate lack of intention.

The ambiguity of intent is further compounded by the absence
of explicit intent annotations in real-world datasets. Since user mo-
tivations are latent and rarely documented, traditional supervised
learning approaches are generally infeasible. As a result, intent
attribution must rely on indirect indicators, such as behavioral cues,
causal impact, or rarity, rather than ground truth labels. Most causal
analysis tools further assume a ceteris paribus condition, i.e., that
a single feature can be changed in isolation while all other inputs
remain fixed [22]. In structured data, features are often correlated,
making such counterfactual evaluations potentially unrealistic [33].
The resulting estimates may overstate or understate the causal



significance of an error if applied naively. Consequently, even well-
intentioned corrections may have negligible or misleading down-
stream effects unless they are paired with a nuanced understanding
of user motivation, domain context, and model behavior. Neverthe-
less, with the following taxonomy we try to identify subproblems
that are tractable with appropriate heuristics.

3.2 Taxonomy for Manipulation Types

Figure 1 presents our taxonomy of intentional manipulations. The
top-down layout distinguishes between individual-level manipula-
tion and group-level manipulation. The former covers gain-targeted
perturbations, fairness-triggered masking, information obfusca-
tion, and individual discrimination. The latter includes collective
manipulation and group discrimination. This taxonomy is not de-
rived from a formal theory or exhaustive empirical enumeration.
Rather, it reflects our current best attempt to systematize general
and recurring manipulation patterns observed in tabular datasets
used in ML decision systems. Its structure aims to support rea-
soning about the nature and scope of intent, guide the design of
diagnostic heuristics, and provide realistic evaluation aligned with
different manipulation types [4, 11, 13, 17, 31]. While the taxonomy
captures the most common manipulation intentions observed in
both adversarial and fairness-driven contexts, we acknowledge that
completeness and uniqueness are inherently difficult to guarantee.
Future work may uncover alternative behaviors or decompositions
beyond this structure. Next, we examine these manipulation types in
more detail, beginning with individual-level intentions.

3.2.1 Individual-level manipulation. The first category of inten-
tional data manipulation from our taxonomy captures cases where
a single user falsifies or omits input features to change their data-
dependent treatment and cases where a third-party with full access
to the dataset is trying to change the treatment of an individual.
So far, we distinguish four subcategories. Gain-targeted perturba-
tion covers cases where individuals choose properties that are not
accurate and change their treatment positively. Fairness-triggered
masking is a common approach by individuals from underrepre-
sented groups that fear discrimination to blend in by sensitive
properties, such as gender or ethnicity. Another type of protection
is information obfuscation, which aims to preserve privacy. This is
often the case for disguised missing values for personal information
that a user does not want to share. Such obfuscation might appear
as an outlier or as an inlier through disguised missing values [24].
Finally, it is also possible for a third party with access to individual
records to discredit or favor specific individuals by manipulating
their properties, representing a form of individual discrimination.
For example, in collaborative data platforms, malicious insiders may
intentionally alter performance ratings, or background information
to harm a colleague [11]. These manipulations are independently
affecting only a single data record.

Diagnosing whether an individual-level error is intentional is
particularly challenging due to the semantic ambiguity of user be-
havior. A small change to a high-impact feature, such as increasing
income by a few hundred dollars, might result from a simple typo,
or a deliberate attempt to cross a decision threshold. Conversely,
large and seemingly suspicious errors, that may or may not flip the
predictions might stem from benign confusion, especially when

users are unaware of how features are defined or used by the sys-
tem. As such, neither the magnitude of an error nor its effect on
the model’s output solely is a sufficient indicator of intent.

