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ABSTRACT
Artificial intelligence (AI) and machine learning (ML) are having
a profound impact on the economy but require huge amounts of
data, which is partially generated by increasingly digitalised organ-
isations but often acquired from third parties. This has resulted in a
rampant demand for data in emerging data markets that face daunt-
ing challenges derived from the nature of data as an economic
good (freely replicable, non-rival) and its elusive value. Despite
the appearance of data marketplaces (AWS, Snowflake, Nokia DM)
aimed to facilitate data transactions, data holders find it difficult to
set a price for their data assets, and data consumers have trouble
estimating a fair price to pay for data.

This paper presents an interpretable market-based data pricing
tool designed to help with these tasks by estimating the price of data
based on the prices of commercial data products observed in data
marketplaces. Resorting to sentence transformers, neural networks,
sensitivity analysis, and novel two-step SHapley Additive exPlana-
tions (SHAP), not only does our tool provide insightful user-friendly
reporting and interpretation of price predictions using different
price schemes, but it also improves the accuracy, the robustness,
and the generalisability of state-of-the-art (SOTA) models.
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1 INTRODUCTION
AI/ML will have a huge impact on the economy and will transform
labour markets and many other aspects of our daily lives [9, 11, 12,
21]. Economists trust that this technology will act as a tailwind to
propel productivity and economic growth in the next decades by
addressing critical challenges such as climate change or the ageing
workforce [19, 30]. For this, AI/ML requires huge amounts of data.

However, data assets are often owned and controlled by third
parties who are reluctant to share them. This is due to the elusive
nature of information assets–data is freely replicable, reusable,
etc. [13]–, the fear of inadvertently sharing a competitive advantage
with potential competitors and the risk of fines for accidentally
disclosing sensitive personal information. As a result, data-driven
companies tend to integrate horizontally throughout the value
chain, amassing and fiercely protecting critical data to provide
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digital services to their customers [37], and data exchanges rely on
ad hoc sharing agreements with selected partners, even in kind.

Enabling effective data markets is key to making the most of
AI/ML. Data transactions will require money to be exchanged,
which leads to the problem of agreeing on a price. However, data
providers find it difficult to set the price of data assets, and data
consumers struggle to anticipate the cost of acquiring data in the
market. As a result, failure to agree on a price has become the key
reason why data transactions are falling apart nowadays [23]. In
addition, regulatory and competition bodies are committed to in-
creasing the transparency of data markets to properly tax digital
services, including data transfers [7, 40, 43], and to promote trust
and ensure fairness in the data-driven economy [33].

Data pricing has long been an active research topic at the inter-
section of economics and computer science. Different schools have
approached the problem from various perspectives such as data
auctions, the value of privacy, the utility brought to specific AI/ML
models, the quality of data assets or the amount of information
in database queries [34]. Data marketplaces (DM) have appeared
to mediate data transactions [39]. In addition to helping with data
discovery and swift data delivery, DMs can play a role in price nego-
tiations. As data markets grow, pricing based on market references
is becoming a convenient solution to this problem.

Following the approach of quality-based pricing, previous works
developed ML models to classify data products and predict their
prices based on their metadata [3, 47]. However, they showed limi-
tations in how they process inputs, the pricing schemes supported,
and their interpretability by their users.

In this paper, we present a tool that predicts the price of a data
product based on those observed in commercial DMs. Not only do
we present tailored neural network (NN) classifiers and regressors
that outperform pre-existing models, but we also provide user-
friendly interpretations of their predictions. The pricing tool uses
this functionality to assist providers in setting the price of their data
assets under different schemes (volume-based, subscription-based,
or one-off download price), and data consumers in estimating the
cost of acquiring data in the market. Our Contributions include:

• Developing a generic data pricing tool to help data holders
and users agree on the price of data products.

• Designing and optimising more generalisable data product
classifiers and regressors based on transformers.

• Improving the accuracy of existing classifiers (min. +0.1 F1
score) and price regressors (-15-40% log MAE).

• Augmenting data to increase robustness (-60% MAE in pric-
ing data products with equivalent descriptions).

• Developing a methodology to support a variety of pricing
schemes often found in DMs.

• Applying interpretable AI techniques to fully understand
features and keywords affecting the price of data products.
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Figure 1: Architecture and Methodology.

