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ABSTRACT

To boost data economy and harness the potential of the rapid expan-
sion of available datasets, data description with rich, high quality
and interoperable metadata is essential to facilitate data discovery
and integration across multiple sources. Traditional keyword-based
data search has limitations due to a mismatch between published
data description and the terms used in data queries. In this paper,
we explore the use of Large Language Models (LLMs) and Retrieval
Augmented Generation (RAG) to enable automatic metadata en-
richment and improve dataset discoverability. We present LLMDap,
an LLM-based pipeline for high quality data annotation and se-
mantic discovery. The LLM pipeline automates the generation of
structured and interoperable metadata from scientific publications,
leveraging RAG and prior knowledge to enhance output accuracy.
For data profiling, LLMDap allows data providers to efficiently
generate “standardized”, semantically enriched metadata for data
publishing. When integrated with a data catalogue, LLMDap sup-
ports data consumers to discover and explore datasets. The method
is LLM-agnostic and domain-independent, and we validated it in
the biomedical domain. This work contributes to improving data
discoverability, usability, and interoperability within a data sharing
ecosystem.
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1 INTRODUCTION

In the emerging data economy, data is a critical asset for driving
innovation and informed decision-making. To fully harness the
potential of increasingly shared datasets, effective data discovery
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mechanisms are essential for identifying suitable datasets for value
creation.

Data is commonly shared via data sharing platforms or data
marketplaces that use catalogues to publish dataset descriptions
with predefined metadata schemas. However, these schemas are
often heterogeneous in type, format, and semantics, which hinders
effective data sharing across distributed sources. Furthermore, such
catalogues typically support only keyword-based search, leading to
a mismatch between user queries and the published metadata. As a
result, users may fail to locate relevant datasets simply because they
do not know or use the exact metadata terms for search, even when
the data is available in the catalogue [7]. This highlights a growing
need for more flexible and effective data discovery methods based
on semantic rather than keyword matching. Addressing this chal-
lenge requires semantically rich, context-aware, and high-quality
metadata to bridge the gap between data providers and consumers.

With rapid advances in generative Al in particular, Large Lan-
guage Models (LLMs) and Retrieval-Augmented Generation (RAG),
natural language processing (NLP) has been significantly trans-
formed. In this work, we investigate how generative Al can be lever-
aged to generate rich, context-aware, high-quality dataset descriptions
in a more automated and efficient manner to enhance data discov-
erability. We propose a generic LLM-based pipeline (LLMDap) de-
signed to extract accurate, interoperable metadata from scientific
publications and other natural language sources. The pipeline is
domain-agnostic and adaptable across disciplines. To demonstrate
its applicability, we developed an LLMDap-based system for the
biomedical domain with an intuitive user interface that supports
(1) data providers through LLM-assisted automated generation of
dataset profiles (a list of metadata describing the dataset), incor-
porating human-in-the-loop for quality assurance of the output,
and (2) data consumers with features for effective dataset discovery
and exploration. The system was evaluated with domain experts to
assess its validity and effectiveness.

The main contributions of this work are:

e The LLMDap pipeline that provides a generic, domain-
agnostic approach to automated metadata generation using
LLMs and RAG, producing consistent, high-quality meta-
data aligned with domain ontologies to enhance dataset
discoverability.

o The approach of using LLMDap for data sharing validated
in the biomedical domain.
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The rest of the paper is organized as follows. Section 2 discusses
related work. Section 3 presents the general LLMDap framework
for data profiling and sharing. Section 4 discusses the validation of
the work and potential applications such as federated catalogues.
Finally, Section 5 concludes the paper and suggests future work.

2 RELATED WORK

Natural language processing (NLP) techniques have been exploited
to facilitate discovery of published datasets based on semantic
matching instead of keyword matching. For example, [7] proposed
an approach to ontology-based semantic search on open data cata-
logues with automatic dataset linking and indexing utilizing NLP
techniques. However, imprecise or incomplete metadata of the pub-
lished datasets remains a barrier to improved discoverability.

Recent advances in LLMs have significantly enhanced NLP ca-
pabilities in understanding natural language inputs and generating
contextually relevant outputs. LLMs have been applied to various
biomedical applications, such as question answering tasks, genera-
tion of medical terms and descriptions, and medical data analysis,
demonstrating great potential for automating the generation of
metadata compliant with the requirements of standards or data
sharing systems. These applications exploit general models (e.g.,
ChatGPT, BERT [2]) or domain-specific models (e.g., PubMedBERT
[3],BioBERT [10], BioMedLM [1], BioGPT [13], ClinicalBERT [5]).