To grasp the complexity in capturing the intent categories men-
tioned above, consider Table 1, where a snapshot of the Adult
Income dataset [4] is shown. Also consider Table 2, where in the
same snapshot some data points have been changed. Comparing
both tables, changing the Occupation field for the instance at index
1 from Protective-serv to Tech-support flips the model predic-
tion from < $50K to > $50K, despite all other features remaining
constant. Even a small error, as observable for the record with in-
dex 10, where two digits in the CapGain feature are swapped, is
sufficient to flip the prediction outcome. Conversely, heavier pertur-
bations did not change the model prediction. For instance, index 3
includes three coordinated modifications: upgrading the Education
level to Doctorate and its corresponding numerical index EdNum,
and changing the Country from Mexico to United-States.

Which of the three rows was manipulated intentionally is not
obvious. While the first two both change the treatment, the swapped
digits seem to resemble a typical human error in typing while the
misclassification of the occupation might be more informed as
in case of gain-targeted perturbation. In the last case, we do not
observe a change in the treatment, which would be a signal against
intention. Yet, we cannot exclude a manipulation as a mixture of
by changing the education level that was in fact intentional, but
not effective at changing the treatment.

3.2.2 Group-level manipulation. In contrast to individual manip-
ulation, this category involves coordinated or correlated errors
that affect the treatment of an entire group. In our taxonomy, we
distinguish two cases. First, a group may deliberately coordinate
its entries to influence the treatment of either their own group or
another group. Second, a third-party with access to all records may
deliberately change properties that affect a represented group. A
group may be latent, defined by combinations of attribute ranges,
e.g., Middle Eastern males aged 18-25.

A foundational challenge in attributing group-level intent is that
group identities can be implicit or latent. Unlike protected attributes
such as race or gender, which may be explicit, many strategic col-
lectives must be inferred from behavioral regularities, shared input
manipulations, or correlated downstream effects. This requires solv-
ing a non-trivial clustering problem over high-dimensional, often
mixed-type data—balancing demographic proximity with coordina-
tion signals such as similar perturbation patterns or synchronized
prediction shifts. Determining which users form a coherent group is
computationally intensive and sensitive to the choice of similarity
metrics, distance thresholds, and clustering algorithms. Moreover,
there is an inherent risk of overgeneralization: coincidental resem-
blance across users may be mistaken for strategic coordination,
especially in heterogeneous populations.

Diagnosing whether group-level errors are intentional is fur-
ther challenging because intent must not be inferred from isolated
anomalies, but from structured patterns across multiple records.
However, not all group-level similarities imply coordinated manip-
ulation: users from similar demographics or regions may coinciden-
tally exhibit correlated errors due to shared social context, cultural
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Figure 1: Taxonomy of Manipulation Types, distinguished by intent scope.

Table 1: Partial snapshot of the Adult Income dataset [4] containing complete and error-free feature values.

Index Age Workclass Education EdNum Marital Status Occupation Race Sex CapGain CapLoss Hours Country Class
1 41 State-gov Assoc-acdm 12 Married-civ-spouse Protective-serv White Male 0 0 40 United-States <50K
2 24 Private Masters 14 Never-married Exec-managerial White Male 6849 0 90 United-States <50K
3 23 Private HS-grad 9 Never-married Other-service White Male 0 0 35 Mexico <50K
4 46 Private Some-college 10 Married-civ-spouse Tech-support White Male 0 0 40 United-States >50K
5 31 Private Bachelors 13 Married-civ-spouse Prof-specialty Asian-Pac-Islander ~ Male 15024 0 48  Philippines >50K
6 39 Private Masters 14 Married-civ-spouse Prof-specialty Asian-Pac-Islander ~ Male 0 0 40  Philippines >50K
7 39 Private Bachelors 13 Married-civ-spouse Prof-specialty Asian-Pac-Islander ~ Male 0 0 48  Philippines >50K
8 39 Private Bachelors 13 Married-civ-spouse Craft-repair Asian-Pac-Islander ~ Male 0 0 40  Philippines >50K
9 46 Private Prof-school 15 Married-civ-spouse Prof-specialty White Male 99999 0 60 United-States >50K
10 35 Self-emp-not-inc 9th 5 Married-civ-spouse Craft-repair White Male 2635 0 30 United-States <50K

Note: These predictions are made using a Gradient Boosting Classifier (GBC) trained on the Adult dataset’s training partition, achieving an F1-score of 87.7%
on the held-out test set. The shown records in the above table are part of the test data from the same dataset.

