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ABSTRACT
As data becomes a central asset in the AI-driven economy, data
marketplaces have emerged to support efficient, utility-aware ex-
changes between data providers and consumers. However, tradi-
tional models such as fixed pricing or auctions often fail to account
for evolving budgets, asymmetric incentives, and predictive util-
ity, resulting in suboptimal transactions. This paper introduces
UxV-DPN (Utility-vs-Value Data Pricing and Negotiation), a novel
negotiation-based pricing protocol designed to align the buyer’s
learning utility with the seller’s value expectations through dy-
namic, utility-informed pricing.We evaluate UxV-DPN against base-
line strategies, including Simple negotiation, Single-Agent learn-
ing (centralised), and No-Exchange, across multiple datasets in a
distributed learning environment. Experimental results indicate
that both data exchanges improve predictive performance over
No-Exchange, while UxV-DPN reduces buyer costs compared to
the Simple negotiation strategy, offering over 80% of its accuracy
at nearly half the price. This demonstrates that UxV-DPN deliv-
ers a more cost-effective negotiation than Simple. These findings
underscore the significance of structured negotiation strategies in
enhancing economic efficiency and model accuracy in distributed
data exchange.
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1 INTRODUCTION
Data Economy (DE) has become a crucial component of modern
digital infrastructure, with data recognised not only as a technolog-
ical resource but also as an essential economic asset. Harnessing its
potential and aligning producer and consumer incentives requires
organised systems for data exchange, valuation, and monetisation.

This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.

Consequently, organisations need efficient, reliable market-based
mechanisms for data sharing and trading.

Data marketplaces have gained traction as platforms that fa-
cilitate the discovery, exchange, and monetisation of data assets
between different entities [1, 15, 21]. These platforms function
as intermediaries between data providers and consumers [10], fa-
cilitating transactions while ensuring and providing data valua-
tion [11, 24], pricing [19, 28], and, in some cases, analytics services
and privacy-preserving mechanisms [14, 16]. Data marketplaces
provide structured and scalable frameworks for data exchange, fa-
cilitating access for organisations to a diverse array of high-quality
datasets without the necessity of customised data-sharing agree-
ments. By reducing transaction costs and enabling dynamic pricing
and licensing, these platforms are reshaping data-driven innova-
tion in sectors such as finance, healthcare, mobility, healthcare,
and smart cities [2, 19, 25]. A variety of data marketplace archi-
tectures have emerged, including centralised platforms like AWS
Data Exchange, decentralised protocols such as Ocean Protocol,
and domain-specific exchanges tailored to industry needs [2].

Several methods exist for data valuation and monetisation, rang-
ing from market-based pricing models to algorithmic approaches
that estimate value based on utility or metadata. However, these
methods often face limitations in accurately capturing a dataset’s
true worth, particularly in dynamic and decentralised environ-
ments [2, 19]. Current data marketplaces face pricing asymmetries,
weak metadata and version control, regulatory constraints, and
poor interoperability, hindering scalability and trust. In this paper,
we propose a negotiation-based approach that aims to align buyer
utility with seller valuation, addressing both economic efficiency
and fairness in Machine Learning Data Marketplaces (MLDM).

This paper is structured as follows: Section 2 reviews Data Mar-
ketplaces for Machine Learning, focusing on pricing and nego-
tiation. Section ?? introduces the UxV-DPN protocol. Section 4
presents the empirical evaluation, including setup and results. Fi-
nally, Section 5 concludes the paper and suggests future work.

2 DATA MARKETPLACES FOR ML
Artificial Intelligence relies heavily on large amounts of data. Yet
in many real-world scenarios, data is inherently distributed across
autonomous agents, edge devices, or institutional boundaries [14,
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25]. Each agent may collect its own localised data stream, such as
sensor readings, user transactions, or domain-specific logs. This
decentralised collection process means that each agent often lacks
the volume or diversity of data required to train a robust and high-
performance model. This fragmentation creates a barrier to model
performance and scalability.

