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ABSTRACT
Model slicing refers to dividing a dataset into semantically meaning-
ful subgroups (slices) and computing model performance metrics
such as accuracy for each slice. Underperforming slices can then be
used as starting points for investigating systematic issues with the
model or the training data. We survey model slicing for responsible
AI, with an emphasis on recent extensions to capture various types
of training data and model bias.
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1 INTRODUCTION
Predictive models must be validated on testing data not seen dur-
ing training. Alongside metrics such as the overall accuracy, it is
important to inspect model performance on subsets of the testing
set. These subsets may describe protected or minority subgroups in
medical or financial models, or various weather or road conditions
in autonomous driving models.

Assessing model performance across semantically meaningful
subgroups is known as model slicing [3, 16]. Consider the testing
set in Table 1, describing loan approvals. Each example consists of
a surrogate key, id, followed by the model features (the applicant’s
sex, age, ethnicity and income), the ground truth label (one if the
applicant repaid their loan, zero otherwise), and the model’s predic-
tion. Suppose that we group by sex, age and ethnicity to define the
data cube of testing set slices, and suppose that we wish to view
slices with at least four examples (i.e., support of at least four). Ta-
ble 2 shows the results of model slicing, sorted in ascending order of
model accuracy. Each slice is a conjunction of attribute-value pairs
(or attribute-value-range pairs), with a star symbol representing a
roll-up of the corresponding attribute. The overall model accuracy
on this testing set is 13

16 = 81%, reported in the all-stars slice, but the
model underperforms for male applicants (the “M * *” slice, with
67% accuracy), especially those between the ages of 30 and 50 and
those of European ethnicity (50% accuracy). On the other hand, the
model has perfect accuracy for female applicants.

This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment. ISSN 2150-8097.

Table 1: A testing set for a loan approval model.

id sex age ethnicity income label prediction

1 M <30 Hispanic 90 0 0
2 M <30 Black 35 0 0
3 M 30-50 Hispanic 74 0 0
4 M 30-50 European 70 1 0
5 M 30-50 European 39 0 0
6 M >50 European 50 1 0
7 M >50 European 36 0 0
8 M 30-50 Hispanic 210 0 1
9 M >50 Black 100 1 1
10 F <30 European 15 0 0
11 F <30 Hispanic 50 0 0
12 F <30 Black 85 0 0
13 F 30-50 Hispanic 73 0 0
14 F >50 Black 46 0 0
15 F >50 Hispanic 20 0 0
16 F 30-50 European 150 1 1

Table 2: Slicing a loan approval model.

sex age ethnicity accuracy support

M 30-50 * 50 4
M * European 50 4
M * * 67 9
* 30-50 * 67 6
* * European 67 6
* >50 * 80 5
* * * 81 16
* * Hispanic 83 6
F * * 100 7
* <30 * 100 5
* * Black 100 4

Model slicing insights can improve data quality and mitigate
model bias. For example, a model may underperform for a given
subgroup if there are systematic quality issues in the training data
related to this subgroup, or if there is insufficient training data
for this subgroup [2]. Furthermore, expected model performance
at inference time can be estimated using model slicing [6, 17]. In
the above example, financial experts may want to examine loan
approval results of male applicants knowing that the model has
low accuracy for this subgroup.

The purpose of this article is to review recent research on model
slicing for responsible AI. Toward this goal, we propose a general
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solution template for model slicing, we situate recent work in this
space (Section 2), and we conclude with a list of open research
directions (Section 3).

2 A SURVEY OF MODEL SLICING
We categorize model slicing along the following dimensions:

• the slicing (or grouping) attributes,
• the slicing metric (e.g., model accuracy),
• the set (or sorted list) of groups displayed,
• whether one model or several models are tested (e.g., to

find subgroups where models make different predictions),
• and whether the dataset being sliced is the testing set (e.g.,

to identify underperforming subgroups, as in Table 2) or
the training set (e.g., to identify training examples that
contribute to model bias).

We represent variants of model slicing in pseudo-SQL syntax,
shown below. Figure 1 illustrates the types of model slicing prob-
lems that will be reviewed in this section, and Table 3 lists the
methods surveyed and their functionality, as described in the cor-
responding papers. From now on, we will use the terms subgroup
and slice interchangeably.