Tool-augmented approaches like GeneGPT [9] integrate LLMs
with biomedical APIs (e.g., NCBI') to support in-context learning.
An LLM-powered workflow enables natural language querying
and automated analysis of cBioPortal biomedical datasets through
integrated Python and LLM modules [6]. There are also efforts
on Question & Answer (Q&A) benchmarks such as MedQA [8],
MedMCQA [15], and MMLU [4].

However, existing work has not addressed answer generation
with the precision required for metadata standardization. Retrieval-
Augmented Generation (RAG) [11] offers a promising solution by
grounding LLM outputs in evidence, enhancing factual accuracy
and transparency—critical for scientific applications. An example
RAG pipelines for biomedical data is described in [18].

Furthermore, current data catalogs or repositories lack the sup-
port for automating metadata generation or auto-filling the profiles
based on natural text input. Our work addresses this gap.

3 LLMDAP FOR DATA PROFILING AND
SHARING

3.1 Data Profiling with LLMDap

The idea for a generic LLM-based pipeline for data profiling is
illustrated in Figure 1. The LLMDap framework consists of five
main components:

(1) Auxiliary Data Referencing: Get additional data that may
help in the query process, e.g., extraction of domain knowl-
edge using an ontology.

(2) Document Indexing & Embedding: Split the full textual input
document into chunks (i.e., text segments) in a string format
and create vector embeddings for each chunk to capture
semantic content for downstream tasks.

Thttps://www.ncbi.nlm.nih.gov/home/develop/api

(3) Context Retrieval: Compare the user input (e.g., a schema
field or a natural language query) semantically against pre-
computed text embeddings to retrieve the most relevant
chunk from the source corpus. This retrieval process is as-
sisted by referencing appropriate auxiliary data. Different
(re)ranking methods, such as anthropic’s ranking? or newer
ranking methods can be adopted in this process.

(4) LLM-based Query: Provide the LLM with a prompt based
on the user input and the context retrieved, and get LLM
predictions based on the given context.

(5) Pipeline Configuration: Adapt pipeline configurations to
align with specific tasks and application contexts; for in-
stance, selecting different LLMs based on domain-specific
constraints or anticipated usage patterns. Such considera-
tions can be cost and hardware availability when choosing
an LLM, or domain-specific prompt optimization.
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Figure 1: LLMDap Framework.

Domain-specific information such as standard schemas, scien-
tific publications and datasets can be used when setting up and
configuring the LLMDap pipeline for a specific domain. For exam-
ple, for the biomedical domain as illustrated in Figure 1, the schema
can be based on Beacon v2 [16], the scientific publications can be
from PubMed3, Europe PMC? or other portals, and the datasets
from portals such as ArrayExpress® and cBioPortal®.

The generated dataset profiles (i.e., the metadata descriptions)
can be shared on data spaces, data marketplaces or other data shar-
ing platforms, typically via catalogues of datasets and services, to
facilitate discovery. LLMDap can be used not only for data profiling,
but also other use cases, such as querying and summarization of
datasets.

Figure 2 illustrates how the LLMDap pipeline works. The details
are presented in the following subsections.

3.1.1 Metadata Schema. The input to the LLMDap pipeline is a
metadata schema and one or several documents describing the
dataset to be profiled, such as scientific papers and lab protocols.

https://www.anthropic.com/news/contextual-retrieval
Shttps://pubmed.ncbinlm.nih.gov
*https://europepmc.org
Shttps://www.ebi.ac.uk/biostudies/arrayexpress
®https://www.cbioportal.org
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Figure 2: LLMDap Pipeline.

The schema consists of a list of metadata fields for LLM query
and their descriptions as well as example values.

For the LLMDap execution, any schema can be used, for exam-
ple, defined by standards, existing catalogues, or users. To facilitate
interoperability and discoverability, the metadata fields should rep-
resent the widely used and recognized domain concepts and terms
for domain-specific tasks. Typically, the fields should be linked to
domain ontologies, such as Experimental Factor Ontology (EFO)’
and Ontology for Biomedical Investigations (OBI)S.