Centralising these disparate datasets is often impractical. Privacy
regulations, bandwidth limitations, and a lack of trust among data
owners can prevent raw data from being pooled in a single reposi-
tory [23]. Decentralised approaches like federated learning attempt
to address these concerns by allowing agents to share model up-
dates instead of raw data. Although this approach addresses some
of the limitations above, it does not account for the real costs of
data acquisition, preprocessing, or labeling. In practice, data repre-
sents a tangible economic asset, one that requires incentives and
protections if owners are to participate in collaborative learning.

Data marketplaces for machine learning embrace this economic
perspective [8, 18, 22]. By viewing data as a scarce, valuable com-
modity, these marketplaces enable agents to buy and sell datasets
based on measurable utility. In such a setting, each dataset is priced
according to the utility it brings to a downstream learning task (e.g.,
how much adding a new batch of examples boosts accuracy). In
fact, data trading becomes a utility-driven transaction rather than
purely data exchange.

An example of one such marketplace is the Machine Learn-
ing Data Marketplace (MLDM) framework [3, 4]. MLDM is a de-
centralised framework that facilitates data exchange among au-
tonomous learning agents. It enables data trading through inte-
grated modules for acquisition, valuation, monetisation, negotia-
tion, and exchange (see Figure 1). Each participant acts as a data
prosumer, producing (selling) and consuming (buying) data. Partic-
ipants train supervised models on local datasets and evaluate their
data using the Gain-Data-Shapley-Value (GDSV) [5], which deter-
mines the contribution of each sample to model performance. These
evaluations inform pricing and negotiation, allowing high-impact
data to command higher prices. After negotiations, participants
assess the data exchange’s impact on performance improvements
(details in Section 2.1).

2.1 Algorithmic Framework for ML data
Marketplace

The MLDM is a decentralised society of intelligent agents that act
both as data producers and consumers (i.e., prosumers), aiming
to collaboratively enhance their predictive performance through
data exchange (see Algorithm 1). Let 𝐴 = {𝐴1, 𝐴2, ..., 𝐴𝑛} denote
the set of all agents, where each agent 𝐴𝑖 ∈ 𝐴 develops a super-
vised learning model M𝑖,𝑡 at time 𝑡 trained on its local dataset,
𝐷𝑖,𝑡 =

{
𝑋𝑖,𝑡 , 𝑦𝑖,𝑡

}
, whereM𝑖,𝑡 : 𝑋𝑖,𝑡 → 𝑦𝑖,𝑡 . Model performance is

estimated at each iteration using an appropriate methodology (e.g.,
hold-out) and measure (e.g. accuracy) as PR𝑖,𝑡 .

At each time step 𝑡 , seller 𝐴 𝑗 offer subsets of its data for trade,
denoted as 𝑇𝑟𝐵 𝑗,𝑡 , for potential trade with multiple buyers. Each
buyer. The seller 𝐴 𝑗 calculates the value of 𝑇𝑟𝐵 𝑗,𝑡 using a data
valuation function:

DV(𝑇𝑅𝑟𝐵 𝑗,𝑡 ,M 𝑗,𝑡 ,PR𝑖,𝑡 ) → 𝜙 𝑗,𝑡 (1)

Algorithm 1 MLDM Algorithmic Framework
𝑡 ← 0
Buyer 𝐴𝑖 , Seller 𝐴 𝑗

while 𝑡 ≤ 𝑇 do
All agents train their models (𝑀𝑖,𝑡 ,PR𝑖,𝑡 )&(𝑀𝑗,𝑡 ,PR 𝑗,𝑡 )
Seller value its data DV(𝑇𝑅𝑟𝐵 𝑗,𝑡 ,M 𝑗,𝑡 ,PR𝑖,𝑡 ) → 𝜙 𝑗,𝑡