Table 2: The snapshot from Table 1 with injected errors: erroneous values in bold violet, flipped labels in bold red.

A group is marked between dotted lines.

Index Age Workclass Education EdNum Marital Status Occupation Race Sex CapGain CapLoss Hours Country Class
1 41 State-gov Assoc-acdm 12 Married-civ-spouse Tech-support White Male 0 0 40  United-States >50K
2 24 Private Masters 14 Never-married Exec-managerial White Male 6849 0 90  United-States <50K
3 23 Private Doctorate 16 Never-married Other-service White Male 0 0 35 United-States <50K
4 46 Private Some-college 10 Married-civ-spouse Tech-support White Male 0 0 40  United-States >50K
5 31 Private Bachelors 5 Married-civ-spouse Prof-specialty Asian-Pac-Islander ~ Male 0 0 48 Philippines <50K
6 39 Private Masters 5 Married-civ-spouse Prof-specialty Asian-Pac-Islander ~ Male 0 0 40 Philippines <50K
7 39 Private Bachelors 5 Married-civ-spouse Prof-specialty Asian-Pac-Islander ~ Male 0 0 48 Philippines <50K
8 39 Private Bachelors 5 Married-civ-spouse Craft-repair Asian-Pac-Islander ~ Male 0 0 40 Philippines <50K
9 46 Private Prof-school 15" Married-civ-spouse Prof-specialty White Male 99999 0 60 United-States >50K
10 35 Self-emp-not-inc 9th 5 Married-civ-spouse Craft-repair White Male 6235 0 30 United-States >50K

Note: These predictions are made using a Gradient Boosting Classifier (GBC) trained on the Adult dataset’s training partition, achieving an F1-score of 87.7%
on the held-out test set. The shown records in the above table are part of the test data from the same dataset.

patterns, or systemic biases. Distinguishing such organic group
behavior from strategic group manipulation is non-trivial.

In our study using the Adult Income dataset, we observe in
Table 1 that records in rows 5 to 8 form a cluster (confirmed via
K-Nearest Neighbor analysis with k = 4) that can be characterized
as Married Philippine Males. In Table 2, we see naive but impact-
ful errors by decreasing the Education-Num without modifying
the Education label for all four records, moreover changing the
CapGain for the 5th record. These changes collectively shift the
predicted outcomes for the entire group from > $50K to < $50K,
achieving the goal of group discrimination.

3.3 Operational Constraints

Effective intent attribution requires understanding not only what
errors exist, but which of them were plausibly introduced by a

strategic actor. In structured datasets, this depends on the manip-
ulability of individual features, some of which are system-locked,
while others are user-controlled and prone to falsification.

To ground our problem in real-world scenarios, we define a
categorization of feature-level constraints that classifies attributes
into three categories: immutable, softly immutable, and mutable.
These categories shape both our simulation of adversarial behavior
and the heuristics used in intent attribution.

Table 3 summarizes instance features from structured datasets,
categorized by their manipulation feasibility as immutable, softly
immutable, or mutable. Immutable features, such as tax IDs or
birth dates, are system-controlled and rarely manipulable. Thus,
errors in these fields are more likely to reflect unintentional pipeline
issues. Softly immutable features, e.g., race, gender, or education, are
editable but semantically constrained, hence strategic manipulation
in these fields often signals fairness-sensitive adaptation. Mutable



Table 3: Examples of structured features and their categories.