When profiled using standardized or interoperable schemas, data
profiles generated by LLMDap can more easily be shared via data
spaces, data marketplaces, or other data sharing platforms.

3.1.2  Auxiliary Data Referencing. Step 1 determines the value
range for the answers to be generated by LLMs for each field de-
fined in the metadata schema. Three types of auxiliary information
can be utilized to get additional data that may assist in the context
retrieval process:

o A predefined set of metadata tags associated with each
schema field, either known a priori to the user or derivable
from related annotated instances available on existing data
catalogues;

e A domain-specific ontology with nodes similar to the ex-
pected values of the metadata fields;

o Example values provided in the input metadata schema.

The output of this process is auxiliary data and a predefined
value range for each field, e.g., as an ontology subtree or a list of
values.

3.1.3 Document Chunking & Embedding. In step 2, the full text
of the input document is split into chunks based on document
structures, i.e., section titles such as “METHODS”, “RESULTS”. This
produces a set of TextNodes [12] objects representing the chunk

https://www.ebi.ac.uk/efo/index.html
8https://obi-ontology.org

strings and metadata. Afterwards, chunks are embedded into vec-
tors (step 3) for use in the next steps, where document chunks and
auxiliary data are embedded into one shared embedding space.

3.1.4  Context Retrieval. Step 4 identifies the most relevant chunks
for each field defined in the schema. Semantic matching is per-
formed based on cosine similarity scores between chunk embed-
dings and auxiliary data embeddings. The output is a concatenated
string of high-relevance chunks per field, providing the next step
of LLM query with candidate context for prediction.

3.1.5 LLM-based Query. Step 5 provides the LLM with a prompt
based on a template that includes the contexts retrieved from the
prior step and user input (in the case of Q&A and summarization)
or field descriptions from the target data schema (in the case of data
profiling). The prompt allows the LLM to generate a prediction of
the answer based on the given contexts. This process is independent
of the LLM models used. The output is a generated profile with
metadata filled for each field in the schema.

3.2 Data Sharing with LLMDap

To facilitate data sharing, additional components are needed to work
with LLMDap, as shown in Figure 3. In particular, a data catalogue
is used to store the profiles of the shared datasets so that users can
search and access them. The architecture of LLMDap-based data
sharing consists of:

o User Interface (UI) intended for the users to generate meta-
data using LLMDap (as data provider), browse and find
datasets (as data consumer), and explore datasets with chat-
style question answering interface (as data consumer).

o LLM-based pipeline, including components providing func-
tionality of LLMDap as described in Section 3.1, and API
for interaction with the UL In LLM query, LLM is used for
both dataset metadata generation and Q&A.

e Data catalogue with the generated metadata for datasets
and associated documents. It can be realised by a centralised
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Figure 3: LLMDap for data sharing.

data storage, or as a federated solution from distributed data
storage.

o Scientific databases with APIs for retrieving metadata from
relevant databases.

Figure 3 illustrates the interaction between system components
as well. For data profiling, the LLM pipeline API accepts a metadata
schema and a paper as input for metadata generation; users can
verify the generated metadata and make changes if needed before
the metadata with associated files are stored in the data catalogue.
For data discovery, the Ul interacts with the data catalogue, e.g.,
using database queries. For dataset exploration, the LLM pipeline
APT accepts queries in natural language and returns LLM gener-
ated answers. APIs for external scientific databases are used to
retrieve more metadata and resources file to enrich the metadata
and associated resources that consumers can explore.

4 VALIDATION IN THE BIOMEDICAL DOMAIN

To validate the LLMDap approach, we implemented a system for
the biomedical domain based on the design outlined in Section
3.2 using Python, Streamlit® and SQLite. User uploaded files (e.g.,
scientific papers or other documentations) are stored as local files.
The SQLite database is used to implement the data catalogue, and it
stores the generated metadata and the links to the local files. Details
about the user interfaces and the realization of the data profiling and
sharing are described in the following subsections. In addition, to
access external documents, APIs of biomedical databases are used,
such as NCBI E-utilities (PubMed!?) and EBI services (BioStudies!!,
ArrayExpress, EuropePMC!2). Two LLM pipelines are implemented,
one for data profiling and another one for data exploration using
Q&A (details are described below).