The remainder of the paper is structured as follows. In Sect. 2, we
introduce the architecture of the tool, and explain key concepts used
throughout the paper. Section 3 then compares the performance
of the models with the state of the art, and derives features and
feature groups that influence the classification of a data product
and its price. Section 4 shows how we improved the robustness
of prediction models through data augmentation. Finally, Sect. 5
discusses related work and Sect. 6 concludes and points to future
research on the topic.

2 ARCHITECTURE AND METHODOLOGY
Figure 1 summarises the architecture and methodology of our inter-
pretable market-based data price prediction tool. They address the
limitations of pioneering work on the topic [3, 47] namely by using
more generalisable processing of data product descriptions that
allows multiple languages, by supporting different pricing schemes,
and by providing human-interpretable price predictions.

First, a flexible automated crawler allows scraping information
about data products sold by commercial DMs. We follow common
scraping good practices, such as avoiding repeated visits to the
same product, setting up random wait times from 30 seconds to 1
minute after requesting a web page from a server in order to avoid
flooding it with requests. Section 2.1 presents the dataset used.

Second, we run open-source large language models (LLMs) lo-
cally to automate information retrieval and transformHTML scraped
data into structuredmetadata featurematrices. As shown in Sect. 2.2,
we test different pre-trained sentence transformers, some of them
supporting multiple languages, to encode descriptions. This solves
the limitations of previous MLmodels based on bag of words (BoW),
term frequency (TF) and inverse document frequency (IDF).

Taking description embeddings and relevant metadata features
of commercial data products as input, we test and optimise ML
models to classify data products and enrich their metadata and to
feed price regressors that predict the logarithm of their monthly
subscription price based on market references. Section 2.3 presents
the analysis we made to design and optimise our models. We reuse
existing datasets to compare to the state of the art [5].

One of the key aspects of the development of ML models is
transparency and interpretability. To this end, Sect. 2.4 discusses
a novel two-step SHAP analysis that returns the importance of
metadata and description tokens in determining the price of a data
product or in classifying such product in a certain category.

Moreover, we develop a methodology to deliver price predic-
tions for the most usual pricing schemes, namely one-off pricing,
subscription-based pricing and volume-based pricing in Sect. 2.5.
Finally, Sect. 2.6 shows how data augmentation helped to increase
the robustness of price predictions.

2.1 Datasets
We trained classifiers for standard data categories of AWS for
which we have sufficient data product descriptions. We followed the
methodology presented in previous works on this topic to gather in-
formation on data products and their classifications in this DM [3],
a summary of which is shown in Tab. 1.

Table 1: Summary of Data used to train classifiers

Category 0 1 Total Category 0 1 Total
Financial 8,817 4,260 13,077 Healthcare 11,199 1,506 12,705
M&E 11,694 1,007 12,701 Telecom 12,013 907 12,920
Gaming 12,602 91 12,693 Automotive 12,292 461 12,753
Manufacturing 12,292 645 12,937 Resources 11,443 13,56 12,799
Retail 8,424 5,616 14,041 Public Sector 10,687 20,05 12,692
Others 11,029 1,695 12,724

To train data product price regressors, we used a dataset of
8,379 price references of 4,103 products obtained from commercial
marketplaces in 2021–2022 [5]. It contains product descriptions in
English, asking prices and relevant metadata features that appear
to drive them, such as time and geographical scope, volume, format,
delivery methods, limitations, add-ons, etc [3].

2.2 Encoding descriptions
Previous approaches to predicting the price of data relied on BoW
and TF-IDF techniques that ignore the meaning of descriptions.
This solution is not generalisable to descriptions typed in by users,
which do not necessarily resemble the ones used in the training.

To circumvent this shortcoming, we used pre-trained text trans-
formers [41] and sentence BERT [35] to encode data product descrip-
tions into sentence embeddings that carry semantic information.
To evaluate the new approach, we replaced the word features of
existing datasets with BERT encodings and maintained the rest of
the metadata before training the models in X = (Xmeta | Xenc). We
tested different pre-trained transformers (all-mpnet-base-v2 [48],
multi-qa-mpnet-base-dot-v1, all-distilroberta-v1 [36], multi-qa-dis-
tilbert-cos-v1, and paraphrase-multilingual-mpnet-base-v2) on our
classifiers and regressors with 10 different 80/20 train/test splits.