Category | Feature Manipulation Characteristics
Name Legally fixed; identity-verifiable
Date of birth Verified via documents; non-editable in
formal systems
Immutable |Tax ID Assigned by national authority; cannot
be self-declared
Credit score Computed from upstream financial data;
user cannot set directly
Total debt System-controlled; imported from veri-
fied financial sources
Race Self-declared; manipulation may reflect
socio-strategic intent
Gender Editable; sometimes omitted or misrep-
resented
Softly Age Declared or derived; manipulation plau-
Immutable sible in non-verified settings
ZIP code User-entered; verifiable through indirect
features
Education Often unverifiable at entry point; falsifi-
cation possible
Income Self-reported; high manipulation incen-
tive to gain favorable outcomes
Mutable Job title Unverified, editable field; hard to vali-
date without background check
Work-hours Manually declared; weakly enforced
Willingness to re-| Declarative; no validation or constraints
locate applied

attributes, such as income or work hours, are user-declared and
typically associated with strong incentives for falsification.

Our categorization bounds the adversarial space by identifying
which features users can realistically manipulate, thereby highlight-
ing regions where intent is diagnostically plausible. Even when
limited to mutable features, adversaries may mimic benign changes
to evade detection, motivating our formal modeling of their knowl-
edge and capabilities.

3.4 Adversary Models in Intent Attribution

A common concern in attack scenarios is whether adversaries can
manipulate their inputs strategically without triggering diagnostic
intent signals. To this end, we consider gray-box and white-box
adversaries. A black-box adversary is not considered here as data
manipulation requires some insights into the usage of the data and
we do not consider blind attacks targeting the system.

First, we assume a gray-box adversary, an attacker with partial
knowledge of the model and dataset. Such adversary understands
that extreme deviations or high-impact changes may be flagged
by intent heuristics, but lacks access to internal scoring weights,
precise heuristic definitions, or real-time outcomes. This scenario
typically applies to individual users attempting to evade detection
in automated decision systems, or to coordinated groups engaging
in local manipulation.

Second, we acknowledge the presence of a white-box adversary,
which is particularly relevant in settings such as federated learn-
ing or collaborative data pipelines, where some actors may have
access to the global dataset and/or internal model. One instance
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Figure 2: Overview of the proposed diagnostic framework.
Heuristic signals are scored and aggregated into an intent
score, producing a diagnostic tuple per error. Feedback from
model correction informs utility-driven weight updates.

of a white-box adversary in our setting is group-level white-box
adversary, who can exploit known feature distributions or statis-
tical artifacts to craft manipulations that evade detection while
inducing collective shifts. Their deeper knowledge poses a more
significant threat to diagnostic robustness and demands principled
defenses across group-based intent attribution. Another variant
is the individual-level white-box adversary. This type refers to an
attacker with full knowledge of the system and the data, who fo-
cuses on manipulating a specific individual’s record. In this case,
the adversary can craft plausible errors that closely resemble benign
noise, mirroring typical patterns, plausible ranges, and error distri-
butions. This level of precision renders most diagnostic heuristics
ineffective, approaching the theoretical limits of intent attribution.

4 METHODOLOGY

Rather than seeking provable robustness, the goal of our research
is to ensure that manipulations, across the spectrum defined in our
taxonomy of attacks and scenarios (Figure 1), leave detectable traces
in at least one signal. We ensure this through two design principles,
aligned with the manipulation types captured in our taxonomy.
First, we construct heuristics that are semantically and operationally
diverse, spanning incentive-based, data-based, and effort-aware
factors, so that evading detection across all signals simultaneously
becomes increasingly difficult. Second, we will incorporate cross-
heuristic consistency checks: for instance, a small perturbation with
large causal effect triggers an effort-impact mismatch.

This section presents our proposed solution framework, outlines
the evaluation plan, and the limitations of our approach.