SELECT <slicing attributes>, AGGR(<slicing metric>)
FROM <training set / testing set>
GROUP BY CUBE(<slicing attributes>)
HAVING <slicing condition>
ORDER BY <sorting condition>

2.1 Slicing Attributes
Slicing attributes define the subgroups for which model perfor-
mance metrics will be computed. For models learning from tabular
data, slicing attributes correspond to some or all of the model fea-
tures. For models learning from unstructured data such as images,
model slicing requires an additional preliminary step of discover-
ing the slicing attributes. We distinguish between supervised and
unsupervised slicing attribute discovery.

Supervised approaches annotate testing examples with struc-
tured slicing attributes. Suppose that we want to slice a neural
network for classifying images of indoor locations into kitchens,
living rooms and bedrooms [4, 6]. We may annotate each image
with the objects present in it such as tables, chairs, sofas and beds.
These annotations become binary slicing attributes, denoting the
presence or absence of objects in images. If chairs exist in images
of various types of locations, then model slicing might find that the
model has trouble classifying images with chairs, i.e., it underper-
forms for the subgroup defined as “chairs=1”.

Unsupervised slicing attribute discovery methods cluster the
testing set and assign interpretable labels to each slice. Domino
is one such example [7], which clusters images based on their
embeddings and generates textual cluster captions using a cross-
modal embedding model such as CLIP [15].

2.2 Slicing Output
Early work, MLCube, produced the full data cube of slices [10]. Re-
cent work has proposed various slicing conditions (corresponding

[itemize]noitemsep,nolistsep
slicing attributes

• model features
• discovered via supervised learning
• discovered via unsupervised learning

slicing dataset
• training
• testing

slicing metrics
• prediction bias

– model accuracy
– model loss

• recourse bias
– recourse availability
– recourse cost
– recourse options

• additionally for multi-model slicing
– consensus
– logic

slicing conditions
• support
• significance

sorting conditions
• slicing metric
• informativeness

Figure 1: Variants of model slicing.

to the HAVING clause) and sort orders (corresponding to ORDER
BY). Three common slicing conditions are as follows.

• Displaying slices that exceed a given support threshold,
used in SliceFinder [3] and SliceLine [16] (recall Table 2).

• Displaying slices that exceed a given statistical significance
threshold, used in SliceFinder [3].

• Displaying slices that summarize the model’s accuracy dis-
tribution, used in InfoMoD [6], which selects the most ‘in-
formative’ slices that over or under perform the average.

The total number of candidate slices is equal to the size of the
data cube over the slicing attributes. Many model slicing solutions
include scalability optimizations that exploit the structure of the
problem variant at hand. For example, both SliceFinder and Slice-
Line use a minimum support threshold in the HAVING clause and
therefore can employ Apriori-style optimizations from frequent
itemset mining to ignore slices failing the support threshold.

2.3 Slicing Metrics
We distinguish between metrics targeting prediction and recourse
bias. Prediction bias exists when a model performs worse on some
slices than others. As seen in Table 2, one metric targeting this type
of bias is the fraction of accurate predictions in each slice. Model
loss (e.g,. quadratic or cross-entropy loss [5]) is another option.
For example, a model that predicts the right class with 90 percent
probability would have a lower loss than one that predicts the right
class with 75 percent probability.
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Table 3: A summary of the surveyed model slicing methods.

method attributes data multi-model? metrics conditions

CAMO [20] features testing yes accuracy, consensus, logic informativeness
datamodels [9] discovered training no loss top-k
Domino [7] discovered testing no accuracy top-k
FACTS [12] features testing no recourse cost top-k
FUME [19] features training no loss top-k

GOPHER [14] features training no loss top-k
InfoMoD [6] features, discovered testing no accuracy, false positive/negative rate informativeness
MLCube [10] features testing yes accuracy, loss full cube
ModelDiff [18] discovered training yes loss top-k
REACT [1] features testing no recourse availability, cost, options informativeness

SliceFinder [3] features testing yes accuracy, loss support, significance
SliceLine [16] features testing no loss support, top-k

Furthermore, a model may be biased if it is harder for some
subgroups to achieve recourse, i.e., to flip the model’s undesirable
prediction (e.g., loan denied) to a desirable one [8]. For example,
what if married individuals whose loan applications were rejected
would only need to increase their incomes by an average of ten
percent to be approved, but single individuals would need 20 percent
higher salaries?

