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ABSTRACT

This paper presents MINiDM, a novel negotiation framework de-
signed for decentralised data marketplaces. MINiDM enables Al-
driven agents to negotiate complex, multi-issue data-sharing agree-
ments while ensuring compliance with legal and ethical standards
such as GDPR. The framework combines game-theoretic strategies,
formal policy languages and vocabularies (ODRL and DPV), and
a lightweight multi-agent commitment protocol to automate fair
transactions without relying on central authorities or blockchain-
based contracts. Experimental results demonstrate that MINiDM
outperforms existing protocols in terms of agreement rate, fairness,
and negotiation efficiency, offering a promising direction for secure
and autonomous data trading in Web3 ecosystems.
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1 INTRODUCTION

Decentralised data marketplaces (DDMs), enable secure, privacy-
preserving, and autonomous data exchanges without relying on cen-
tral intermediaries. These marketplaces can establish trust, trans-
parency, and immutability in transactions, as demonstrated by plat-
forms such as Ocean Protocol [40], Gaia-X [10], and IPFS [7].
Despite their potential, DDMs face significant obstacles. First,
ensuring trust and fairness is challenging, as there is no overar-
ching entity to enforce reliability or verify commitments. Second,
data providers often hesitate to share valuable information due to
privacy concerns, exacerbated by opaque and manual negotiation
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processes. Third, scalability remains a critical issue. Current negoti-
ation models struggle to efficiently handle high-volume, multi-party
interactions involving multiple interdependent attributes.

Moreover, regulatory compliance further complicates decen-
tralised data trading. Legal frameworks such as the GDPR [1], AI
Act [3], and Data Governance Act [2] impose strict requirements for
privacy, fairness, and accountability. Formal policy languages and
vocabularies such as ODRL (Open Digital Rights Language) [24],
and DPV (Data Privacy Vocabulary) [28] can help enforce these
requirements. However, ensuring real-time, automated enforce-
ment of these policies in decentralised settings is challenging due
to the lack of centralised oversight and the complexity of machine-
readable contracts.

Traditional automated negotiation systems [35], although effec-
tive in centralised environments, are ill-suited for decentralised
settings due to their reliance on predefined trust assumptions and
limited policy enforcement capabilities. Protocols such as the Take-
It-Or-Leave-It (TILI)[34] approach and the Monotonic Concession
Protocol (MCP)[17] fail to adequately address the complexity of
multi-issue negotiations and dynamic trade-offs.

To address these challenges, we propose MINiDM (Multi-Issue
Negotiation in Decentralised Data Marketplaces), a novel game-
theoretic framework for autonomous, policy-aware data-sharing
agreements in decentralized marketplaces. MINiDM integrates
multi-agent negotiation models, utility-based game-theoretic
decision-making, and semantic web ontologies (ODRL and DPV)
to enable Al-driven agents to generate offers, counteroffers, and
resolve conflicts. Crucially, rather than relying on blockchain-based
smart contracts, MINiDM employs a multi-agent commitment pro-
tocol that leverages digital signatures and a tamper-evident com-
mitment registry to enforce and verify agreements. This approach
ensures that negotiated terms are both final and verifiable, while
reducing computational overhead.

The key contributions of this paper are:

o A scalable Al-driven negotiation framework for decentralised
data marketplaces that employs multi-agent systems for
autonomous negotiation, utility-based decision-making for
fairness and efficiency, and privacy-preserving techniques
for secure, policy-aware transactions.

o The integration of Semantic Web Ontologies (ODRL, DPV)
for automated regulatory compliance, enabling Al agents


https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org

to dynamically enforce data policies and encode regulatory
terms in machine-readable contracts.

e A robust game-theoretic model based on Multi-Attribute
Utility Theory, Bayesian game theory, and Coalition Game
Theory to handle multi-issue negotiations.

e Experimental validation demonstrating higher agreement
rates, better utility balance, and improved negotiation effi-
ciency compared to traditional approaches.