4.1 Solution Concept

Building on the problem definition, our conceptual solution aims
to compute a diagnostic tuple for each error e; € E(D):

(fi- I(ei), C(ei), S(ei))

Where f; is the feature index in the input instance where the error
occurred; I(e;) € [0, 1] is the intent score, estimating the likelihood
that the error is intentional rather than natural or benign; C(e;) €
[0, 1] is the causal impact score, quantifying how much the error
e; contributed to a change in the model prediction f(x); S(e;) is



an optional semantic or contextual classification of the error, e.g.,
“user manipulation”, “preprocessing bug”, “noise”. The diagnostic
objective is to generate these tuples (f;, I, C, S) independently of
the model and without relying on ground truth labels.

Our framework in Figure 2 decomposes the intent estimation
problem into two core components: (1) the design of interpretable
heuristic signals hy, .. ., b that each capture a distinct indicator of
potential manipulation, and (2) adjusting the weights needed for
aggregating these signals into a unified intent score 7 (e;).

4.1.1 Heuristics. To achieve our goals, we first leverage a set of
interpretable, modular factors that together capture the likelihood
of intentional manipulation and the significance of the error on the
model’s output. The following heuristics are derived from recurring
manipulation patterns observed in our taxonomy and are intended
as a foundational set, expandable or adaptable depending on the
manipulation scenario.

e Feature Importance. Features that strongly influence the model
prediction are more likely targets for intentional manipulation.

o User Incentive. Certain features, e.g., income, education level,
naturally incentivize manipulation due to their direct impact on
outcomes like loan approvals. Incentive scores can be assigned
based on domain knowledge or learned heuristics.

e Causal Impact on Prediction. We estimate how much altering the
erroneous feature e; would change the model’s output. In other
words, we compute counterfactual changes to model outputs
to estimate the causal impact C(e;).

e Error Rarity. We assess how unusual the erroneous value is
compared to the typical distribution of f; in the dataset. While
rarity alone does not imply intent, highly uncommon values
may contribute to the suspicion of intentional manipulation
when combined with other factors, such as outcome incentives
or perturbation size.

o Group Shift Potential. We evaluate the extent to which the error
changes the instance’s position relative to decision boundaries
or cohort-based groupings. This signal captures how much the
manipulated feature shifts the input toward another outcome
cluster, e.g., from a loan rejection group to an approval group,
using clustering, classification confidence, or boundary prox-
imity.

o Minority-Sensitive Feature Handling. Errors involving protected
or socially sensitive attributes, e.g., race, gender, disability sta-
tus, are flagged for special consideration, as they may reflect
strategic adaptations to avoid discrimination. To automatically
estimate the sensitivity of a feature, we envision leveraging
large language models (LLMs) to score the social or ethical
salience of feature names or descriptions, e.g., using prompt-
based querying or embedding similarity to known fairness-
sensitive concepts.

o Similarity to True Value. We assess how close the erroneous
value is to its corrected value, using task-appropriate similar-
ity measures. For example, small character-level changes may
indicate typographical mistakes in text fields, while minimal nu-
meric deviations may suggest entry slips rather than strategic
manipulation.

e Consistency. If there are duplicate representations available in
the data, we compare f; to those entries for the same user or

similar users in a group. Large unexpected deviations increase
the likelihood of intent. Moreover, intra-group comparisons
might represent good signal for detecting group-level inten-
tional manipulation, i.e are similar users in the same group
jointly deviating in a feature?

o Effort-Based Perturbation Size. We measure the minimal per-
turbation needed to achieve another outcome. Strategic errors
often show minimal but significant changes. Each factor outputs
an interpretable signal, which is then aggregated, via weighted
sum to compute the final intent score I(e;).