Let 𝑅 be a subset of attributes that are selected be modified to
achieve recourse. For example, perhaps salary can be modified, but
not age. Furthermore, the allowed changes can be bounded, e.g.,
salary can only increase by 20 percent [11]. The following slicing
metrics have been proposed for recourse bias.

• Recourse availability: one if there is any way to modify
the attributes in 𝑅 in a way that flips the model’s decision,
zero otherwise.

• Recourse cost: if recourse is possible, what is the recourse
cost or recourse burden, in terms of themagnitude of change
to the attributes in 𝑅?

• Recourse options: how many different paths to recourse
are there? For example, perhaps a denied loan would have
been accepted if salary were higher or if the applicant had
less credit card debt, leading to two recourse options.

Recall Table 1 and assume that 𝑅 = {𝑖𝑛𝑐𝑜𝑚𝑒}. Take the declined
applicants (with prediction=0) and suppose that theminimal income
increases that would lead to the model approving their loans are
as shown in Table 4 under recourse cost, with the other attributes
copied from Table 1 (example adapted from [20]). For instance,
the first example (𝑖𝑑=1) would have to increase its income from
90 to 100. Here, all declined applicants happen to have recourse
availability, but this may not always be the case.

Let us use sex, age and ethnicity as the slicing attributes and
recourse cost as the slicing metric. Table 5 shows the slices with
support at least four, sorted in descending order of recourse cost.
We see that young applicants (𝑎𝑔𝑒 < 30), female applicants, and
Hispanic applicants would pay a higher recourse cost.

FACTS [12] and REACT [1] are two solutions for recourse bias
slicing. FACTS uses recourse cost as the slicing metric and outputs
the top-𝑘 slices with the highest cost. REACT supports recourse cost,
availability and options, and, similar to InfoMoD, outputs the most
informative slices with a substantially higher or lower than average

Table 4: Recourse costs of the declined examples fromTable 2.

id sex age ethnicity income recourse cost

1 M <30 Hispanic 90 10
2 M <30 Black 35 70
3 M 30-50 Hispanic 74 16
4 M 30-50 European 70 8
5 M 30-50 European 39 31
6 M >50 European 50 15
7 M >50 European 36 24
10 F <30 European 15 80
11 F <30 Hispanic 50 60
12 F <30 Black 85 18
13 F 30-50 Hispanic 73 25
14 F >50 Black 46 20
15 F >50 Hispanic 20 68

Table 5: Slicing a loan approval model by recourse cost.

sex age ethnicity cost support

* <30 * 47.6 5
F * * 45.2 6
* * Hispanic 35.8 5
* * * 34.2 13
* >50 * 31.8 4
* * European 31.6 5
M * * 24.9 7
* 30-50 * 20 4
M * European 19.5 4

slicing metric. Note that slicing can also be done by exploring the
cost of flipping a model’s decision in the other direction, from
favourable to unfavourable.

2.4 Multi-Model Slicing
The followingmulti-model slicingmetrics have been explored in the
literature (assume that the same testing set is used by all models).

• Consensus: one if all models make the same decision for
a given testing example, and zero otherwise.
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• Expertise: the difference between the accuracy or loss of
one model versus others, to find slices where that model
performs better or worse than others.

• Decision-making Logic: one if all models pay attention
to the same features when making a prediction for a given
example, and zero otherwise. One way to quantify model
attention is to assign an influence score to each feature
using methods such as Shapley values [13].

MLCube, SliceFinder and CAMO [20] are designed for or at least
mention multi-model slicing. MLCube and SliceFinder focus on
single-model slicing using model accuracy or loss as the metric,
with a simple extension to two models by taking the difference of
their accuracies or losses for each testing example. CAMO, designed
specifically for model comparisons, supports consensus, expertise
and decision-making logic, using the same slicing condition as
InfoMoD and REACT (select the most informative slices).

Our categorization in Figure 1 also includes recourse bias met-
rics, suggesting a gap in the literature: multi-model slicing to detect
recourse bias. Though not implemented in CAMO or any other ex-
isting methods (to best of our knowledge), the expertise metric can
be redefined to assess recourse bias. For example, we can calculate
the difference between the recourse cost of one model versus others
to find slices where that model causes a high recourse burden.