4.1 User Interface

A modular, intuitive UI!3 is implemented using Streamlit with a

multi-page design. The system offers two primary user interfaces:

https://streamlit.io
Ohttps://www.ncbinlm.nih.gov/home/develop/api
Uhttps://www.ebi.ac.uk/biostudies
2https://europepmc.org/Restful WebService
Bhitps://github.com/SINTEF-SE/LLMDap/tree/main/llm_ui

o Provider View: Enables the submission of biomedical doc-
uments and the automatic generation of dataset metadata
through the LLMDap backend pipeline.

e Consumer View: Facilitates querying, searching, and retriev-
ing dataset-related information via a ChatGPT-style inter-
face using the Q&A LLM pipeline. This includes dataset
overview, browsing, and semantic search, as well as extrac-
tion of additional insights from associated scientific papers
to support research activities.

The key components and operational steps of the Streamlit-based
UI as supported by the respective Ul pages (illustrated in Figure 4)
are described in the following subsections.

Key Human-Machine Interaction principles [17][14] have guided
the design and implementation of the user interface for effective
data visualization.

4.1.1  Provider View. The Provider View facilitates the creation
and submission of metadata derived from scientific literature. This
functionality is accessible via the Provider page (Figure 4(a)), and
supports a stepwise process from document input to metadata
storage. This component prepares valid input for profiling through
PDF or XML parsing, metadata extraction (e.g., PMID parsing), and
schema validation using Pydantic!4.
A typical provider interaction with the system is:

(1) Input of Scientific Paper: Users can supply a scientific pub-
lication for metadata profiling by either uploading a local
file in PDF or XML format, or by entering a corresponding
URL or PubMed ID.

(2) Schema Selection: A metadata schema is required for guiding
the LLM-based profiling process. Users may utilize a prede-
fined default schema or upload a custom schema formatted
in JSON. Pydantic models from the uploaded JSON schemas
are dynamically generated to provide schema flexibility.

(3) Initiation of Metadata Generation: Upon clicking the Process
Input button, the system transmits both the selected docu-
ment and metadata schema to the backend LLM pipeline.
The LLM processes the input to generate structured meta-
data relevant to the dataset.

Yhttps://docs.pydantic.dev/latest
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Figure 4: Screenshots of the main user interface pages: (a) Provider view, (b) Dataset browser, (c) Consumer Q&A.

(4) Metadata Review and Editing: The resulting metadata is (3) Dataset Selection for Q&A: Users may select one or more
displayed in an editable text field. This allows users to re- datasets via checkboxes adjacent to each entry. Clicking
view the output and perform manual refinements where the Ask Questions About Selected Datasets button initiates
necessary. the Q&A workflow based on the selected datasets.

(5) Finalization and Storage: Once satisfied, users can click the (4) Index Update: A Rescan Directories & Update Index button
Save to Database button to complete the process. Supple- triggers a background operation that scans predefined di-
mentary metadata (e.g., PubMed-derived bibliographic data) rectories and updates the catalogue index accordingly.

may be appended. The finalized metadata are then stored

in the catalogue database and associated with any relevant 4.1.3 Consumer View. The Consumer View supports natural lan-

local files. guage interaction with the curated dataset metadata. The interface
resembles a ChatGPT-style chat system and allows end-users to
4.1.2  Dataset Browser. The Dataset Browser page (Figure 4(b)) pose queries about selected datasets.
provides an interface for viewing, searching, and selecting datasets A typical consumer interaction with the system is:

that have been processed and indexed in the system’s database. This
component serves as the entry point for the consumer-oriented
Q&A workflow (Section 4.1.3). This page provides the following

(1) Context Display: Upon activation, the page displays a syn-
thesized summary of the selected datasets, which serves as
contextual information for subsequent user queries.

functionalities: (2) Question Submission: Users enter a question in a designated
(1) Browsing Datasets: The page presents a paginated list of text input area and submit it using the Send button. The
available datasets along with key metadata fields, enabling query, along with contextual metadata, is forwarded to the

rapid visual inspection. Q&A LLM pipeline for processing.
(2) Searching Datasets: A search input field allows users to filter (3) Answer Generation and Display: The system retrieves rele-

datasets by specified keywords. vant information using the LLM and presents the answer in



the chat interface. A persistent chat history is maintained
for each question.

In addition, a configuration page is used for specifying the system
settings, including selection of the LLM model for profiling, adjust-
ment of parameters such as temperature and maximum tokens for
LLM, and update of Q&A prompt template.