Data Pricing PF (𝜙 𝑗,𝑡 ) → 𝑝𝑆
𝑗,𝑡
, 𝑝𝐵

𝑖,𝑡

Negotiation between 𝐴𝑖 , 𝐴 𝑗 : NF (𝑝𝑆𝑗,𝑡 , 𝑝
𝐵
𝑖,𝑡
) → 𝑝

𝑖, 𝑗
𝑡

Exchange traded data: EF (𝑇𝑟𝐵 𝑗,𝑡 , 𝑋𝑖,𝑡 , 𝑝
𝑖, 𝑗
𝑡 ) → 𝑋

′
𝑖,𝑡
, 𝐵𝑔

′
𝑖,𝑡

Calculate Gain: GF (𝑇𝑟𝐵 𝑗,𝑡 , 𝑝
𝑖, 𝑗
𝑡 , 𝑀𝑖,𝑡 ,PR𝑖,𝑡 ) → g𝑖,𝑡 , g𝑗,𝑡

end while

which evaluates the potential impact of the traded data on model
performance. Based on this valuation, the seller sets price (an eco-
nomic value) using a pricing function: PF (𝜙 𝑗,𝑡 ) → 𝑝𝑆

𝑗,𝑡
(See equa-

tion 4).Then, the buyer assesses the The buyer, 𝐴𝑖 , proposes its
desired price for traded data PF (𝜙 𝑗,𝑡 ) → 𝑝𝐵

𝑖,𝑡
(See equation 6). An

iterative negotiation protocol NF (𝑝𝑆
𝑗,𝑡
, 𝑝𝐵

𝑖,𝑡
) is initiated to resolve

differences between the seller’s offer and the buyer’s proposal (sec-
tion 3). If the negotiation takes place, it may result in a mutually
agreed-upon price, denoted as 𝑝𝑖, 𝑗𝑡 . While the negotiation process
has the potential to be iterative until an agreement is reached, this
paper considers only a single iteration.

If an agreement is reached, the buyer pays from its budget,𝐵𝑔
′
𝑖,𝑡

=

𝐵𝑔𝑖,𝑡 −𝑝𝑖, 𝑗𝑡 , then incorporates the acquired data into its training set,
𝑋
′
𝑖,𝑡

= 𝑋𝑖,𝑡 ∪𝑇𝑟𝐵 𝑗,𝑡 . This process is mathematically represented as
follows:

EF (𝑇𝑟𝐵 𝑗,𝑡 , 𝑋𝑖,𝑡 , 𝑝
𝑖, 𝑗
𝑡 ) → 𝑋

′
𝑖,𝑡 , 𝐵𝑔

′
𝑖,𝑡 (2)

and retrains its model accordingly, resulting in M𝑖,𝑡+1. Finally,
both parties evaluate the gain from the transaction through a gain
function:

GF (𝑇𝑟𝐵 𝑗,𝑡 , 𝑝
𝑖, 𝑗
𝑡 , 𝑀𝑖,𝑡 ,PR𝑖,𝑡 ) → g𝑖,𝑡 , g𝑗,𝑡 (3)

which reflects the change in utility for both the buyer and seller as
a result of the data trade, taking into account the trade-off between
economic cost and predictive improvement.

2.2 Data Pricing and Negotiation (DPN) in ML
Data Marketplace

Data pricing is the process of assigning economic value to datasets,
enabling their exchange in digital marketplaces. Existing approaches
span multiple dimensions [19]:

• Versioning: Creating different versions of data products
tailored to customer needs, linking price to perceived value.
Examples include varying data granularity, privacy levels,
or delivery delays. [6, 20].

• Arbitrage-Free Pricing: Ensuring pricing models prevent
exploitation of price differences across markets or channels.
Techniques include query-based pricing and entropy-based
pricing [17, 27].

• Revenue Maximisation: Designing pricing strategies to at-
tract maximum customers while optimising revenue, such
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Figure 1: The Architecture of the MLDM Platform

as bundling, subscription models, and dynamic pricing [7,
9].

• Fair and Truthful Pricing: Using mechanisms like Shapley
fairness to ensure equitable revenue distribution among
sellers and incentivise buyers to reveal true valuations [1,
12, 13].

While these approaches offer foundational principles for eco-
nomic transactions, their direct application in MLDM presents new
challenges. In MLDM, data is not only an economic commodity but
also a model performance enhancer. As such, pricing mechanisms
must account for the predictive utility of data from the buyer’s
perspective and the value and revenue potential from the seller’s
side. Moreover, the iterative, agent-based nature of decentralised
MLDM calls for negotiation-aware pricing strategies that adapt
to local constraints, such as budgets, model needs, and dynamic
market conditions. These challenges motivate the development of
the UxV-DPN protocol, introduced in the following subsection.