The remainder of this paper is structured as follows: Section 2
presents the framework overview, Section 3 describes implemen-
tation and evaluation, related works are studied in Section 4 and
finally Section 6 concludes with future research directions.

2 FRAMEWORK OVERVIEW

Our framework models negotiation as a sequential, multi-issue
game, where agents iteratively propose and refine offers based on
their preferences, constraints, and regulatory requirements. The ne-
gotiation process follows the IDSA Contract Negotiation Protocol
(CNP)!, incorporating utility modelling, ontology-driven compli-
ance enforcement, and automated agreement execution.

Unlike traditional blockchain-based smart contracts, which often
introduce high computational costs and rigidity, MINiDM adopts
a multi-agent commitment protocol that leverages digital signa-
tures and a tamper-evident commitment registry. This approach
ensures verifiable, enforceable, and dispute-resistant agreements
while maintaining computational efficiency.

The key components of MINiDM are the following:

Multi-Agent Negotiation Model Implements autonomous
decision-making, enabling data providers and consumers
to evaluate trade-offs dynamically.

Utility-Based Optimisation Uses a multiplicative utility
function to capture complex interdependencies between
negotiation attributes.

Ontology-Driven Policy Enforcement Integrates ODRL
and DPV for automated regulatory compliance.

Multi-Agent Commitment Protocol Leverages digital sig-
natures without relying on blockchain-based smart con-
tracts.

The subsequent subsections detail utility modeling, negotiation
protocol design, ontology integration, and algorithm execution.

2.1 Negotiation as a Multi-Issue Game

The negotiation process in MINiDM is modeled as a sequential
multi-issue game, where Al-driven agents iteratively generate of-
fers, counteroffers, and trade-offs based on dynamic preferences,
constraints, and legal requirements. The framework supports multi-
issue bargaining across the following attributes:

e Data subset (DB): Defines whether the consumer requests
the full dataset or a subset selection.

o Actor (TP): Specifies who will receive access to the data
(e.g., researchers vs. commercial entities).

e Duration (D): The length of data access rights (e.g., one-
time, subscription-based).

Ihttps://github.com/International-Data-Spaces-Association/ids-specification/

e Purpose (PU): The intended use of the data (e.g., academic
research vs. targeted marketing).

e Action (A): Defines permissible actions (e.g., read, process,
share).

e Price (P): Represents the compensation model, which can
be fixed, dynamic, or performance-based.

These attributes can be sorted into three categories, based on the
types of their values: nominal attributes such as free text attributes,
numerical attributes (price, duration and data subset), and hierar-
chical attributes (actors, purposes and actions that come from an
ontology). Numerical attributes can be easily normalised to ensure
comparability. Though the data subset attribute does not neatly
fall into this category, we will model it as a numerical value cor-
responding to the proportion of data requested to the full data.
Hierarchical attributes are weighted based on their position in a
predefined hierarchy. For example, purpose value “research and de-
velopment” is assigned a larger weight than “commercial research”,
because it is more general, and thus higher in the hierarchy of pur-
poses. To capture attribute interdependencies, MINiDM employs
a multiplicative utility function. This approach would allow the
negotiation protocol to better account for cases where one attribute
(like price) can dramatically affect the utility of other attributes
(such as duration or data access).

U = | itk w) ()
i=1

Equation (1) shows our utility function U (X), where X = (DB, TP, D,
PU, A, P) is a set of negotiation attributes; x; is the normalised value

of attribute i; and w; denotes the relative weight of attribute i. While

one use arbitrary functions, in this paper we use f;(x;, w;) = xl.wi

to ensure non-linearity, making utility highly sensitive to critical
negotiation factors.

This models realistic risk aversion, preventing parties from ac-
cepting suboptimal trade-offs where a single issue is overly compro-
mised. Furthermore, this approach enables dynamic trade-offs, al-
lowing, for instance, consumers to accept a higher price for stronger
privacy guarantees, and providers to reduce costs in exchange for
shorter data-sharing durations. The degree of preference overlap
between negotiation parties directly affects convergence speed and
agreement likelihood: high preference alignment (e.g., similar price
and privacy expectations) results in faster agreements; and low
overlap leads to longer negotiations and lower agreement rates due
to conflicting priorities.