2.3 Designing and optimising models
We developed classifiers and regressors based on neural networks
using TensorFlow [1] and Keras [24] and optimised them to max-
imise their performance. As a result, these models did perfectly in-
terpret sentence transformer embeddings, and outperformed SOTA
regression models like Random Forest, Gradient Boosting, XGBoost,
kNeighbors, lightGBM and CatBoost regressors.

When designing and testing the models, we followed all the
recommended good practices by first standardising the input data
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Figure 2: Neural network architecture.

and removing highly correlated features. Figure 2 shows the archi-
tecture of the neural networks we used for classifiers and regres-
sors [29]. We used linear and sigmoid activation functions for the
output layer of regressors and classifiers, respectively. As a loss
function, we used mean absolute error (MAE) for the regressors
and binary cross-entropy for the classifiers. To avoid overfitting, we
randomly applied dropout between training epochs and to avoid
dying/exploding neurons, we also applied batch normalisation be-
tween all layers. We used the Adam optimiser [25] with a tuned
learning rate decay to train the model faster at the beginning and
then decrease the learning rate with further epochs to make train-
ing more precise. Finally, we used callbacks to stop the training at
the optimal epoch.

We optimised the number of hidden layers and training epochs
considering the trade-off between accuracy and training time, we
tested rectified linear unit (ReLU) and leaky ReLU activation func-
tions for hidden layers, different dropout percentages, and different
batch sizes and learning decay profiles to accelerate the learning
time and optimise the results. Figure 3 shows the accuracy achieved
and the training time (average of 10 different runs with different
80/20 train test splits of the input data) for a range of values of
these parameters and highlights those chosen for the classifier.

Figure 3: Parameter tuning

2.4 Interpreting predictions

Figure 4: Two-step SHAP analysis for better interpretability

We used SHAP to provide the user with an interpretation of
price predictions at the level of feature and feature group [28]. As
input, we need the metadata of the data product and the encoding
of its description: x = (xmeta, xenc). A direct calculation of the
SHAP values returns 𝜙 (𝑓 , 𝑥𝑖 ), 𝑥𝑖 ∈ x. Since the model is trained to
produce the logarithm of the price, the SHAP values, which add to
𝑓 (x)−E[𝑓 (X)], can be interpreted as price multipliers to move from
the predicted base price if no information on the data product was
known 𝑝base = 10E[ 𝑓 (X) ] to the actual prediction 𝑝pred = 10𝑓 (x) .

𝑝pred = 𝑝base ·
∏
𝑥𝑖 ∈x

10𝜙 (𝑓 ,𝑥𝑖 ) (1)

However, SHAP values of description encodings are difficult to
interpret because users cannot connect them to specific words in
descriptions. Carrying out a SHAP analysis on both the model and
the sentence transformer (𝑓 ◦ 𝑔) would significantly increase the
dimensionality of the problem, leading to very long processing
times. Therefore, we implemented a two-step SHAP, as follows:
1. We aggregate SHAP values of description encodings to calculate
the aggregate importance of the description in the prediction.

𝜙 (𝑓 , xenc) =
∑︁

𝑥𝑖 ∈𝑥enc
𝜙 (𝑓 , 𝑥𝑖 ) (2)

2. We estimate the SHAP values by description token in the entire
model (encoding + price prediction) assuming that xmeta remains
constant, that is, 𝜙 (𝑓 ◦ 𝑔, t|xmeta), or 𝜙 (𝑓 ◦ 𝑔, t). Note that the sum
of the token SHAP values does not necessarily match 𝜙 (𝑓 , xenc).
3. We transform the token SHAP values to sum 𝜙 (𝑓 , xenc), preserv-
ing the sign of 𝜙 (𝑓 ◦ 𝑔, t) and the proportion between the tokens
driving the prediction in the same direction, and minimising the
mean square difference between 𝜙 ′ and 𝜙 , as follows:

𝜙 ′ (𝑓 ◦ 𝑔, t) =
{
𝑤+ · 𝜙 (𝑓 ◦ 𝑔, t) 𝜙 (𝑓 ◦ 𝑔, t) ≥ 0
𝑤− · 𝜙 (𝑓 ◦ 𝑔, t) 𝜙 (𝑓 ◦ 𝑔, t) < 0

(3)

𝑎𝑟𝑔𝑚𝑖𝑛𝑤+,𝑤−
∑︁
𝑡

𝜙 ′ (𝑓 ◦ 𝑔, t)2 − 𝜙 (𝑓 ◦ 𝑔, t)2

subject to:

𝑤+,𝑤− ≥ 0, (4)∑︁
𝑡

𝜙 ′ (𝑓 ◦ 𝑔, t) = 𝜙 (𝑓 , xenc)

4. We replace the SHAP values of the encoding features 𝜙 (𝑓 , xenc)
with those of the tokens used in the description 𝜙 ′ (𝑓 ◦ 𝑔, t).
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Since they refer to specific words or stems, token SHAP values
are easily interpretable by users. Furthermore, we maintain the
desirable additivity of SHAP values, namely the sum of SHAP values
of description tokens and metadata features is the gap between the
base price E[𝑓 (X)] and the prediction we aim to explain 𝑓 (𝑥).