3 UXV-DPN: UTILITY-VS-VALUE DATA
PRICING AND NEGOTIATION

We propose UxV-DPN, a negotiation protocol that enables pro-
sumer agents to engage in balanced, utility-driven exchanges. By
dynamically aligning value and utility through adaptive bargaining,
UxV-DPN aims to support equitable transactions that balance buyer

Algorithm 2 Data Pricing and Negotiation Mechanism

Seller price : PF (𝜇 𝑗,𝑡 , 𝜙 𝑗,𝑡 ) → 𝑝𝑆
𝑗,𝑡

Buyer desired price: PF (𝑏𝑖,𝑡 , 𝜙 𝑗,𝑡 ) → 𝑝𝐵
𝑖,𝑡

Buyer Decision-making:
if 𝑝𝐵

𝑖,𝑡
≥ 𝑝𝑆

𝑗,𝑡
then

Accept negotiation

else if
|𝑝𝑆

𝑗,𝑡
−𝑝𝐵

𝑖,𝑡
|

𝑝𝐵
𝑖,𝑡

> 𝜖𝑖 then

Reject (overpricing)
else

Propose new price 𝑝𝐵
𝑖,𝑡

end if
Seller Decision-making:

if
|𝑝𝑆

𝑗,𝑡
−𝑝𝐵

𝑖,𝑡
|

𝑝𝑖,𝑡
< 𝜖 𝑗 then

Accept negotiation
else

reject (underpricing)
end if

utility and seller value in decentralised data exchanges. UxV-DPN
will be evaluated within the context of MLDM. However, it can
serve as a general negotiation strategy in data marketplaces for
ML.
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Each transaction in this context represents an economic ex-
change between two rational but asymmetric agents:

• The seller, motivated by monetising their data asset, seeks
tomaximiseValue, defined as the potential revenue derived
from offering high-quality data.

• The buyer, driven by model performance improvement
but constrained by its budget, evaluates the dataset’s Util-
ity, referring to the expected gain in model accuracy for a
corresponding cost.

This perspective highlights the need for a pricing mechanism
that simultaneously attempts to find high-quality data and max-
imise predictive utility.

The proposed mechanism is illustrated in the negotiation mech-
anism diagram Figure 2 and formalised in Algorithm 2. The process
begins with the seller, agent 𝐴 𝑗 , setting a price for a traded set
(𝑇𝑟𝐵 𝑗,𝑡 ) at time 𝑡 based on its data valuation method. The price
function is expressed as:

PF (𝜇 𝑗,𝑡 , 𝜙 𝑗,𝑡 ) → 𝑝𝑆𝑗,𝑡 (4)

where 𝜙 𝑗,𝑡 is value of data at time 𝑡 and 𝜇 𝑗,𝑡 represents willing-
to-sell. This willing-to-sell increases when the budget decreases,
defined by the equation 𝜇 𝑗,𝑡 = 0.001 + 𝐵𝑔𝑗,0−𝐵𝑔𝑗,𝑡

𝐵𝑔𝑗,0
. For the purposes

of this paper, we simplify PF to be calculated as follows:

𝑝𝑆𝑗,𝑡 = 𝜇 𝑗,𝑡 ∗ 𝜙 𝑗,𝑡 (5)

This linear formulation captures a basic proportional relationship
between a seller’s motivation and the intrinsic value of the data.
It allows for transparent parameterisation and controlled experi-
mental evaluation. However, we acknowledge that more complex
formulations, such as non-linear functions (e.g., logarithmic or ex-
ponential) or dynamic pricing models, may more accurately reflect
real-world seller behaviour under competitive or strategic pressure.