Finally, both the provider and consumer assign weights to the
dataset’s attributes based on their priorities to reflect their prefer-
ences and evaluate the target data source in utility function. In this
case, weights assigned by the provider reflect the privacy sensitivity
of attributes, and weights assigned by the consumer reflect how
the attributes are crucial to their goals; attributes that the provider
is not willing to share can be tagged as non-negotiable.

2.2 Negotiation Protocol
MINIDM follows the IDSA Contract Negotiation Protocol (CNP)?
which is illustrated in Figure 1. Data providers list their datasets

Zhttps://github.com/International-Data-Spaces-Association/ids-
specification/blob/main/negotiation/contract.negotiation.protocol.md



on decentralised data marketplaces, optionally specifying key at-
tributes such as pricing, access conditions, and usage restrictions.
When a consumer browses the marketplace and finds a dataset,
they send a request to the provider.
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Figure 1: State Machine for the IDSA Contract Negotiation
Protocol.

2.2.1 Negotiation Initialisation. The data consumer’s agent ini-
tiates the negotiation by sending a request to the data provider,
detailing their negotiation attributes, and containing any applicable
legal or policy restrictions as regulatory constraints. Said request
is structured using RDF to ensure machine-readable policy enforce-
ment and compliance verification. Following this, the data provider
receives the request and can evaluate it to either (1) agree the of-
fer’s terms, ending the negotiation in a match, or (2) reject the offer
and propose a counteroffer that is more suited to their goals by
modifying any of the (negotiable) attributes.

2.2.2 lterative Adjustment. Agents refine proposals to optimise
their utility and get close to the opponent’s desired utility while
ensuring regulatory compliance using Bounded Best-Response Dy-
namics (BBRD) [4]. BBRD is a negotiation strategy based on game
theory, where players make counteroffers that: improve their utility
compared to the opponent’s last offer; are worse than their previ-
ous offer (showing a controlled concession); and stay within their
predefined preference bounds. This strategy ensures that the play-
ers gradually move toward an agreement while avoiding irrational
concessions. This iterative process continues until an agreement is
reached (contract generation) or the negotiation fails due to irrec-
oncilable differences. Once both agents have reached a consensus,
the agreement is formalised as an initial contract.

2.3 Ontology Integration

MINiDM integrates computational policies and semantic seb on-
tologies to enforce machine-readable, automated compliance with
data-sharing regulations. The two key technologies are the Open
Digital Rights Language (ODRL) and the Data Privacy Vocabulary
(DPV)[43]. Together, they play a pivotal role in structuring negoti-
ation terms, enabling precise alignment of the provider’s privacy

preferences with the consumer’s goals. ODRL allows for the defini-
tion of permissions, prohibitions or obligations on actions (e.g., use,
aggregate, distribute, display), actors and assets, as well as define a
hierarchical structure on said elements. On the other hand, DPV
provides an ontology of terms related to the processing of data
and relevant technologies, which includes a hierarchy of purposes
to guide negotiation strategies. This layered ontology-driven ap-
proach ensures that agreements are semantically precise, reducing
ambiguity and facilitating automation. Through semantic reason-
ing, the framework resolves conflicts that arise when a consumer
requests actions or purposes outside the provider’s permissions.
ODRL’s dependency structures allow for predefined conflict res-
olution strategies, such as prioritising permissions, prohibitions,
or invalidating policies altogether. In our implementation we have
used an extension of the formal semantics and rule-based reasoning
framework introduced in [48] to handle conflict resolution.

In the ontology-driven conflict checking, Al agents automatically
verify whether an offer adheres to predefined policies; if a conflict
arises (e.g., an action is prohibited), the system suggests alterna-
tive offers applying semantic reasoning. Additionally, if multiple
constraints exist, the system prioritises legal obligations over ne-
gotiable terms through a hierarchical prioritisation. This approach
ensures regulatory adherence, interoperability across decentralised
marketplaces, and reduced negotiation failure rates due to policy
conflicts.