𝑓 (𝑥) − E[𝑓 (X)] = 𝜙 ′ (𝑓 ◦ 𝑔, 𝑡) +
∑︁

𝑥𝑖 ∈xmeta

𝜙 (𝑓 , 𝑥𝑖 ). (5)

2.5 Converting price between pricing schemes
Even though our model predicts subscription prices (US$ / month),
the dataset that feeds it includes price references that belong to
different pricing schemes, and users may be interested in estimating
one-off and volume-based prices. Therefore, converting between
pricing schemes can be useful both to make more training data
available and to produce outputs for different pricing schemes.

To do so, we make use of consumer indifference, a concept widely
used in microeconomics. We say consumers are indifferent to two
options of delivering and/or pricing a data product if both options
provide the consumer with the same level of satisfaction. For exam-
ple, a consumer who wants a snapshot of a dataset may indifferently
download–and pay a one-off tariff 𝑝off for–it from a provider’s web-
page, or subscribe to an AWS data product serving the same dataset
for the minimum permissible time, typically one month, to down-
load the information and then unsubscribe, paying the monthly
tariff 𝑝sub once. Generally, downloading a one-off data product
worth 𝑝off every 𝑇𝑢 months is equivalent to subscribing to a data
product worth 𝑝off/𝑇𝑢 per month for period 𝑇𝑢 .

Volume-based tariffs allow consumers to download a volume
of data 𝑣 over a certain period 𝑇𝑣 paying a certain price 𝑝𝑣 . This
would be equivalent to paying for a subscription worth 𝑝𝑣/𝑇𝑣 per
month for a period 𝑇𝑣 to a dataset that contains the same data
points 𝑣 . However, APIs usually charge by volume and let users
tailor the data they download from a wider database to their needs,
as opposed to other methods that deliver the whole database that
users query or trim locally. The model captures the premium for
being able to select data through the API delivery feature.

2.6 Augmenting the training data
Users do not necessarily type descriptions that match those used
to train the models, nor do they necessarily use the same words. In
this paper, we use data augmentation techniques to improve the
robustness of price predictions to small variations of the inputs,
such as their descriptions or update rate. We show results that
corroborate this improvement in Sect. 4.

To make the model more robust, we prompt LLMs to paraphrase
descriptions while maintaining all the information they contain.
Then we create new training data including the encoding of para-
phrased descriptions and maintaining other metadata features.

To ensure predictions show a correct sensitivity to update rate,
we again resort to the concept of consumer indifference. For exam-
ple, data users interested in a product worth 𝑝 that is updated after a
period𝑇𝑢 can save money by downloading data less frequently. Con-
sumers interested in refreshing the data every 𝑛 periods would not
need to pay more than 𝑝/𝑛. This also holds for subscription-based
products whose contract duration is 𝑇𝑢 or shorter.

Figure 5: Performance of NN classifiers

Table 2: Comparison of results vs SOTA

Accuracy Precision Recall 𝐹1 Score
Financial [3] 0.93 0.97 0.81 0.88
Financial (new) 0.99 0.98 0.98 0.98
Retail [3] 0.95 0.96 0.88 0.91
Retail (new) 0.97 0.97 0.96 0.96

3 EVALUATING NEURAL NETWORKS
In this section, we evaluate NN classifiers and regressors against
SOTA datasets and models [3]. In addition to being more generalis-
able and hence more suitable for a price prediction tool, we show
that the new classifiers and regressors outperform existing models.