Once the price has been established, the buyer determines their
desired price using the following formula:

PF (𝑏𝑖,𝑡 , 𝜙 𝑗,𝑡 ) → 𝑝𝐵𝑖,𝑡 (6)

where 𝜙 𝑗,𝑡 represents the value of the traded data belonging to
agent 𝐴 𝑗 at time 𝑡 , and 𝑏𝑖,𝑡 signifies the public value that reflects
how eager buyer 𝐴𝑖 is to acquire a new dataset [1]. This is defined
as:

𝑏𝑖,𝑡 = 𝜇𝑖,𝑡 ∗ PR𝑖,𝑡 ∗
𝐵𝑔𝑖,𝑡

𝐵𝑔𝑖,0
(7)

Here, 𝜇𝑖,𝑡 indicates the buyer’s willingness to pay, which quantifies
how much buyer 𝐴𝑖 values a marginal improvement in learning
performance (i.e., the price they are prepared to pay for a unit
increase in performance). Based on these parameters, the desired
price for a new dataset is then calculated as follows:

𝑝𝐵𝑖,𝑡 = 𝑏𝑖,𝑡 ∗ 𝜙 𝑗,𝑡 (8)

Based on both seller’s price (𝑝𝑆
𝑗,𝑡
) and buyer’s desired price (𝑝𝐵

𝑖,𝑡
),

the buyer evaluates the offer and must make a decision: accept,
reject, or propose a counter-offer. If the buyer accepts the proposed
price by seller (𝑝𝐵

𝑖,𝑡
≥ 𝑝𝑆

𝑗,𝑡
), the negotiation concludes successfully.

If a buyer outright rejects a seller’s proposed price without en-
gaging in any negotiation, it indicates that the proposed price sig-
nificantly diverges from the buyer’s expectations or valuation. This

occurs when the relative difference between the buyer’s internal
valuation 𝑝𝐵

𝑖,𝑡
, and the seller’s offered price 𝑝𝑆

𝑗,𝑡
exceeds a prede-

fined acceptance threshold 𝜖𝑖 . This relationship can be expressed
mathematically as:

|𝑝𝑆
𝑗,𝑡
− 𝑝𝐵

𝑖,𝑡
|

𝑝𝐵
𝑖,𝑡

> 𝜖𝑖 (9)

Here, 𝜖𝑖 denotes the acceptable margin of price deviation from
the buyer’s perspective. It encodes the tolerance level that the
buyer is willing to accept before deciding that the offer is too far
from their valuation to warrant a counteroffer. If this threshold is
passed, the transaction is immediately terminated. In this paper, 𝜖
is fixed across all agents for consistency. In our experiments, we
set 𝜖 = 0.25, allowing buyers to accept offers within ±25% of their
internal valuation. This threshold was empirically chosen to balance
negotiation flexibility with economic discipline. If this threshold is
exceeded, the transaction is terminated, discouraging extreme price
proposals and preserving the integrity of the negotiation protocol.
This mechanism serves to discourage unreasonably high or low
initial price settings and maintains offers within a range that is
mutually acceptable for negotiation.

If the buyer makes a counter-offer price as 𝑝𝐵
𝑖,𝑡
, the negotiation

enters a new round. Upon receiving this counter-offer, the seller
assesses the revised price and has three possible actions: accept
the offer, reject it, or propose a new counter-offer. This decision
is formed by the relative difference between buyer’s offer 𝑝𝐵

𝑖,𝑡
and

the seller’s original price 𝑝𝑆
𝑗,𝑡
. If the proposed counter-offer is suffi-

ciently close to the seller’s expectation, formally, if

|𝑝𝑆
𝑗,𝑡
− 𝑝𝐵

𝑖,𝑡
|

𝑝𝑆
𝑗,𝑡

< 𝜖 𝑗 (10)

where 𝜖 𝑗 is the seller’s tolerance threshold, the seller accepts the
offer. This leads to a successful negotiation. Conversely, if the re-
vised offer is outside this acceptable range, the seller perceives it as
underpricing and subsequently rejects the proposal. This results in
a failed negotiation.

While this framework naturally supports iterative bargaining
with multiple counter-offers between buyer and seller, this paper
focuses on a simplified one-iteration negotiation to emphasise the
core incentive and trust mechanisms. This simplified process is
illustrated in 2, which depicts the sequential flow of decisions in
the data pricing algorithm.