Designing and operationalizing these heuristics poses several con-
ceptual and practical challenges. First, each heuristic must trans-
form abstract notions, such as strategic manipulation, fairness sensi-
tivity, or minimal-effort gain, into quantifiable signals over feature-
level data. This translation is non-trivial: for instance, estimating
causal impact requires constructing realistic counterfactuals with-
out violating feature dependencies. Group shift potential demands
unsupervised cohort modeling and sensitivity to boundary-crossing
behavior. Incentive-based heuristics rely on domain-specific assump-
tions that are difficult to generalize. Second, many heuristics must
operate under partial observability: ground truth intent labels are
unavailable, user motivations are latent, and feature semantics may
be ambiguous. Finally, the design space is tightly constrained: sig-
nals must be interpretable, model-agnostic, and portable across
datasets. These factors together render heuristic design a deeply
underconstrained and multi-faceted modeling task that requires
balancing abstraction with empirical applicability.

4.1.2  Adaptive Combination of Intent Signals. In real-world data
environments, no single heuristic can fully capture the varied sce-
narios captured in our taxonomy. Some emphasize causal impact,
others reflect user effort, social sensitivity, or statistical rarity. Our
framework adaptively adjusts the influence of each heuristic de-
pending on the identified manipulation scenario, its downstream
impact, and its treatment. Note that depending on the identified
intent a certain property, such as fairness, consistency, or accu-
racy might be the target of an attack. To weight our heuristics, we
leverage the following intuitions:

o Scoring Stability. Signals are strengthened when they exhibit
consistency across repeated or structurally similar anomalies,
reinforcing their reliability in pattern-rich environments.

o Regularized Influence. Signals that dominate attribution with-
out contributing to meaningful downstream improvements are
penalized to avoid overfitting or misleading prioritization.

This lightweight, feedback-driven adjustment allows the scoring
mechanism to remain sensitive to context without requiring intent-
labeled supervision, enabling graceful adaptation to new domains,
shifting distributions, and evolving manipulation tactics.

4.2 Evaluation Plan

Our evaluation is designed to answer two complementary questions:
(i) how accurately can we estimate the causal impact of detected
feature-level errors on model predictions, and (ii) how effectively
can we use heuristic factors to identify the underlying intent behind
those errors. Each question requires a different experimental setup
for each of the scenarios defined in our taxonomy (Figure 1). To



evaluate causal impact estimation, we first rely on injected errors
in structured datasets with known clean baselines. This allows us
to compare predicted counterfactual shifts with observed outputs
after correction, providing a controlled environment for impact
validation. Yet, some aspects will be common across all of them.
To evaluate intent attribution, we assess how well our aggregated
heuristics distinguish between intentional and unintentional ma-
nipulations. This involves designing perturbation patterns that
mimic user incentive structures and comparing heuristic predic-
tions against injection intent labels.

4.2.1 Datasets. There is no dedicated dataset for intent analysis.
We can reuse datasets from fairness and ADS literature [31]. These
datasets were selected because they likely contain one or more
manipulation scenarios from our taxonomy, such as fairness-driven
masking, gain-based falsification, or group-level obfuscation.

e German Credit Dataset [13]. This dataset contains information
and prediction on the creditworthiness of individuals. Inten-
tional errors in this dataset may include overstated income or
suppressed existing credit obligations to increase the chance of
loan approval. Such manipulations typically reflect user-level
gain-seeking behavior.

o COMPAS Dataset [17]. This dataset contains data on recidi-
vism risk and includes sensitive attributes, such as race and
sex. Intentional manipulation may involve omission or mask-
ing of sensitive attributes to avoid discriminatory outcomes,
representing group-level adaptation or fairness-motivated ob-
fuscation.

o IBM HR Analytics Employee Attrition Dataset [14] contains em-
ployee records including job role, monthly income, performance
rating, and years at company. Manipulations may arise here
from strategic misreporting of attributes such as qualifications
or income, often motivated by career advancement incentives.

o Adult Income Dataset [4] contains census data used to predict
whether an individual’s income exceeds $50K/year. Intentional
errors may include inflating education level or misreporting
race, or misreporting work hours or marital status.