2.3.1 Key GDPR Considerations in MINiDM. To ensure compliance
with the General Data Protection Regulation (GDPR), MINiDM has
integrated privacy-preserving policies through ODRL and DPV on-
tologies. The key GDPR principles incorporated into the negotiation
framework include:

e Data Minimisation: Data providers’ main strategy is to
share subsets of the datasets; therefore, if a data consumer
requests excessive information, the system enforces auto-
matic rejection or counteroffers with reduced datasets.

e Purpose Limitation: Each dataset is tagged with an al-
lowed usage purpose. If the data consumer attempts to
negotiate for unauthorised usage (e.g., "marketing"), the
negotiation process blocks the request.

e Legal Basis Verification: Every negotiation agreement
must explicitly define a valid legal basis for data processing,
such as user consent or contractual necessity. Any offer
lacking a legal basis is automatically rejected. MINiDM
ensures this by integrating an automated policy verification
system that checks each offer against predefined legal basis
categories within the ODRL-DPV framework. If an offer
does not meet the necessary requirements, it is flagged for
modification or rejected.

e User Consent and Revocation: Data providers can spec-
ify consent conditions that require consumers to support
revocation mechanisms. Agreements must define proce-
dures to withdraw consent and ensure compliance with
data deletion requests.

e Automated GDPR Compliance Checks: MINiDM em-
ploys a structured compliance check mechanism to ensure
that negotiations adhere to GDPR principles. This mech-
anism is implemented using a combination of rule-based



validation and constraint evaluation through ODRL-DPV
ontologies.

By embedding GDPR compliance rules in the negotiation process,
MINiIDM ensures that agreements align with legal and ethical stan-
dards while maintaining fair and efficient negotiation outcomes.

2.4 Algorithm Design

In a non-Markovian process, at each iteration, ¢, the consumer’s
agent defines and resolves the conflicts between the last existing
offer and the consumer’s preferences and generates a request in
order to minimise the distance to the provider’s best offer in the
previous rounds, from 1 to #-1. The provider’s agent also evaluates
the received request, resolves conflicts, and proposes a counteroffer
with almost the same strategy to become closer to the best received
request since the first iteration of negotiation. Figure 2 represents
the automated negotiation architecture.
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J

Figure 2: Automated negotiation architecture.

2.4.1  Game Convergence Analysis. Our negotiation process is mod-
elled as a multi-agent, multi-issue game, where rational agents
iteratively adjust their strategies to maximise their utility while
ensuring regulatory compliance and mutual satisfaction. In this
section, we establish:

e Convergence to a Nash Equilibrium (NE) — Ensuring that
no agent has an incentive to unilaterally deviate from its
strategy.

e Convergence to a Pareto-Optimal Solution — Ensuring that
no further improvements can be made without reducing
another agent’s utility.

To formalise the convergence analysis, we define the strategic
game model, establish the existence of Nash equilibria, and prove
convergence to Pareto-optimality using first-order conditions and
Zangwill’s Theorem [53].

We define the negotiation game as a repeated multi-issue bargain-
ing game between two agents: a data provider, and a data consumer.
Each agent has a strategy space S;, where s; € S; represents an
agent’s offer in the negotiation. The joint strategy profile is given
by’: S =51 XS.

As mentioned before, each agent has a utility function U; : S —
R defined as:

n
. = Wij
Ul(X) _]_lxij > (2)
j=1
where x;; is the normalised value of attribute j for agent i, with

0 < xjj < 1. w;; is the weight assigned to attribute j for agent i,
satisfying: Z;.’zl wij = 1. The strategy update rule follows Bounded

Best-Response Dynamics (BBRD), meaning that each agent selects
the best response within a feasible bound to optimise its utility at
each step.