4.2 LLM Pipelines Leveraging RAG

Asintroduced at the beginning of this section, there are two pipelines
instantiated for the system. The first one is the LLMDap pipeline
for automatic extraction of dataset metadata with four components
that implement the workflow steps described in Section 3. This
pipeline works in the backend. The second one is a Q&A pipeline
that utilizes an external LLM service for consumer query.

Our approach is LLM-agnostic (independent of the underlying
LLM), and different LLMs can be used for these two pipelines as
demonstrated in our implementation. For example, different LLMs
(GTP-40 mini, Meta-Llama-3.1, Mistral-7B) were tested in the LLM
query step of the LLMDap Pipeline to assess and compare their
performance, while the OpenAl service is used for Consumer Q&A.
The Streamlit Ul integrates with the LLMDap pipeline through the
call_reference!® function in the Provider View, while OpenAI's API
is used to implement the Consumer Q&A View'®.

Both LLM pipelines use RAG to enhance output quality through
fact-based retrieval for improved trustworthiness. During the pro-
filing process, relevant input document segments are retrieved and
provided as contextual input for field-level metadata extraction
by the LLM used in the LLMDap. In the Consumer Q&A pipeline,
contextual information is dynamically assembled from multiple
sources, including the structured data catalogue (SQLite), previ-
ously extracted metadata (JSON), and live external resources (e.g.,
PubMed, EBI). This compiled context is structured into a prompt
and submitted to the LLM, enabling the generation of responses
grounded in curated, dataset-specific information.

4.3 Validation with Domain Experts

To validate the approach proposed in this paper, an early version of
the implemented system was demonstrated to four biomedical do-
main experts to gather feedback from potential users. The experts
considered that such a system would be useful for their research
and they liked the design and usability of the system. They also
suggested some improvements to the user interface design regard-
ing new functionality and usability, which have been implemented
in the current version as described in this paper. For example, they
wished to have a page to manage datasets, a select all button from
the dataset page, more search terms and possibilities, which led to
the current Browse Datasets page with the new button and extended
search options. Another example is adding more feedback to the
user, e.g., this led to the additional confirmation/error messages
shown in the Provider View page to indicate what happened and
with what information after successfully uploading a dataset.

The expert feedback is considered representative of the typical
requirements of potential users and serves as an indicator of the
system’s usability and practical utility.

Shttps://github.com/SINTEF-SE/LLMDap/blob/main/profiler/run_inference.py
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4.4 Dataset Schema and Federated Catalogue

In our implementation, a central database is used for data catalogue.
Alternatively, federated data catalogues can be implemented to
facilitate discovery in a distributed data ecosystem. As current stan-
dards and catalogues use heterogenous metadata schema, schema
mapping is needed to establish a harmonized domain schema with
common and widely used metadata fields, so that the LLM gener-
ated profiles can be interoperable across catalogues.

Although the schema used in the implemented system for valida-
tion is specific to datasets curated from ArrayExpress for controlled
experimentation, the adoption of emerging standard schemas, such
as Beacon v2 defined by GA4GH [16], should be considered to
enhance interoperability and alignment with community practices.

5 CONCLUSION AND FUTURE WORK

In this paper, we introduced the generic LLMDap pipeline for data
profiling and sharing, and demonstrated how LLMs and RAG can
be applied to enrich metadata and support question answering in
the biomedical domain. The work proposes a solution leveraging
the power of LLMs and the factual, truth-based trustworthiness
enhanced by RAG to improve data discoverability in a data sharing
ecosystem. The feedback provided by domain experts reflects com-
mon user requirements and highlights the system’s usability and
potential applicability.

For further work, we are conducting extensive experiments to
evaluate and compare the performance of different configurations
of LLMDap using various LLM models in terms of accuracy and
cost, and will report the comparative results. Moreover, some en-
hancements may improve usability, facilitate insight extraction,
and increase the transparency and interpretability of LLM outputs.
For example, a graph-based visualization can be used to represent
relationships among extracted metadata elements. Highlighting
document segments and data sources used by LLM and confidence
scores can improve transparency in metadata extraction and Q&A.
Moreover, side-by-side charts or heatmaps can be used to enable
visual comparison of key metadata fields across multiple datasets.
Finally, while the LLMDap pipeline is validated using biomedical
datasets, the solution can be adapted to other domains by adjusting
metadata extraction to domain-specific terminology, ontologies and
data formats, and integrating with domain databases.
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