This iterative negotiation process encourages rational behaviour
in a competitive but cooperative setting, where neither the buyer
nor the seller is assumed to bemalicious. Instead, trust and incentive
alignment are promoted through a structured sequence of offers,
decisions, and outcomes that balance negotiation freedom with
transactional discipline.

The main goal of this method is to prevent overpricing or under-
pricing of data assets, providing that prices better reflect the true
utility and value of datasets in machine learning tasks.

4 EMPIRICAL VALIDATION
This section evaluates the effectiveness of the proposed negotia-
tion strategy within MLDM framework. Specifically, we analyse
how the negotiation mechanism, based on the dynamic pricing
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Figure 2: The Process of Data Pricing (PF ) and Negotiation
(NF ) in the ML data marketplace

and counter-offer protocol, improves the average predictive perfor-
mance of agents operating under the same learning algorithm. The
central hypothesis is that UxV negotiation allows agents to acquire
high-quality data at economically viable prices, thereby enhancing
overall model accuracy.

4.1 Experimental Setup
The MLDM framework consists of five autonomous agents, each
independently training a model using the K-Nearest Neighbors
(KNN) classification algorithm. These settings were chosen for
their simplicity and consistency across datasets, enabling a focused
evaluation of the effects of data exchange and negotiation strategies.

The key elements of the setup are as follows:
• Datasets: The MLDM framework was evaluated by choos-

ing a random set of 48 public classification data sets from
the OpenML platform [26] with different sizes and proper-
ties to simulate diversity.

• Budget: Each agent starts with a fixed initial budget of
1000(𝐵𝑔𝑖,0 = 1000), which is used to acquire data from
peers during negotiations.

• Simulation Details: All experiments were run for 10 iter-
ations and repeated 10 times to ensure statistical reliability.

• Global Evaluation: Besides the local training and test
data, a separate test set is left out for global evaluation,
it is called the validation set (𝑇𝑠𝐺). Agents estimate the
predictive performance of their models on a it, indicated as
GPR𝑖,𝑡 .

Based on global evaluation, the primary evaluation metric is
Total Global Performance (GPR𝑡 ), defined as the average predictive
accuracy of all agents 𝐴𝑖 , 𝑖 = {1, ..., 𝑛} across all datasets 𝐷 𝑗 , 𝑗 =

{1, ..., 𝑁 } at time step 𝑡 :

GPR𝑡𝑜𝑡 =
1

𝑛 ∗ 𝑁

𝑁∑︁
𝐷 𝑗=1

𝑛∑︁
𝑖=1
GPR𝐷 𝑗

𝑖,𝑡
(11)

where PR𝐷 𝑗

𝑖,𝑡
stands for the performance of learning model of agent

𝐴𝑖 at time 𝑡 , on data set 𝐷 𝑗 .
To benchmark the negotiation strategy, we define three compar-

ison scenarios:
• No Exchange (NE): Agents train on their initial local data

only; no trading occurs.
• Single Agent (SA): A centralised environment with only

one agent accessing the entire dataset.
• SimpleNegotiation𝑀𝐿𝐷𝑀𝜙 (SimpleNeg): This is a fixed-

price strategy where buyer agents accept negotiations if
the budget is sufficient. Otherwise, they request a reduced
size of the traded set. If the budget is exhausted, they do
not enter into negotiations [5].

To assess the impact of data exchange on the performance of
machine learningmodels, we compareMLDMwith its No-Exchange
counterpart (NE). TheGlobal Evaluationmetrics for the no-exchange
and exchange versions are denoted as GPR𝑛𝑒𝑡𝑜𝑡 and GPR𝑡𝑜𝑡 , re-
spectively. The Accuracy Gain Function is defined as:

AG𝑡𝑜𝑡 = GPR𝑀𝐿𝐷𝑀
𝑡𝑜𝑡 − GPR𝑁𝐸

𝑡𝑜𝑡 (12)
This metric helps us measure which data exchange contributes to a
performance improvement in machine learning models. This formu-
lation captures buyer utility as a function of marginal learning gain;
a formal utility model and analytical guarantees (e.g., convergence,
fairness) are left for future work.