Convergence to a Nash Equilibrium: A Nash Equilibrium
(NE) is a strategy profile (s],s;) where no agent can improve its
utility by unilaterally deviating:

Ui(sy,s5) = Ui(s1,55)V¥s1 € Sq
Ui(s],s5) = Ur(s],s2)Vsz € Sa

By the Fan-Glicksberg Fixed-Point Theorem [23], a Nash Equi-
librium exists if: the strategy space S is nonempty, compact, and
convex; and the utility function U;(X) is quasi-concave and upper-
hemicontinuous.

Since each attribute is drawn from a convex space, x;; € [0,1],
the strategy space S is convex.

The utility function U;(X) is log-concave since:

n
logU;(X) = Z wij log Xij, (3)
Jj=1
which is a weighted sum of concave functions. Hence, U;(X) is
quasi-concave, ensuring the existence of an NE.

If an agent updates its offer Xi( #+1)

f,Xi(Hl) = f(Xlt) If there exists 0 < a < 1 such that:

using a best-response function

1 % ¢
XD =X < @l - Xl @

Then by Banach’s Fixed-Point Theorem [6, 13], X! must converge
to X*. Since the negotiation space is bounded and updates are
restricted, f exhibits contraction. Thus, BBRD ensures convergence
to a Nash Equilibrium.

Convergence to Pareto-Optimality: A solution is Pareto-
optimal if no agent can improve its utility without reducing the
other agent’s utility, AU (X*) = AAU2(X™) for some A > 0.

Since U;(X) is multiplicative,

n
ZTUl_zwjnx;k 5’k. (5)
7 k=1

Solving the Lagrange condition in Eq (5), we obtain:
wi _ wp Wn

122 = )

-
XX Xy

This condition ensures that no attribute can be improved without
reducing another agent’s utility. Now, we show that distance to the
Pareto Frontier is monotonic. The distance of the current offer X ()
to the Pareto frontier is d(*) and is defined as:

d® = min [|X®) - x*|, 7)
X*eP

where P represents the Pareto-optimal set. Each agent adjusts its
proposal at round ¢ + 1 to maximise utility, therefore, each iteration
reduces this distance, which implies:

dH) < g0, (8)

Since d*) is bounded below by zero, it converges. By Zangwill’s
Theorem [53], a sequence x® converges to a fixed point if: (1)
XWis contained in a compact set; (2) the utility function is mono-
tonically improving; (3) the decision rule ensures that the sequence



moves toward an optimal solution. Since all conditions hold, the
final agreement lies on the Pareto frontier.

Rate of Convergence to Pareto Optimality: When preference
alignment is high, convergence is fast due to rapid trade-offs. When
preferences diverge significantly, convergence slows down due to
iterative conflict resolution. The granularity of updates determines
whether convergence is logarithmic or polynomial.

3 IMPLEMENTATION AND EVALUATION

To assess the performance of MINiDM, we developed an experi-
mental platform simulating the negotiation process between data
providers and consumers. The evaluation compares MINiDM against
two established negotiation protocols: Take-It-Or-Leave-It (TILI),
arigid, one-shot negotiation strategy where the offer must be ac-
cepted or rejected without further interaction; and Monotonic Con-
cession Protocol (MCP) , a sequential approach where each party
gradually concedes on negotiation attributes to reach an agreement.
Since each concession is based only on the current negotiation state,
standard MCP follows a Markovian process.

We conduct experiments using the Bank Marketing Dataset from
the UCI repository 3. The data is about direct marketing campaigns
(phone calls) of a Portuguese banking institution [41]. Agents nego-
tiate multiple attributes, including data subset, privacy constraints,
and price.

3.1 Experimental Setup

Experiments were conducted on a MacBook with an Apple M1 CPU
and 8GB RAM. Each experiment was run for 100 iterations under
varying conditions to evaluate the framework’s robustness. Table 1
summarises the experimental parameters.