3.1 Evaluating classifiers
Figure 5 summarises the average performance achieved in the test
set by NN classifiers for ten different train/test splits of our dataset.
Most of them achieve high accuracy and 𝐹1 scores above 0.9. Hetero-
geneous lower-performing categories like ‘Manufacturing’, ‘Public
Sector’ or ‘Resources’ even require more ground data to learn to
better classify products. Compared to the results obtained in pre-
vious work, the new classifiers based on sentence transformers
significantly improve key evaluation metrics, as shown in Tab. 2.
These results are similar regardless of the sentence transformer
used. We obtained negligible standard deviation (< 0.008) and maxi-
mum difference (0.02) between F1 scores across transformers.

To understand how the models work, we ran a SHAP analysis on
the entire corpus to identify the most relevant tokens that classifiers
rely on. We used TF-IDF statistics to weight the average SHAP
values and consider the importance of the tokens in the training
data. Table 3 presents the top ten tokens for some categories with
and without TF-IDF corrections. These results show that algorithms
generally use meaningful words to classify data products.

3.2 Evaluating price regressors
Regarding price prediction, we tested the NN model with ten dif-
ferent train/test data splits of the whole dataset, and then of data
filtered by category (Financial, Retail, and Healthcare). In addition
to other advantages they brought, the new models using sentence
transformers significantly outperformed SOTA classifiers in all
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Table 3: Top-10 relevant tokens for data product classifiers

Category Most relevant tokens by average SHAP·TF·IDF Most relevant tokens by average SHAP
Financial financial, trading, investment, exports, companies, business,

company, market, securities, asset
pricing, banking, import, valuation, financing, contracts,
stocks, worth, deposit, merger

Healthcare data, medical, patient, co, health, clinical, vid, disease, 19, pa-
tients

hospitals, iology, doctors, esthesia, dna, physicians, diagnosed,
surgeons, medication, blood

Telecom data, mobile, users, location, marketing, electronic, tr, network
technology, market

bandwidth, telecom, phone, smartphone, network, route, con-
nectivity, users, tower, trace

Gaming gaming, nfl, player, sports, football, basketball, data, mobile,
players, fantasy

gaming, football, nfl, player, sports, basketball, metric, fantasy,
antiques, stats

Retail intent, data, sentiment, consumer, location, companies, visita-
tion, product, sales, locations

properties, lawyers, san, lawyers, dealers, smartphone, mosaic,
purchase, retailer, venues

Figure 6: LOO and Shapley values (%) by feature group

categories, as shown in Tab. 4. According to these results, train-
ing a single general model covering all types of data products is
preferable to training a specific model for each category.

We performed importance analysis to ensure that the predic-
tions were based on meaningful metadata. Figure 6 plots the groups
of features that turned out to be more meaningful to make pre-
dictions using two separate techniques to measure the impact of
removing specific groups of features from the training data: leave-
one-out (LOO), and Shapley [14, 38]. We reused the grouping in
SOTA work [3], arranged together and coloured in similar tones
feature groups that respond to similar questions about data prod-
ucts. Interestingly, it is what (in grey, descriptions, categories, and
identificability) and how much (in blue, volume and update rate)
data a product contains that determine almost 2/3 of its price. How
data is delivered (in orange, format, delivery methods, and add-ons)
appeared to be also important, whereas data time span, or history
(in green, answering to when) and geographical scope (in yellow,
answering to where) proved to be less relevant.

Furthermore, an interpretable data pricing tool must offer under-
standable explanations of its predictions. Using a two-step SHAP,
the tool produces waterfall charts to explain why a prediction is
above or below the average price observed in the training sample,
both at the level of individual features and feature groups. Figure 7
shows a screenshot of a waterfall plot for a credit card transaction
dataset. It clearly shows that the high price results from a combina-
tion of what the data is about (its description) and how much data
it contains (its volume and update rate).

Figure 7: SHAP waterfall by feature group

Figure 8: SHAP waterfall by feature and token importance

An initial SHAP analysis at the feature level includes opaque
encoding features that users cannot interpret. After a second step,
the tool highlights the tokens and words in the product description
driving the predicted price up (in green scale) and down (in red
scale), and provides a customisable ranking of the most relevant
features. Figure 8 shows screenshots of the result for a credit card
transaction dataset, and clearly reflects that the fact that such data
is “de-identified”, concerns “card transactions” and allows “consumer
profiling” is what makes it more valuable. In fact, the last concept
appears in the waterfall plot at the feature level after this analysis.
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Table 4: Comparison of regression models performance vs SOTA [3]

Model Financial Marketing Healthcare All
𝑹2 MAE MSE 𝑹2 MAE MSE 𝑹2 MAE MSE 𝑹2 MAE MSE