4.2.2  Assumptions. To operationalize the evaluation, we make the
following assumptions: Error Injection. We assume that the set of
erroneous features &(x) are available via controlled perturbations,
allowing ground truth labeling of errors as either natural (unin-
tentional) or strategic (intentional). Access to Corrected outputs. For
counterfactual causal analysis, we assume access to the ground
truth or corrected version for the output of the ML system.

4.2.3 Baselines. To evaluate the effectiveness of our proposed di-
agnostic framework, we compare against the following baselines:
Uncertainty-Based Detection, following ideas from RED [25], we can
use the model’s prediction confidence or entropy as a proxy for
detecting anomalous or unreliable inputs. Inputs with low confi-
dence or high uncertainty are flagged as suspicious (Adversarial
or OOD). Adversarial Attacks and Defenses, inspired by approaches
like CIAI [15], Cartella et al. [6] He et al. [11], we train a classifier
to distinguish clean inputs from perturbed (simulated adversarial
or noisy) inputs. However, this classifier focuses purely on pertur-
bation detection and does not infer causal impact or user intent.

We additionally benchmark against CoEvA2 [8], a search-based
adversarial testing framework.

4.3 Limitations and Risks

While our framework introduces a structured, heuristic-driven ap-
proach for inferring the intent behind input errors, several limita-
tions and risks remain, both in current capabilities and assumptions.

Dependency on Imperfect Error Detection. We assume that erro-
neous input values are known in advance and focus exclusively on
inferring intent post-hoc. If the error detection stage itself is noisy,
then downstream attribution may be meaningless or misleading.
For instance, an unflagged manipulated input will go undiagnosed,
while a clean input misclassified as erroneous could be wrongly
labeled as deceptive. A promising future direction is to treat detec-
tion and attribution jointly, simultaneously identifying suspicious
values and estimating their likelihood of intent.

Absence of Ground Truth and the Fragility of Proxy-Based Attribu-
tion. Intent is unobservable in real-world datasets. In the absence of
labeled intent, our framework relies on proxy indicators, i.e., causal
impact, rarity, or incentive alignment, to approximate malicious
intent. However, these signals may be noisy and context-dependent.
This introduces the risk of false positives particularly in high-stakes
settings such as hiring or credit approval. Moreover, our evalua-
tion uses simulated strategic attacks, which may not fully reflect
real-world incentive structures or behavioral strategies.

Sensitivity to Model Internals and Attribution Noise. Several heuris-
tics depend on feature attribution methods to identify high-impact
features. However, such attributions can be unstable, model-specific,
or even spurious in tabular domains. A manipulated feature may
receive high importance due to model brittleness rather than user
strategy. Our framework currently lacks mechanisms to distinguish
model-induced attribution artifacts from adversarial salience.

Adversarial Mimicry and Diagnostic Ambiguity. A key challenge
arises when adversaries craft errors that closely resemble natural
input noise. In gray-box scenarios, their mimicry is limited by partial
knowledge of typical error patterns. In contrast, white-box attackers
with full access to the dataset and error distribution can simulate
benign behavior more effectively. To address this ambiguity, our
framework avoids binary labels and instead produces a continuous
intent score. For group-level white-box threats, additional heuristics
track cohort-level shifts across decision boundaries. However, when
adversarial errors closely align with natural patterns, heuristic
discrimination weakens, revealing a fundamental limitation.

5 CONCLUSION

This paper outlines the research plan for distinguishing intentional
from unintentional data errors in machine learning pipelines. We
propose a diagnostic framework that estimates the likelihood that
an input error was intentionally introduced and quantifies its causal
influence on model predictions. Our approach integrates feature
attribution, causal analysis, and domain-aware factors to support
more transparent and accountable decision-making. Future work
includes implementing the framework, evaluating it on real-world
structured datasets, and benchmarking against baselines [6, 15, 30].
This research aims to advance trustworthiness, interpretability, and
robustness in machine learning decision systems.
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