Table 1: Experimental Setup Parameters

Parameter Description Values Tested
Number of Agents Data provider and consumer 2
Utility Weights Defined by main provider and consumer Fixed
Privacy and Usage Control | Managed using ODRL and DPV ontologies Enabled
GDPR Compliance Enforced using ODRL-DPV extensions Integrated
Negotiation Rounds Maximum iterations 50, 100, 200

3.2 Evaluation Metrics
We evaluate MINiDM based on the following key metrics:

e Utility Values
e Fairness: Fairness measures how balanced the final out-
comes are between the provider and consumer:

Uprovider — Uconsumer

max(U)

Fairness = 1 — 9)
e Agreement Rate: Percentage of negotiations that success-
fully reach an agreement.

Number of Successful Negotiations 100

(10)

o Time to Agreement: Measures how execution time scales

with preferences overlap and increasing negotiation at-
tributes.

A t Rate =
greement Rate Total Number of Simulations

3https://archive.ics.uci.edu/dataset/222/bank+marketing

3.3 Results and Discussion

3.3.1 Agreement Rate. Figure 3 compares agreement rates under
different preferences overlaps.

MINiIiDM achieves the highest agreement rates when prefer-
ences align (70%-90%), because the multiplicative utility function
captures attribute dependencies, which become an advantage in
scenarios with well-aligned preferences. However, agreement rates
drop sharply in low-overlap scenarios because extreme interdepen-
dencies penalise offers with significant attribute mismatches.

MINiDM does dynamically reasoning and resolves some conflicts
using hierarchical structures of attributes such as purposes and ac-
tions, and prioritisation rules. It uses dependency model, ODRL’s
ConflictTerm, to determine whether permission, prohibition, or
invalidation takes precedence. This capability is integral to its high
agreement rates. Even in low-overlap scenarios, the protocol itera-
tively resolves discrepancies by offering alternative options (e.g.,
less critical purposes or actions), ensuring continued negotiation
even when initial requests are misaligned.

TILI shows the lowest agreement rates, particularly in low-
to mid-overlap scenarios (10%-50%), because it is rigid and non-
iterative, meaning that agreements are only possible if the initial
offer happens to align with the opponent’s preferences. However,
its simplicity and speed make it suitable for high-overlap scenarios
or where time to agreement is critical.

MCP falls between the other two protocols in agreement rates.
It handles mid- to high-overlap scenarios relatively well (50%-90%
overlap), since it facilitates iterative negotiations, allowing for grad-
ual convergence. However, it lacks the nuanced adaptability of
game-theory-based frameworks with advanced utility models.

3.3.2 Utility Balance and Fairness. Figures 3a shows the utility
for both the consumer and provider, and 3b illustrates the fairness
across protocols. MINiDM maintains superior fairness by dynami-
cally adjusting offers, whereas TILI heavily favours the provider.

(a) Utility

(b) Fairness

(c) Agreement Rate (d) Time to Agreement
Figure 3: Comparisons of Evaluation Metrics over Prefer-
ences Overlap Percentage.

MINIDM offers the best utility balance as overlap increases, ap-
proaching a near-equal distribution (50/50) at 90% overlap, since the
multiplicative utility function enforces strong inter-dependencies
between attributes, encouraging both agents to make balanced con-
cessions to reach agreement. However, in low-overlap scenarios,



the provider often gains a disproportionate share due to stricter
constraints in the utility model.

TILI shows the least balanced outcomes, heavily favoring the
provider, because the consumer has limited negotiation leverage
under this rigid framework, often accepting suboptimal offers or
walking away. MCP falls between the other two protocols, balancing
flexibility and fairness. As overlap increases, MCP gradually aligns
the utilities but rarely achieves complete parity.

3.3.3 Computational Complexity and Scalability. Figure 3d shows
the number of iteration requires to reach an agreement, for both
MINiDM and MCP; TILI is not compared because it is a one-step ne-
gotiation protocol. As the results show, The MCP converges faster
than MINiDM due to its streamlined and predictable concession-
based approach, which narrows the negotiation space in a stepwise
manner. MCP adjusts one or few attributes monotonically, avoid-
ing iterative conflict resolution and complex utility recalculations,
leading to linear and quicker convergence. However, this simplicity
comes at the expense of reduced flexibility and fairness, making
MCP less suitable for resolving conflicts in low-overlap scenarios or
achieving balanced multi-issue agreements. In contrast, MINiDM’s
advanced adaptability and conflict resolution extend negotiation
time but ensure more equitable and optimal outcomes.