2.5 Training Set Slicing
Take a testing set a metric, e.g., model accuracy or loss on the testing
set. Next, “unlearn” a slice of the training set, i.e., either retrain
the model with that slice removed or approximate such a model
without explicitly retraining it using methods such as datamodels
[9]. The accuracy or loss difference (on the testing set) between the
full model and the retrained model becomes the slicing metric for
the unlearned slice of the training set. As a result, we can identify
training set slices that reduce the accuracy of the model, perhaps
due to errors in those slices such as incorrect labels. Similarly, we
can find slices that contribute positively to model accuracy, with
implications for data acquisition and data valuation markets. For
example, given a testing set of images, datamodels identifies clusters
of positively and negatively contributing training images.

FUME [19] and GOPHER [14] perform training set slicing to
detect prediction bias with respect to a particular protected attribute.
First, separately compute full model accuracy or loss on the testing
set for different values of the protected attribute, e.g., male vs.
female. Let 𝑑 be the difference in model accuracy or loss between
the values of the protected attribute. Then, for each candidate slice,
unlearn the slice and recompute model accuracy or loss on the
testing set for different values of the protected attribute. Let 𝑑′ be
the new difference in model accuracy or loss between the values of
the protected attribute, corresponding to the partial model trained
without the candidate slice. The slicing metric for this slice is 𝑑 −𝑑′,
i.e., the contribution of that slice to model bias, or how much bias
(with respect of the protected attribute) can be taken away by
removing that slice from the training set.

As an example, similar to [14], suppose that we slice a model
that predicts whether an individual makes a high salary (say, over
$50, 000) based on features such as sex and occupation. Suppose
that there is a systematic error in the training set such that federal

government workers are listed with their total household income,
not their individual income, inflating their reported salaries. Sup-
pose further that the federal government workers in the training
set are mostly male. Given this data quality issue, the model would
most likely be biased. That is, it would be more likely to predict a
higher salary for males than females. However, this bias would be
reduced if we unlearned the training set slice corresponding to “sex
= M and occupation = federal government”.

Both FUME and GOPHER output the top-𝑘 training data slices
with the greatest contribution to bias. Notably, the approach taken
by FUME and GOPHER is to compute the slicing metric for each
training slice directly instead of aggregating it from the metrics
of individual training examples, as in our SQL template. This is
more efficient when combined with a minimum support threshold,
which enables Apriori-like optimizations from frequent itemset
mining, similar to those used by SliceFinder and SliceLine for testing
set slicing. As another optimization, FUME and GOPHER do not
re-train models on training subsets with some slices removed, but
rather they focus on different types of models for which the effect
of unlearning can be efficiently estimated.

Training set slicing can be extended to multiple models. For
example,ModelDiff [18] extends datamodels by identifying training
examples that, when unlearned, increase or drop the testing set
accuracy of onemodel but not the other. And, though not considered
by FUME or GOPHER, these tools can also be extended to find
training set slices that, when unlearned, reduce the bias of one
model but not the other.

The training set slicing methods described in this section focus
on prediction bias. Returning to our slicing design space in Figure 1,
there appears to be another gap in the literature: training set slicing
for recourse bias. Though not considered explicitly by FUME or
GOPHER, these two approaches can be extended to recourse bias
in a straightforward way. Instead of measuring the reduction in
accuracy due to unlearning a slice, we can measure the reduction
in recourse cost difference between the values of the protected
attribute due to unlearning a slice. For example, we can find training
slices whose unlearning equalizes the recourse cost for males and
females whose loan applications were declined.

3 OPEN PROBLEMS
We conclude with the following directions to improve the efficiency
and effectiveness of model slicing.

• Slicing Large Language Models (LLMs). Existing work
focuses on models for structured and image inputs. Slic-
ing LLMs is an interesting direction for future work that
introduces new challenges such as formulating the slicing
attributes for different types of generative tasks

• Scalability. As discussed in Section 2.2, various strategies
can be used to prune the space of candidate slices, especially
with slicing conditions in the HAVING clause such as mini-
mum support. However, slicing complexity of the extended
formulations, i.e., those for recourse bias slicing or training
set slicing, is higher. In recourse bias slicing, searching for
recourse paths is the bottleneck, which requires probing
the model repeatedly with perturbed features to check if it
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makes a different prediction. New optimizations are needed
to prune this search space.

• Integration with AI pipelines. Existing efforts focus on
individual model slicing problems, such as finding statisti-
cally significant slices or summarizing recourse bias. These
individual solutions could be generalized to form an inter-
active slice-based AI debugging tool, allowing users to slice
datasets in different ways, and enabling user-guided explo-
ration that prioritizes slices based on user requirements.
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