4.2 Results
This section evaluates the core research question: Does the proposed
negotiation strategy (UxV-DPN) improve predictive performance
for agents in MLDM, considering the seller’s value and the buyer’s
utility? To address this, we compare the effectiveness of UxV-DPN
against SimpleNeg and two baselines: NE and SA. Our results in-
dicate that only after a couple of iterations, the exchange of data
achieves similar levels of predictive performance as the single agent.
However, UxV-DPN enables agents to achieve a better predictive
performance compared to NE, while reducing the cost compared to
Simple.

Figure 3 presents the average predictive performance of agents
at different iterations. As expected, the NE baseline results in the
lowest accuracy, highlighting the limitations of isolated learning
without data sharing. In contrast, all exchange-based strategies
demonstrate significant performance improvements, especially dur-
ing the initial phases of data acquisition when the data volume is
low, which affects the training of high-performance models. The
SimpleNeg strategy achieves the highest average performancewhen
agents have access to the complete dataset (100%), followed closely
by UxV-DPN and Single Agent.

Figure 4 further explores the trade-off between the total pay-
ment made by buyers and the accuracy gain, AG𝑡𝑜𝑡 , obtained
through negotiation. The UxV-DPN strategy shows a systematic
advantage in cost-effectiveness. Agents using this strategy achieve
an approximate 5% increase in model accuracy compared to the NE,
while incurring substantially lower payments than those using the
Simple strategy. Comparing to UxV-DPN, the Simple strategy only
achieves about a 1% increase in accuracy (a total gain of roughly 6%)
but at nearly double the cost. This shows that UxV-DPN provides a
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Figure 3: Average learning performance across agents under
different data exchange scenarios

Figure 4: Trade-off between total payment and accuracy gain
(AG𝑡𝑜𝑡 ) across negotiation strategies.

strategy considering the value and revenue for sellers, as well as
the cost and utility for buyers.

Overall, the UxV-DPN strategy provides a balance between util-
ity and cost in MLDM scenarios. Although the Simple negotiation
achieves marginally higher accuracy, it incurs a greater cost. The
UxV-DPN strategy displays that dynamic data pricing and negoti-
ation can lead to efficient and equitable data trading, making it a
practical option for real-world data marketplaces where optimising
both predictive benefits and cost sensitivity is crucial.

5 CONCLUSION
The primary objective of this work is to evaluate the effectiveness of
the proposed negotiation protocol, Utility-vs-Value Data Pricing
and Negotiation (UxV-DPN), in the context of Data Marketplaces.
The primary objective of UxV-DPN is to provide cost-effective data
exchanges that enhance the predictive performance of the buyer’s
learning model while maintaining the seller’s value and revenue.

To address this question, we conduct experiments through MLDM
across multiple datasets using a society of five learning agents, all
trained using a classification algorithm (KNN). In this setting, agents
often act as prosumers – participating both as data buyers and sell-
ers. Through comparative experiments across other scenarios (NE,
SA, SimpleNeg), we indicated that the proposed UxV-DPN protocol
achieves a balance between predictive improvement and economic
cost. While the SimpleNeg strategy delivers slightly higher accu-
racy, it costs more (nearly double on average), thereby reducing
overall cost-effectiveness. In contrast, UxV-DPN delivers over 80%
of the performance while maintaining significantly lower payment
levels. It provides a more efficient trade-off between cost and learn-
ing benefits, improving predictive accuracy by approximately 5%
relative to a NE baseline. UxV-DPN converges toward stable eco-
nomic equilibrium, making it particularly well-suited for iterative,
real-world data exchanges, where budget constraints and learning
demands continually evolve.

Overall, the results illustrate the core principle behind UxV-DPN:
aligning utility for buyers with value for sellers promotes sustain-
able and scalable Machine Learning Data Marketplaces. Future
research will evaluate UxV-DPN in more diverse settings, including
heterogeneous agents with different budgets and learning models,
as well as larger-scale environments with imbalanced data own-
ership. These directions will help assess the protocol’s robustness,
fairness, and scalability in more realistic marketplace conditions.
We also aim to formalise the theoretical properties of UxV-DPN,
including convergence behaviour and fairness guarantees, and to
refine the modelling of buyer utility beyond performance-based
heuristics.
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