MINiDM'’s non-linear complexity is justified by superior agree-
ment rates and fairness. However, its computational complexity
grows non-linearly as the number of attributes increases, primarily
due to conflict resolution and utility recalculations for each added
attribute. Since TILI sets a single, fixed offer, the number of at-
tributes has minimal impact on its execution time. This makes it
the fastest protocol in terms of scalability. However, the simplicity
of TILI results in poor utility balance and low agreement rates in
scenarios with many attributes, as the fixed offer may not align well
with consumer preferences. Finally, MCP can handle multi-issue ne-
gotiations moderately well, making incremental concessions across
attributes to narrow the negotiation space. It becomes increasingly
slow as the number of attributes grows, due to the stepwise adjust-
ment of each attribute in sequence.

4 RELATED WORKS

In this section we briefly review related works from to perspective:
first, data sharing and its major concerns and then, automated
negotiation and different approaches to it.

4.1 Data Sharing

Given the importance of data sharing as indicated by large research
initiatives such as Gaia-X [30] and Catena-X 4 [16], lots of research
has been doing on data sharing for decades; their focus has mainly
been on privacy policies [27] and usage control [42, 44, 46, 50]
in various dimensions and applications [9, 22, 37, 45, 47]. Some
researches have also studied data sharing agreements from legal
and technical perspective [11, 14, 39, 49]. In this study we study data
sharing while considering privacy, usage control, and monetisation.

4https://catena-x.net/en/

4.2 Automated Negotiation

Automated negotiation has been one of the research areas of inter-
ests for several decades, and a variety of negotiation frameworks
have been proposed [5, 18-20, 25, 26, 29, 32, 38, 52] provided brief
state of the art overviews of agent based automated negotiation.
Automated negotiation, also powered by game theory and artificial
intelligence, [15, 21]. Game theory is a sub-field of microeconomics
which is widely acknowledged to provide the best available set of
tools for the design of multi-agent architectures [8]. Game theory
basically provides mathematical framework for analysing strate-
gic decision-making, is particularly suited to situations where the
actions of one participant affect the outcomes of others [31, 36].
By modeling data-sharing negotiations as sequential games, in-
teractions between entities can be analyzed to predict behavior,
identify potential conflicts, and design mechanisms that promote
cooperation. The Vickrey-Clarke-Groves (VCG) mechanism in [12]
encourages truthful information sharing, reducing asymmetry and
facilitating optimal agreements. Game-theory-based models also
adapt to evolving conditions, making them suitable for dynamic
environments like smart grids, healthcare systems [51], and water
transfer [33]. Our framework models the negotiation as a two-
players game in which agents negotiate based on the strategies and
preferences that are defined by the data provider and consumer to
share data. When agents reach an agreement, it will be sent for the
provider and consumer and they will finalise it as a contract.

5 DISCUSSION AND CONCLUSION

This paper introduced MINiDM, a framework for multi-issue nego-
tiation in decentralised data marketplaces. By integrating formal
policy languages and vocabularies (ODRL, DPV), Al agents, and a
lightweight commitment protocol, MINiDM facilitates fair, GDPR-
compliant negotiations without relying on blockchain or central
authorities.

Our experiments show that MINiDM enables high agreement
rates, improves negotiation fairness, and reduces delays and outper-
forms the TILI approach and MCP, which serve as the benchmarks
for negotiation scenarios. The framework demonstrates that agent-
based negotiation, coupled with policy reasoning and compliance
checking, can enhance trust and autonomy in Web3 data trading.

Future work will focus on extending compliance logic, incorpo-
rating learning-based strategies, and exploring negotiation dynam-
ics with incomplete or asymmetric information.
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