RF 0.85 0.2 0.14 0.86 0.21 0.13 0.78 0.25 0.15 0.84 0.23 0.16
kN 0.78 0.31 0.26 0.74 0.33 0.24 0.77 0.26 0.17 0.69 0.37 0.31
GB 0.82 0.23 0.16 0.8 0.28 0.19 0.73 0.27 0.19 0.79 0.3 0.22
NN 0.73 0.33 0.35 0.77 0.30 0.22 0.68 0.26 0.18 0.72 0.33 0.28
new NN 0.89 0.17 0.10 0.89 0.17 0.10 0.82 0.19 0.12 0.91 0.15 0.08

Figure 9: Price prediction error for paraphrased data products

Previous works focused on identifying the characteristics of
commercial data products that drive their price in the market, while
a tool that predicts such a price must respond to any input requested
by their users, not necessarily matching those seen at training
time. For example, equivalent descriptions of the same data product
should lead to the same or similar prices. The price of data products
that bring the same utility to end users should also be similar.
Hence, a consumer interested in yearly updates of a dataset would
likely pay 1/12 the price of another consumer interested in monthly
updates of the same product (e.g., by subscribing and paying one
month and then unsubscribing to the data service, or just paying
for downloading the dataset once a year instead of every month).

Therefore, improving robustness becomes critical when training
price predictionmodels.We resort to data-augmentation techniques
to help with this.

4 IMPROVING ROBUSTNESS THROUGH DATA
AUGMENTATION

To show how data augmentation can improve the model, we para-
phrase the descriptions of the original data products without losing
information. We then predict the price of the paraphrased input
and measure the error, which should ideally be the same but turned
out to be ×3 the baseline error obtained for the original data prod-
ucts. We add this new paraphrased dataset to the training data and
retrain the model.

Figure 9 shows the prediction error (MAE and RMSE) mea-
sured in the new paraphrased version of the dataset after subse-
quent rounds of augmentation and retraining. After enriching–and
multiplying—the training data five times, the model achieves the
baseline accuracy in a sixth paraphrased version.

As a result of this process, the resulting model becomes more
robust to small variations in descriptions. Future work will test data
augmentation with descriptions in different languages, or changes
in the desired update rate, which we just tested empirically so far.

5 RELATEDWORKS
Data pricing has long been a relevant research line at the inter-
section of economics and computer science [34, 46]. In fact, the
lack of empirical data on the price of data is considered a key chal-
lenge in DM surveys [16, 23, 34, 45]. Several different approaches
have been proposed to price data assets. Some authors proposed
auction designs applicable to data products [17, 18], others have
defined pricing strategies and marketplaces based on differential
privacy [15, 27] or queries to a database [8, 26]. Novel AI/ML DM
architectures have been proposed under the concept of value-based
pricing [2, 10, 32] and the value of privacy [31].

Quality-based pricing sets the price of data by weighting its
quality features [20, 44]. Following this approach, previous work
measured the price of data in commercial marketplaces, identified
key metadata features that drive it, and suggested a design for a
market-based price prediction tool [6]. Furthermore, a posterior
work fit price regressors to understand the importance of those
features but lacked the generalisability required for a price predic-
tion tool [3]. This work, which we use as a baseline to compare our
models, also published a dataset that we extend in this paper [5].
A previous data price prediction tool was developed on these data,
which does not include a fully human-interpretable explanation of
predictions, as we propose in this paper [47].

6 CONCLUSION AND FUTUREWORK
Our work proposes a novel market-based data pricing tool that
combines fully-interpretable price predictions with generalisable
tailored neural networks that outperform SOTA models. We rely on
multilingual sentence transformers to support multiple languages,
and we have developed a methodology based on consumer indiffer-
ence to convert between pricing schemes. Finally, we have pointed
to data augmentation techniques that can help further improve the
robustness and generalisability of the tool.

This work represents the first step of an effort to build and op-
erate an observatory of the data economy. We are working on
updating, extending and enriching our training data by streamlin-
ing data ingestion processes to refresh market information more
frequently, and to validate and further improve the robustness of
our models. Moreover, we look forward to ingesting and integrating
information about real data transactions, and to actively interfacing
with ongoing standardisation initiatives, such as the International
Data Spaces [22] and the Gaia-X project [4] for data exchanges, or
W3C Data CATalog vocabulary [42] for metadata specification.
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